
z/OS Communications Server

IP Programmer's Guide and Reference
Version 2 Release 2

SC27-3659-03

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1103.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS), and to subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send us comments electronically by using one of the following methods:

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, and telephone number. Make sure to include the
following information in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures . xix

Tables . xxi

About this document . xxix
Who should read this document . xxix
How this document is organized . xxix
How to use this document. xxxi

Determining whether a publication is current . xxxi
How to contact IBM service . xxxi

Conventions and terminology that are used in this document xxxii
How to read a syntax diagram . xxxiii
Prerequisite and related information . xxxv

Summary of changes for IP Programmer's Guide and Reference. xli
Changes made in z/OS Version 2 Release 2 . xli
Changes made in z/OS Version 2 Release 1, as updated September 2014. xlii
Changes made in z/OS Version 2 Release 1, as updated December 2013 xlii
Summary of changes for z/OS Version 2 Release 1 . xlii

Chapter 1. General programming information 1
Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0 1

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 3
SNMP agents and subagents . 3
Processing DPI requests . 4

Processing a GET request . 4
Processing a SET request . 4
Processing a GET-NEXT request . 4
Processing a REGISTER request . 5
Processing a TRAP request . 5
SNMP agent DPI header files . 5

SNMP agent DPI: Compiling and linking . 6
SNMP agent DPI: Sample compilation cataloged procedure additions 6
SNMP agent DPI: Sample link-edit cataloged procedure additions 6

SNMP DPI library routines . 6
mkDPIlist() . 6
fDPIparse() . 7
mkDPIregister() . 8
mkDPIresponse() . 8
mkDPIset() . 9
mkDPItrap() . 10
mkDPItrape() . 11
pDPIpacket() . 11
query_DPI_port() . 13

Sample SNMP DPI client program for C sockets for version 1.1 14
Using the DPISAMPL program . 14
DPISAMPN NCCFLST for the SNMP manager . 15
Compiling and linking the DPISAMPL.C source code . 16
dpiSample table MIB descriptions . 16
The DPISAMPL.C source code . 17

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 35
SNMP agents and subagents. 35

© Copyright IBM Corp. 2000, 2015 iii

DPI agent requests . 36
SNMP DPI version 2.0 library . 37

SNMP DPI Version 2.0 API . 37
Compiling and linking DPI Version 2.0 . 38

Compiling and linking DPI Version 2.0: UNIX System Services environment. 38
Compiling and linking DPI Version 2.0: MVS environment 39

DPI Version 1.x base code considerations . 39
Migrating your SNMP DPI subagent to Version 2.0 . 39

Required actions for migrating your SNMP DPI subagent to Version 2.0 39
Recommended actions for migrating your SNMP DPI subagent to Version 2.0 40
snmp_dpi_xxxx_packet structures name changes . 41

SNMP DPI environment variables . 42
SNMP DPI subagent programming concepts . 42
Specifying the SNMP DPI API . 43

DPI subagent connect processing . 43
DPI subagent OPEN request . 43
DPI subagent REGISTER request . 44
DPI subagent GET processing . 46
DPI subagent SET processing . 46
DPI subagent GETNEXT processing . 47
DPI subagent GETBULK processing request . 48
DPI subagent TRAP request . 49
DPI subagent ARE_YOU_THERE request . 49
DPI subagent UNREGISTER request . 49
DPI subagent CLOSE request . 50

Multithreading programming considerations . 50
Functions, data structures, and constants . 51
Basic DPI API functions . 52

The DPIdebug() function . 53
The DPI_PACKET_LEN() macro . 53
The fDPIparse() function . 54
The fDPIset() function . 54
The mkDPIAreYouThere() function . 55
The mkDPIclose() function . 56
The mkDPIopen() function . 57
The mkDPIregister() function . 59
The mkDPIresponse() function . 60
The mkDPIset() function . 62
The mkDPItrap() function . 64
The mkDPIunregister() function . 65
The pDPIpacket() function . 66

Transport-related DPI API functions . 67
The DPIawait_packet_from_agent() function . 67
The DPIconnect_to_agent_TCP() function . 69
The DPIconnect_to_agent_UNIXstream() function. 70
The DPIdisconnect_from_agent() function . 71
The DPIget_fd_for_handle() function . 72
The DPIsend_packet_to_agent() function. 73
The lookup_host() function . 74
The lookup_host6() function . 75

DPI structures . 75
The snmp_dpi_close_packet structure. 76
The snmp_dpi_get_packet structure . 76
The snmp_dpi_hdr structure. 77
The snmp_dpi_next_packet structure . 79
The snmp_dpi_resp_packet structure . 80
The snmp_dpi_set_packet structure . 81
The snmp_dpi_ureg_packet structure . 82
The snmp_dpi_u64 structure. 83

DPI OPEN character set selection . 84
SNMP DPI constants, values, return codes, and include file 84

iv z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DPI CLOSE reason codes . 85
DPI packet types . 85
DPI RESPONSE error codes . 85
DPI UNREGISTER reason codes . 86
DPI SNMP value types . 87
Value representation of DPI SNMP value types . 87
Value ranges and limits for DPI SNMP value types . 88
Return codes from DPI transport-related functions . 88
The snmp_dpi.h include file . 89

snmp_dpi.h include parameters . 89
snmp_dpi.h include description . 89

DPI subagent example. 90
Overview of subagent processing . 90
SNMP DPI: Connecting to the agent . 92
SNMP DPI: Registering a subtree with the agent . 94
SNMP DPI: Processing requests from the agent . 97
SNMP DPI: Processing a GET request . 100
SNMP DPI: Processing a GETNEXT request . 103
SNMP DPI: Processing a SET/COMMIT/UNDO request . 107
SNMP DPI: Processing an UNREGISTER request . 110
SNMP DPI: Processing a CLOSE request . 110
SNMP DPI: Generating a TRAP . 111

Chapter 4. Running the sample SNMP DPI client program for version 2.0 115
Using the sample SNMP DPI client program . 115
Compiling and linking the dpi_mvs_sample.c source code 115
DPISimple-MIB descriptions . 116

Chapter 5. SNMP manager API . 117
SNMP protocol . 117
The SNMP manager API overview . 118
The SNMP notification API overview . 118
SNMP manager API functions . 118

Configuration entry considerations . 118
snmpAddVarBind – Adds a VarBind to the SnmpVarBinds structure 119
snmpBuildPDU – Builds an SNMP PDU . 120
snmpBuildSession – Creates a session . 121
snmpCreateVarBinds – Creates a VarBind structure . 122
snmpFreeDecodedPDU - Free the decoded PDU. 123
snmpFreeOID - Free an OID string . 123
snmpFreePDU – Frees the resources of a PDU . 124
snmpFreeVarBinds – Frees the VarBinds structure . 124
snmpGetErrorInfo - Get the error information from the PDU response 124
snmpGetNumberOfVarBinds – Get the number of VarBinds attached to the PDU. 125
snmpGetOID – Get the OID from the VarBind structure 126
snmpGetRequestId – Get the PDU’s requestId value . 126
snmpGetSockFd – Get the socket’s file descriptor . 127
snmpGetValue – Get the value from the VarBind structure 127
snmpGetVarbind – Get a VarBind attached to the PDU 127
snmpInitialize – Initialize the manager environment . 128
snmpSendRequest – Send the snmpPDU request to an agent 129
snmpSetLogFunction – Set the logging level . 131
snmpSetLogLevel – Set the logging level . 131
snmpSetRequestId – Set the PDU’s requestId value. 132
snmpTerminate – Release the resources . 133
snmpTerminateSession – Terminate a session . 133
snmpValueCreateCounter32 – Create an smiValue of type Counter32 134
snmpValueCreateCounter64 – Create an smiValue of type Counter64 134
snmpValueCreateGauge32 – Create an smiValue of type Gauge32 134
snmpValueCreateInteger – Create an smiValue of type Integer 135

Contents v

snmpValueCreateInteger32 – Create an smiValue of type Integer32 135
snmpValueCreateIPAddr – Create an smiValue of type IPAddr 136
snmpValueCreateNull – Create an smiValue of type Null 136
snmpValueCreateOctet – Create an smiValue of type Octet 136
snmpValueCreateOID – Create an smiValue of type OID 137
snmpValueCreateOpaque – Create an smiValue of type Opaque 137
snmpValueCreateTimerTicks – Create an smiValue of type TimerTicks 138
snmpValueCreateUnsigned32 – Create an smiValue of type Unsigned32 138

SNMP notification API functions . 139
snmpBuildV1TrapPDU – Builds an SNMP V1 trap PDU 139
snmpBuildV2TrapOrInformPDU – Builds an SNMP V2 trap or inform PDU 141

SNMP manager API configuration file . 142
SNMP manager API statement syntax . 142
Steps for compiling and linking SNMP manager API applications 145
Running your SNMP manager API application . 145
Debugging the SNMP manager API . 146
Sample SNMP manager API source code . 147

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 149
API outline . 150
Compiling and linking RAPI applications . 150
Running RAPI applications. 151
Event upcall . 151

rapi_event_rtn_t - Event upcall . 151
Client library services . 154

rapi_release - Remove a session . 154
rapi_reserve - Make, modify, or delete a reservation . 154
rapi_sender - Specify sender parameters . 156
rapi_session - Create a session. 157
rapi_version - RAPI version . 158

RAPI formatting routines . 158
rapi_fmt_adspec - Format an adspec. 159
rapi_fmt_filtspec - Format a filtspec . 159
rapi_fmt_flowspec - Format a flowspec . 160
rapi_fmt_tspec - Format a tspec . 161

RAPI objects. 162
RAPI objects - Flowspecs . 162
RAPI objects - Sender tspecs . 162
RAPI objects - Adspecs . 163
RAPI objects - Filter specs and sender templates. 163

RAPI asynchronous event handling . 163
rapi_dispatch - Dispatch API event . 165
rapi_getfd - Get file descriptor. 165

RAPI error handling . 165
RAPI error codes . 166
RSVP error codes . 167

RAPI header files . 168
RAPI header files: Integer and floating point types . 168
The <rapi.h> header . 168
Integrated services data structures and macros . 174

Chapter 7. X Window System interface in the z/OS Communications Server
environment . 183
X Window System and Motif . 183

DLL support for the X Window System . 184
How the X Window System interface works in the MVS environment 185
X Window System programming considerations . 186
Running an X Window System or Motif DLL-enabled application 187
X Window System environment variables . 188
Motif environment variables . 189

vi z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

EBCDIC/ASCII translation in the X Window System . 190
Standard clients supplied with MVS z/OS UNIX X Window System support 190
Demonstration programs supplied with MVS z/OS UNIX X Window System support 191
X Window System and Motif files locations . 191

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 195
The RPC interface . 195
Portmapper and rpcbind . 197

Contacting portmapper or rpcbind . 198
Portmapper and rpcbind target assistance . 198
Registering with rpcbind . 199
Deregistering with rpcbind . 200
Obtaining address lists from the rpcbind server . 200
RPC servers in a CINET environment . 201
Using ENF event code 80 to listen for rpcbind events . 201
RPCGEN command . 202
clnt_stat enumerated type . 203

Porting RPC applications . 204
Remapping file names with MANIFEST.H. 204
Accessing system return messages . 204
Printing system return messages . 205
Enumerations . 205
Header files for remote procedure calls . 205

Compiling and linking RPC applications . 205
Compatibility considerations when compiling and linking RPC applications 206
Sample compilation cataloged procedure additions . 206
Compiling and linking RPC applications: Nonreentrant modules 206
Compiling and linking RPC applications: Reentrant modules 206

RPC global variables . 206
rpc_createerr . 207
svc_fds . 207
svc_fdset . 207
Remote procedure and external data representation calls . 208
auth_destroy() . 208
authnone_create() . 208
authunix_create() . 209
authunix_create_default() . 209
callrpc() . 210
clnt_broadcast(). 211
clnt_call(). 212
clnt_control() . 213
clnt_create() . 214
clnt_destroy() . 215
clnt_freeres() . 216
clnt_geterr() . 216
clnt_pcreateerror() . 217
clnt_perrno() . 218
clnt_perror() . 218
clnt_spcreateerror() . 219
clnt_sperrno() . 220
clnt_sperror() . 220
clntraw_create() . 221
clnttcp_create() . 222
clntudp_create() . 223
get_myaddress() . 224
getrpcport() . 225
pmap_getmaps() . 226
pmap_getport() . 226
pmap_rmtcall() . 227
pmap_set() . 228
pmap_unset() . 229

Contents vii

registerrpc() . 230
svc_destroy() . 231
svc_freeargs() . 231
svc_getargs() . 232
svc_getcaller() . 233
svc_getreq() . 233
svc_getreqset() . 233
svc_register() . 234
svc_run() . 235
svc_sendreply(). 235
svc_unregister() . 236
svcerr_auth() . 237
svcerr_decode(). 237
svcerr_noproc() . 238
svcerr_noprog(). 238
svcerr_progvers() . 239
svcerr_systemerr() . 239
svcerr_weakauth() . 240
svcraw_create() . 240
svctcp_create() . 241
svcudp_create(). 241
xdr_accepted_reply() . 242
xdr_array() . 243
xdr_authunix_parms() . 244
xdr_bool() . 244
xdr_bytes() . 245
xdr_callhdr() . 246
xdr_callmsg() . 246
xdr_char() . 247
xdr_destroy() . 248
xdr_double() . 248
xdr_enum() . 249
xdr_float() . 250
xdr_free(). 250
xdr_getpos() . 251
xdr_inline() . 252
xdr_int() . 252
xdr_long() . 253
xdr_opaque() . 254
xdr_opaque_auth() . 254
xdr_pmap() . 255
xdr_pmaplist() . 256
xdr_pointer() . 256
xdr_reference() . 257
xdr_rejected_reply() . 258
xdr_replymsg() . 259
xdr_setpos() . 259
xdr_short() . 260
xdr_string() . 261
xdr_text_char() . 261
xdr_u_char(). 262
xdr_u_int() . 263
xdr_u_long() . 263
xdr_u_short() . 264
xdr_union() . 265
xdr_vector() . 266
xdr_void() . 267
xdr_wrapstring() . 267
xdrmem_create() . 268
xdrrec_create() . 268
xdrrec_endofrecord() . 269

viii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xdrrec_eof() . 270
xdrrec_skiprecord() . 270
xdrstdio_create() . 270
xprt_register() . 271
xprt_unregister() . 271
Sample RPC programs . 272

Running RPC sample programs . 272
RPC client . 272
RPC server . 273
RPC raw data stream. 275

RPCGEN sample programs. 278
Generating your own sequential data sets . 278
Building client and server executable modules . 278
Running RPCGEN sample programs . 278

Chapter 9. Remote procedure calls in the z/OS UNIX System Services environment 281
Deviations from Sun RPC 4.0 . 281
Using z/OS UNIX System Services RPC . 282
Support for 64-bit integers . 282
UDP transport protocol CLIENT handles . 283
RPC restrictions . 283

Chapter 10. Network Computing System. 285
NCS and the Network Computing Architecture . 285
NCS components . 285

Remote procedure call runtime library . 285
Location broker. 286
Network interface definition language compiler . 286

MVS implementation of NCS . 286
NCS system IDL data sets . 288
NCS C header data sets and the Pascal include data set . 288
NCS RPC run-time library . 288
NCS portability issues . 289

NCS defines NCSDEFS.H . 289
Required user-defined USERDEFS.H . 289

NCS: Preprocessing, compiling, and linking . 290
NCS preprocessor programs . 290
Compiling and linking NCS programs . 295

Running UUID@GEN . 297
NCS sample programs . 297
The NCSSMP sample program . 297

NCS sample redefines . 298
Compiling, linking, and running the sample BINOP program 298

Setting up the sample BINOP program . 299
Compiling the sample BINOP program. 300
Linking the sample BINOP program. 301
Running the sample BINOP program . 302

Compiling, linking, and running the NCSSMP program . 303
Setting up the NCSSMP program. 303
Compiling the NCSSMP program . 304
Linking the NCSSMP program . 305
Running the NCSSMP program . 307

Compiling, linking, and running the sample BANK program 307
Setting up the sample BANK program . 308
Compiling the sample BANK program . 309
Linking the sample BANK program . 310
Running the sample BANK program . 312

Chapter 11. Running the sample mail filter program 313
Compiling and linking the lf_smpl.c source code . 313

Contents ix

Specifying filters in the sendmail configuration file . 313
Running the sample mail filter program . 313
Library control functions . 314

smfi_register . 314
smfi_setconn . 315
smfi_settimeout . 315
smfi_main . 316

Data access functions . 316
smfi_getsymval. 316
smfi_getpriv . 317
smfi_setpriv . 317
smfi_setreply . 318

Message modification functions . 318
smfi_addheader . 319
smfi_chgheader. 319
smfi_addrcpt . 320
smfi_delrcpt . 321
smfi_replacebody . 322

Mail filter callbacks . 322
xxfi_connect - Connection information . 323
xxfi_helo - SMTP HELO/EHLO command . 323
xxfi_envfrom - Envelope sender . 324
xxfi_envrcpt - Envelope recipient . 324
xxfi_header - Header . 325
xxfi_eoh - End of header . 326
xxfi_body - body block . 326
xxfi_eom - End of message . 326
xxfi_abort - Message aborted . 327
xxfi_close - Connection cleanup . 327

Chapter 12. Policy API (PAPI) . 329
API outline for retrieving data from Policy Agent . 329
Compiling and linking PAPI applications . 329
Running PAPI applications . 330
PAPI return codes . 330
PAPI client library services . 331
PAPI: Connecting and retrieving data . 332

papi_connect - Connect to Policy Agent . 332
papi_debug - Set debug capability . 333
papi_disconnect - Disconnect from the Policy Agent . 333
papi_free_perf_data - Free retrieved QoS performance data 334
papi_get_perf_data - Retrieve QoS performance data . 335

PAPI helper functions . 337
papi_get_action_perf_by_id - Obtain performance information on the action specified by the action ID . . . 337
papi_get_action_perf_info - Obtain performance information on a particular action 338
papi_get_actions_count - Obtain number of actions in the policy performance data 339
papi_get_policy_instance - Obtain policy instance number for policies in the policy performance data 339
papi_get_rule_perf_by_id - Obtain performance information on the rule specified by the rule ID 340
papi_get_rule_perf_info - Obtain performance information on a particular rule 340
papi_get_rules_count - Obtain number of rules in the policy performance data 341
papi_strerror - Return string describing PAPI return code value 342

Chapter 13. FTP Client Application Programming Interface (API) 343
FTP client API compatibility considerations . 344
FTP client API guidelines and requirements . 344
Java call formats . 346
COBOL, C, REXX, assembler, and PL/I call formats . 347
Converting parameter descriptions . 348
z/OS FTP client behavior when invoked from the FTP client API 348
FTP Client Application Interface (FCAI) control block . 350

x z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FTP Client Application Interface (FCAI) stem variables . 358
Predefined REXX variables . 359

Sending requests to the FTP client API . 365
INIT . 366
SCMD . 369
POLL . 372
GETL . 374
TERM . 380

FTP client API for C functions . 382
FAPI_INIT . 382
FAPI_SCMD. 383
FAPI_POLL . 383
FAPI_GETL_COPY . 384
FAPI_GETL_FIND. 384
FAPI_TERM . 385

FTP client API for REXX function . 385
Handling of SIGCHLD signals. 386
FTP client API for REXX trace . 386
FTP client API requests . 389
FTP client API for REXX trace return codes . 402

Output register information for the FTP client API . 403
FTP client API: Other output that is returned to the application 403
Prompts from the client . 404

Prompts not used by the FTP client API . 404
Prompts returned in FCAI-Status . 405
FTP client API command prompt . 406

FTP client API messages and replies . 406
Interpreting results from an interface request . 407

FCAI request completion values . 407
Considerations when evaluating request completion values 409

Programming notes for the FTP client API. 409
FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting failures in the interface trace function 409
FCAI_IE_LengthInvalid: Improper lengths passed to the interface 410
FCAI_ReqTimer: Controlling requests that retrieve results from the created z/OS FTP client process 410
FCAI_PollWait: Specifying a wait time before POLL . 411
FCAI_IE_InternalErr: Unanticipated exceptional conditions in the interface 412
Exceptional conditions in the z/OS FTP client . 412

Using the FTP client API trace. 413
FTP client API sample programs . 417

Chapter 14. Network management interfaces 419
Local IPSec NMI . 420

Local IPSec NMI: Configuring the interface . 421
Local IPSec NMI: Connecting to the server . 422
IPSec NMI request/response format . 423
IPSec NMI request messages . 428
IPSec NMI monitoring request format . 430
IPSec NMI control request formats . 435
IPSec NMI response messages . 439
IPSec NMI initialization and termination messages . 475
IPSec NMI return and reason codes . 475

Network security services (NSS) network management NMI 478
Network security services NMI: Configuring the interface 479
Network security services NMI: Connecting to the server 480
Network security services NMI request and response format 480
Network security services NMI request messages . 481
Network security services NMI response messages . 481
Network security services NMI initialization and termination messages 484
Network security services NMI return and reason codes 484

Real-time application-controlled TCP/IP trace NMI (EZBRCIFR) 488
Real-time control NMI: Overview . 489

Contents xi

Real-time control NMI: Configuration and enablement 491
Real-time control NMI: Invoking the requests . 492
Real-time control NMI: Requests . 497

Real-time TCP/IP network monitoring NMI . 527
Steps for using the real-time NMI . 529
Real-time NMI: Configuration and enablement . 530
Real-time NMI: Connecting to the server . 532
Real-time NMI: Interacting with the servers . 532
Real-time NMI: Common record header . 533
Real-time NMI: Requests sent by the client to the server 534
Real-time NMI: Records sent by the server to the client 534
Real-time NMI: Copying the real-time data . 537
Real-time NMI: Processing the output records . 541
Real-time SMF NMI: FTP SMF type 119 subtypes 100-104 record formats 546

Resolver NMI (EZBREIFR) . 569
Resolver NMI: Overview . 569
Resolver NMI: Configuration and enablement . 569
Resolver NMI: Using the EZBREIFR requests . 569
Resolver NMI: Request and response formats . 573
Resolver NMI: Request and response data structures . 582
Resolver NMI: Examples . 582

SMF records . 584
SMF type 109 records. 585
SMF type 118 records. 585
SMF type 119 records. 586

SNA network monitoring NMI . 587
SNA network monitoring NMI configuration . 587
SNA network monitoring NMI: Enabling and disabling the interface 588
SNA network monitoring NMI: Communicating with the server 588
SNA network monitoring NMI request/response format 589
NMI request errors . 599

TCP/IP callable NMI (EZBNMIFR) . 600
EZBNMIFR overview. 601
EZBNMIFR: Configuration and enablement . 602
Using the EZBNMIFR requests . 602
TCP/IP NMI request format . 606
TCP/IP NMI response format . 618
TCP/IP NMI request and response data structures . 627
TCP/IP NMI examples . 628

Trace record formatting NMI (EZBCTAPI) . 632
EZBCTAPI NMI: Configuration and enablement. 634
EZBCTAPI NMI: Invoking the interface . 634
EZBCTAPI NMI: Passing options to the trace formatter 648

Common real-time trace record attributes . 651
Network management diagnosis . 655
File storage locations . 656

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 659
CICS transaction considerations . 660
Using the SIOCTTLSCTL ioctl . 661

Starting AT-TLS on a connection . 661
Stopping AT-TLS on a connection . 661
Requesting AT-TLS queries and additional functions . 662
Steps for implementing an aware server application . 662
Steps for implementing a controlling server application 663

Coding the SIOCTTLSCTL ioctl . 665
SIOCTTLSCTL (X'C038D90B') . 667
SIOCTTLSCTL ioctl return values . 677
SIOCTTLSCTL ioctl coding examples . 679

xii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 16. Trusted TCP connections . 683
Sysplex-specific connection routing information . 683

Steps for retrieving connection routing information. 685
Partner security credentials . 686

Steps for retrieving partner security credentials . 686
Programming requirements for the SO_CLUSTERCONNTYPE socket option 688
Programming requirements for the SIOCGPARTNERINFO and SIOCSPARTNERINFO ioctl calls 688
Coding the SO_CLUSTERCONNTYPE socket option . 689
Coding the SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls 690

SIOCSPARTNERINFO (X'8004F613') . 691
SIOCGPARTNERINFO (X'C000F612') . 692
Coding examples – SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls 699

Chapter 17. Interfacing with the Digital Certificate Access Server (DCAS) 703
Understanding how clients interface to DCAS . 703
Interfacing with the DCAS: Defining the format for request and response specifications 704
Configuring the DCAS server to work with your solution 708

Chapter 18. Miscellaneous programming interfaces 711
SIOCSAPPLDATA IOCTL . 711

SIOCSAPPLDATA input . 711
SIOCSAPPLDATA output . 712
SIOCSAPPLDATA C language example. 712

SIOCSMOCTL IOCTL . 713
SIOCSMOCTL input . 713
SIOCSMOCTL output . 714
Steps for creating an ancillary socket . 715
Applications in a common INET environment . 715

TCP_KeepAlive socket option . 716

Appendix A. Well-known port assignments 719
Well-known UDP port assignments . 720

Appendix B. Programming interfaces for providing classification data to be used in
differentiated services policies . 723
Passing application classification data on SENDMSG . 724
Additional SENDMSG considerations . 727

Appendix C. Type 109 SMF records . 729

Appendix D. Type 118 SMF records . 731
Standard subtype record numbers . 731
TN3270E Telnet server SMF record layout . 732
FTP server Type 118 SMF record layout . 733
SMF record layout for API calls . 735
SMF record layout for FTP client calls . 736
SMF record layout for Telnet client calls . 738
SMF record layout for TCPIPSTATISTICS . 739

Appendix E. Type 119 SMF records . 743
Mapping SMF records . 744

Assembler applications . 744
C/C++ applications . 744

Processing SMF records for IP security . 745
Common Type 119 SMF record format . 745
SMF 119 record subtypes . 746
Standard data format concepts . 748
Common TCP/IP identification section . 749
TCP connection initiation record (subtype 1) . 750

Contents xiii

TCP connection termination record (subtype 2) . 752
FTP client transfer completion record (subtype 3) . 761
TCP/IP profile event record (subtype 4) . 767

Relationship to GetProfile Callable NMI . 768
Continuing the SMF record. 768
Two-phase SMF record creation for VIPADYNAMIC/ENDVIPADYNAMIC profile statement information . . 768
Cancelled configuration information. 769
Data format concepts . 770
TCP/IP profile record self-defining section . 770
TCP/IP profile record TCP/IP stack identification section 772
TCP/IP profile record profile information common section 773
TCP/IP profile record profile information data set name section 776
TCP/IP profile record autolog procedure section . 776
TCP/IP profile record IPv4 configuration section . 777
TCP/IP profile record IPv6 configuration section . 781
TCP/IP profile record TCP configuration section . 784
TCP/IP profile record UDP configuration section . 785
TCP/IP profile record Global configuration section . 786
TCP/IP profile record Port section . 790
TCP/IP profile record interface section . 793
TCP/IP profile record IPv6 address section . 800
TCP/IP profile record Routing section . 800
TCP/IP profile record source IP section . 802
TCP/IP profile record management section . 805
TCP/IP profile record IPSec common section . 807
TCP/IP profile record IPSec rule section . 808
TCP/IP profile record network access section. 814
TCP/IP profile record dynamic VIPA (DVIPA) address section 817
TCP/IP profile record dynamic VIPA (DVIPA) routing section 820
TCP/IP profile record distributed dynamic VIPA (DVIPA) section 821
TCP/IP profile record policy table for IPv6 default address selection section 825

TCP/IP statistics record (subtype 5) . 826
Interface statistics record (subtype 6) . 839
Server port statistics record (subtype 7). 843
TCP/IP stack start/stop record (subtype 8) . 845
UDP socket close record (subtype 10) . 846
TN3270E Telnet server SNA session initiation record (subtype 20) 848
TN3270E Telnet server SNA session termination record (subtype 21) 849
TSO Telnet client connection initiation record (subtype 22) 855
TSO Telnet client connection termination record (subtype 23) 856
TN3270E Telnet server profile event record (subtype 24) . 857

Relationship to GetTnProfile Callable NMI . 858
Continuing the SMF record. 858
Data format concepts . 858
TN3270E Telnet server profile record self-defining section 859
TN3270E Telnet server profile record TCP/IP stack identification section 862
TN3270E Telnet server profile record profile information common section 862
TN320E Telnet server profile record profile information data set name section 863
TN3270E Telnet server profile record TelnetGlobals section 863
TN3270E Telnet server profile record TelnetParms section 865
TN3270E Telnet server profile record LU section. 873
TN3270E Telnet server profile record LU Group section 874
TN3270E Telnet server profile record SLU Group section 875
TN3270E Telnet server profile record APPL group section 875
TN3270E Telnet server profile record Printer section . 876
TN3270E Telnet server profile record PrintGroup section 877
TN3270 Telnet server profile record SPRTGROUP section. 877
TN3270 Telnet server profile record ParmsGroup section 878
TN3270E Telnet server profile record MonitorGroup section 878
TN3270E Telnet server profile record Client Identifier structure. 879
TN3270E Telnet server profile record LinkGroup section 880

xiv z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

TN3270E Telnet server profile record IpGroup section . 881
TN3270E Telnet server profile record UserGroup section 882
TN3270E Telnet server profile record DestIPGroup section 882
TN3270E Telnet server profile record HnGroup section 883
TN3270E Telnet server profile record AllowAppl/RestrictAppl section 884
TN3270E Telnet server profile record DefaultAppl section 884
TN3270E Telnet server profile record PrtDefaultAppl section 885
TN3270E Telnet server profile record LineModeAppl section 886
TN3270E Telnet server profile record MapAppl section 886
TN3270E Telnet server profile record USSTCP section . 887
TN3270E Telnet server profile record INTERPTCP section 887
TN3270E Telnet server profile record ParmsMap section 888
TN3270E Telnet server profile record LUMap section . 888
TN3270E Telnet server profile record PrtMap section . 889
TN3270E Telnet server profile record MonitorMap section 889

DVIPA status change record (subtype 32) . 890
DVIPA removed record (subtype 33). 892
DVIPA target added record (subtype 34) . 894
DVIPA target removed record (subtype 35) . 896
DVIPA target server started record (subtype 36) . 898
DVIPA target server ended record (subtype 37) . 899
SMC-R link group statistics record (subtype 41) . 901
SMC-R link state start record (subtype 42) . 905
SMC-R link state end record (subtype 43) . 906
RDMA network interface card (RNIC) interface statistics record (subtype 44) 909
CSSMTP configuration record (CONFIG subtype 48) . 911
CSSMTP connection record (CONNECT subtype 49) . 916
CSSMTP mail record (MAIL subtype 50) . 920
CSSMTP spool file record (SPOOL subtype 51) . 924
CSSMTP statistical record (STATS subtype 52) . 929
FTP server transfer completion record (subtype 70) . 934
FTP daemon configuration record (subtype 71) . 940
FTP server logon failure record (subtype 72) . 960
IPSec IKE tunnel activation and refresh record (subtype 73) 963
IPSec IKE tunnel deactivation and expire record (subtype 74) 970
IPSec dynamic tunnel activation and refresh record (subtype 75) 973
IPSec dynamic tunnel deactivation record (subtype 76) . 986
IPSec dynamic tunnel added record (subtype 77) . 987
IPSec dynamic tunnel removed record (subtype 78) . 988
IPSec manual tunnel activation record (subtype 79). 990
IPSec manual tunnel deactivation record (subtype 80) . 991

Appendix F. EZAENF80 Parameter list for ENF event code 80 listen exits 993

Appendix G. Application data . 995
Identifying application data . 995
CICS socket interface and listener application data . 996
z/OS IP FTP client application data . 996
FTP client application data format for the control connection 997
FTP client application data format for the data connection 998
FTP daemon application data format . 999
FTP server application data format for the control connection 1000
FTP server application data format for the data connection 1001
Application data format for IP CICS sockets. 1002
Application data format for CSSMTP . 1007
TN3270E Telnet server application data . 1009
Application data format for Telnet . 1010

Appendix H. X Window System interface V11R4 and Motif version 1.1 1013
Software requirements for X Window System interface V11R4 and Motif version 1.1 1014

Contents xv

How the X Window System interface works in the MVS environment 1014
X Window System interface in the MVS environment: Identifying the target display 1016
X Window System interface in the MVS environment: Application resource file 1016
X Window System interface in the MVS environment: Creating an application 1017

X Window System header files . 1017
X Window System interface in the MVS environment: Compiling and linking 1019

X Window System interface in the MVS environment: Nonreentrant modules 1020
X Window System interface in the MVS environment: Reentrant modules. 1021

Using sample X Window System programs . 1023
X Window System Interface V11r4: Environment variables 1024
Standard X client applications . 1025

Building X client modules . 1028
X Window System routines . 1030

X Window System routines: Opening and closing a display 1030
X Window System routines: Creating and destroying windows 1030
X Window System routines: Manipulating windows . 1030
X Window System routines: Changing window attributes 1031
X Window System routines: Obtaining window information 1031
X Window System routines: Obtaining properties and atoms 1032
X Window System routines: Manipulating window properties 1032
X Window System routines: Setting window selections 1032
X Window System routines: Manipulating colormaps 1032
X Window System routines: Manipulating color cells 1033
X Window System routines: Creating and freeing pixmaps 1033
X Window System routines: Manipulating graphics contexts 1033
X Window System routines: Clearing and copying areas 1034
X Window System routines: Drawing lines . 1034
X Window System routines: Filling areas. 1035
X Window System routines: Loading and freeing fonts 1035
X Window System routines: Querying character string sizes 1035
X Window System routines: Drawing text . 1036
X Window System routines: Transferring images . 1036
X Window System routines: Manipulating cursors . 1036
X Window System routines: Handling window manager functions 1037
X Window System routines: Manipulating keyboard settings 1038
X Window System routines: Controlling the screen saver 1038
X Window System routines: Manipulating hosts and access control 1038
X Window System routines: Handling events . 1039
X Window System routines: Enabling and disabling synchronization 1039
X Window System routines: Using default error handling 1040
X Window System routines: Communicating with window managers 1040
X Window System routines: Manipulating keyboard event functions 1041
X Window System routines: Manipulating regions . 1042
X Window System routines: Using cut and paste buffers 1042
X Window System routines: Querying visual types . 1043
X Window System routines: Manipulating images. 1043
X Window System routines: Manipulating bit maps . 1043
X Window System routines: Using the resource manager 1043
X Window System routines: Manipulating display functions 1044

X Window System routines: Extension routines . 1046
X Window System routines: MIT extensions to X . 1047
X Window System routines: Associate table functions . 1048
X Window System routines: Miscellaneous utility routines 1049
X Window System routines: X authorization routines . 1051
X Window System toolkit . 1052

Xt Intrinsics routines . 1053
X Window System toolkit: Application resources . 1061
X Window System routines: Athena widget support . 1062
X Window System routines: Motif-based widget support 1065
X Window System routines: z/OS UNIX System Services support 1066

X Window System routines: What is provided with z/OS UNIX System Services 1067

xvi z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

X Window System routines: z/OS UNIX System Services software requirements 1067
X Window System routines: z/OS UNIX System Services application resource file 1067
Identifying the target display in z/OS UNIX System Services 1068
Compiling and linking with z/OS UNIX System Services 1068
Compiling and linking with z/OS UNIX System Services using c89 1070
Standard X client applications for z/OS UNIX System Services 1070
Application resources for z/OS UNIX System Services 1070

Appendix I. Syslog daemon name/token pair and ECSA storage mapping 1073

Appendix J. Related protocol specifications 1075

Appendix K. Accessibility . 1099

Notices . 1103
Programming interface information . 1111
Policy for unsupported hardware . 1111
Trademarks . 1111

Bibliography . 1113

Index . 1117

Communicating your comments to IBM . 1131

Contents xvii

xviii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Figures

1. SNMP Dist Prog Interface subagent sample . 33
2. Remote procedure call (client) . 196
3. Remote procedure call (server) . 197
4. RPC client program sample . 273
5. RPC server program sample . 275
6. RPC raw data stream program sample . 277
7. Macro to maintain IBM System/370 portability . 289
8. NCSDEFS.H and USERDEFS.H include statements . 290
9. Message header and records . 426

10. NMI monitoring request format . 430
11. NMsec_ACTIVATE_IPTUNMANUAL request form . 436
12. NMsec_ACTIVATE_IPTUNDYN request format . 437
13. NMsec_DEACTIVATE_IPTUNMANUAL request format 437
14. NMsec_DEACTIVATE_IPTUNDYN request format . 437
15. NMsec_DEACTIVATE_IKETUN request format . 438
16. NMsec_REFRESH_IPTUNDYN request format . 438
17. NMsec_REFRESH_IKETUN request format . 438
18. NMsec_GET_STACKINFO response format . 439
19. NMsec_GET_SUMMARY response format . 442
20. NMsec_GET_IPFLTCURR, NMsec_GET_IPFLTDEFAULT, and NMsec_GET_IPFLTPOLICY response format 445
21. NMsec_GET_PORTTRAN response format . 452
22. NMsec_GET_IPTUNMANUAL response format . 453
23. NMsec_GET_IPTUNDYNSTACK response format . 458
24. NMsec_GET_IPTUNDYNIKE response format . 463
25. NMsec_GET_IKETUN response format . 466
26. NMsec_GET_IKETUNCASCADE response format . 472
27. NMsec_GET_IPINTERFACES response format . 472
28. NMsec_GET_IKENSINFO response format. 473
29. Tunnel control response format . 475
30. NMsec_GET_CLIENTINFO response format . 481
31. CTE layout . 634
32. SIOCTTLSCTL with TTLS_Query_Only . 665
33. SIOCTTLSCTL with TTLS_Init_Connection. 665
34. SIOCTTLSCTL with TTLS_Reset_Session or TTLS_Reset_Cipher 665
35. MVS X Window System application to server . 1015
36. Resources specified for a typical X Window System application 1017

© Copyright IBM Corp. 2000, 2015 xix

xx z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Tables

1. Components of DPI version 2.0 . 37
2. Environment variables for the SNMP DPI . 42
3. SNMP manager API debug levels . 146
4. Environment variables for the X Window System interface 188
5. Environment variables for Motif . 189
6. Callback return values . 322
7. PAPI function return codes . 330
8. Programming requirements for the FTP client API . 344
9. FCAI control block. 351

10. FCAI_Version field value . 352
11. FCAI_TraceIt field value . 352
12. FCAI_TraceCAPI field value . 353
13. FCAI_TraceStatus field value . 353
14. FCAI_Result field value . 353
15. FCAI_Status field values . 354
16. FCAI_IE field values . 354
17. FCAI stem variables . 358
18. Predefined REXX variables . 359
19. FTP client API for REXX return codes . 389
20. FTP client CREATE request return codes . 390
21. FTP client INIT request return codes . 392
22. FTP client SCMD request return codes . 393
23. FTP client POLL request return codes . 394
24. FTP client GETL_FIND request return codes . 396
25. FTP client GETL_COPY request return codes . 397
26. FTP client SET_TRACE request return codes . 398
27. FTP client SET_REQUEST_TIMER request return codes 399
28. FCAI_Map structure elements . 400
29. FTP client GET_FCAI_MAP request return codes . 401
30. FTP client TERM request return codes . 402
31. FTP client API for REXX trace return codes . 402
32. NMsecMessageHdr structure . 423
33. Input record descriptor . 425
34. Output record descriptor. 425
35. NMsecRecordHdr structure . 426
36. NMsecSecDesc structure . 427
37. NMsecCascadingSecDesc structure . 427
38. Valid input filter specifications for request types . 430
39. NMsecInFilter structure . 431
40. NMsecTunnel field descriptions . 435
41. NMsecPolicySource data . 439
42. NMsecStack structure . 440
43. NMsecStackExclAddr structure . 441
44. NMsecStatistics structure. 442
45. NMsecIPFilter structure . 446
46. NMsec_GET_PORTTRAN structure . 452
47. NMsecIPTunnel structure . 453
48. NMsecIPManualTunnel structure . 457
49. NMsecIPDynTunnel structure . 458
50. NMsecIPDynamicStack structure . 462
51. NMsecIPDynamicIKE structure . 464
52. NMsecIKETunnel structure . 466
53. IKE tunnel statistics . 471
54. NMsecInterface structure. 473
55. NMsec_GET_IKENSINFO structure . 473

© Copyright IBM Corp. 2000, 2015 xxi

56. NMsecTunCntlResponse structure. 475
57. Return and reason codes . 476
58. NMsecNSClient structure . 481
59. Request return and reason codes . 484
60. Requirements to invoke the NMI requests . 493
61. Request structure definition files . 494
62. Common EZBRCIFR Return values, return codes, and reason codes 495
63. RCCHeader structure . 497
64. RCCOpenInfo structure . 499
65. RCCOpen return and reason codes . 500
66. RCCFilt structure . 505
67. RCCPkt structure . 506
68. RCCDat structure . 510
69. RCCSetFilters return and reason codes . 513
70. RCCStart Return values, return codes, and reason codes 515
71. RCCGetInfo structure . 518
72. RCCGetRecords return and reason codes . 520
73. cte structure definition file . 521
74. RCCLost structure . 524
75. RCCStop Return values, return codes, and reason codes 526
76. Real-time NMI interfaces. 528
77. Interface descriptions . 528
78. SMF 119 record subtypes. 545
79. FTP server transfer initialization self-defining section 546
80. FTP server transfer initialization record section . 547
81. FTP server hostname section . 549
82. FTP server transfer initialization record section: First associated data set name 549
83. FTP server transfer initialization record section: Second associated data set name 550
84. FTP server security section . 550
85. FTP client transfer initialization record section . 553
86. FTP client associated data set name section . 554
87. FTP client SOCKS section . 555
88. FTP client security section . 555
89. FTP client user name section . 557
90. FTP client login failure self-defining section . 557
91. Client login failure session section . 558
92. FTP client SOCKS section . 558
93. FTP client login failure security section . 559
94. FTP client user name section . 561
95. FTP client session record self-defining section . 561
96. FTP client session section . 561
97. FTP client SOCKS section . 563
98. FTP client security section . 563
99. FTP client session user name section . 565

100. FTP server session record . 565
101. Server session section . 565
102. FTP server security section . 567
103. EZBREIFR requests . 569
104. EZBREIFR service return codes and reason codes . 571
105. Buffer header (NMSHeader) structure . 573
106. Triplet (NMSTriplet) structure . 574
107. Quadruplet (NMSQuadruplet) structure. 574
108. Record header (NMSRecHeader) structure . 574
109. Setup record (NMSSetupRecord) structure . 576
110. Setup record data section (NMSSetupData) structure 577
111. Setup record file name section (NMSSetupFileNames) structure 578
112. Global TCPIP.DATA record (NMSGtdRecord) structure. 579
113. Global TCPIP.DATA record data section (NMSGtdData) structure 580
114. Global TCPIP.DATA record DNS addresses (NMSGtdDnsAddresses) structure 582
115. Global TCPIP.DATA record structure . 582
116. Global TCPIP.DATA record DCBS table names section (NMSGtdDbcsNames) 582

xxii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

||
||

117. Location of resolver NMI request and response data structures for C/C++ and assembler programs 582
118. EE connection request filter parameters . 590
119. Required filter parameters . 591
120. EZBNMIFR service return codes and reason codes . 605
121. Available EZBNMIFR poll-type request filters . 612
122. NWMDropConnEntry description. 617
123. Poll-type request responses . 619
124. Return code values . 626
125. EZBCTAPI return and reason codes . 642
126. EZBCTAPI formatter return and reason codes. 643
127. Available EZBYPTO options . 649
128. File storage locations . 656
129. Application types . 659
130. TTLSHeader fixed section . 671
131. TTLSQuadruplet structure . 671
132. Set request structure . 672
133. Get request structure . 673
134. Example TTLSHeader structure . 675
135. Example returned TTLSHeader structure . 676
136. Indicators and potential benefits of connection routing information 684
137. Programming requirements for trusted TCP connection APIs. 689
138. SIOCSPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System Services

APIs . 691
139. SIOCGPARTNERINFO ioctl partner information control block structure 696
140. SIOCGPARTNERINFO ioctl partner information UTOKEN extension control block structure 696
141. SIOCGPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System Services

APIs . 697
142. Format 1 request . 704
143. Format 1 response . 704
144. Format 2 request . 705
145. Understanding return codes in the response . 705
146. DCAS client and server coordination. 708
147. SetApplData . 711
148. SetADcontainer . 712
149. SIOCSAPPLDATA IOCTL return and reason codes . 712
150. SIOCSMOCTL requirements . 713
151. SIOCSMOCTL input structure . 714
152. SIOCSMOCTL return and reason codes . 714
153. TCP_KeepAlive time values. 717
154. TCP well-known port assignments . 719
155. Well-known UDP port assignments . 720
156. Type 109 SMF record layout . 729
157. Standard subtype record numbers . 731
158. TN3270E Telnet server SMF record format . 732
159. FTP server Type 118 SMF record format. 733
160. z/OS UNIX file name (variable length fields appended to end of FTP server record). 735
161. API call SMF record format . 735
162. FTP client SMF record format . 736
163. z/OS UNIX file name (variable length fields appended to end of FTP server record). 738
164. Telnet client SMF record format . 738
165. SMF record layout for TCPIPSTATISTICS . 739
166. Records types and subtype information . 745
167. SMF 119 record subtype information and record type 746
168. Common TCP/IP identification section . 749
169. TCP connection initiation record self-defining section 751
170. TCP connection initiation specific section . 751
171. TCP connection termination self-defining section. 752
172. TCP connection termination section . 753
173. TCP connection termination Telnet section . 759
174. TCP connection termination AT-TLS section . 760
175. TCP connection termination ApplData section . 761

Tables xxiii

||

176. FTP client transfer completion record self-defining section 762
177. FTP client transfer completion record section . 763
178. FTP client transfer completion associated data set name section 764
179. FTP client transfer completion SOCKS section. 764
180. FTP client transfer completion security section . 765
181. FTP client transfer completion user name section . 767
182. TCP/IP profile record self-defining section. 770
183. Profile information common section . 773
184. Profile information data set name section . 776
185. Autolog procedure section . 777
186. IPv4 configuration section . 777
187. TCP/IP profile record IPv6 configuration section. 781
188. TCP/IP profile record TCP configuration section . 784
189. TCP/IP profile record UDP configuration section . 786
190. TCP/IP profile record Global configuration section . 786
191. TCP/IP profile record port section . 790
192. TCP/IP profile record interface section . 794
193. TCP/IP profile record IPv6 address section . 800
194. TCP/IP profile record routing section . 801
195. TCP/IP profile record source IP section . 802
196. TCP/IP profile record management section . 805
197. TCP/IP profile record IPSec Common section . 808
198. TCP/IP profile record IPSec Rule section . 808
199. TCP/IP profile record network access section . 814
200. TCP/IP profile record dynamic VIPA (DVIPA) address section 817
201. TCP/IP profile record dynamic VIPA (DVIPA) routing section 821
202. TCP/IP profile record Distributed dynamic VIPA (DVIPA) section 822
203. TCP/IP profile record policy table for IPv6 default address selection section 825
204. SMF records: TCP/IP statistics record self-defining section 826
205. IP statistics section . 827
206. TCP statistics section . 828
207. UDP statistics section . 833
208. ICMP statistics section . 834
209. IPv6 IP statistics section . 835
210. IPv6 ICMP statistics section . 836
211. Storage statistics section . 838
212. Interface statistics record self-defining section . 840
213. Interface statistics section . 840
214. HOME IP Address section . 843
215. Server port statistics record self-defining section . 843
216. TCP server port statistics section . 844
217. UDP server port statistics section . 844
218. TCP/IP stack start/stop record self-defining section 845
219. TCP/IP stack start/stop record section . 846
220. UDP socket close record self-defining section . 847
221. UDP socket close record section . 847
222. TN3270E Telnet server SNA session initiation record self-defining section 848
223. TN3270E Telnet server SNA session initiation section 849
224. TN3270E Telnet server SNA session termination record self-defining section 850
225. TN3270E Telnet server SNA session termination section 851
226. TN3270E Telnet server host name section . 853
227. TN3270E Telnet server Round Trip Performance section 853
228. TN3270E Telnet server time bucket performance section 854
229. TSO Telnet client connection initiation section. 855
230. TSO Telnet client connection initiation record TCP/IP identification section 855
231. TSO Telnet client connection termination record self-defining section 856
232. TSO Telnet client connection termination section . 856
233. TN3270E Telnet server profile record self-defining section. 859
234. Profile information common section . 862
235. Profile information data set name section . 863
236. TelnetGlobals section . 863

xxiv z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

237. TelnetParms section . 865
238. LU section . 873
239. LU Group section . 874
240. SLU Group section. 875
241. APPL group section . 875
242. Printer section . 876
243. PrintGroup section . 877
244. SLU Print section . 877
245. ParmsGroup section . 878
246. Monitor Group section . 878
247. Client Identifier structure . 880
248. LinkGroup section . 881
249. IpGroup section. 881
250. UserGroup section . 882
251. DestIPGroup section . 882
252. HnGroup section . 883
253. AllowAppl/RestrictAppl section . 884
254. DefaultAppl section . 885
255. PrtDefaultAppl section . 885
256. LineModeAppl section . 886
257. MapAppl section . 886
258. USSTCP section . 887
259. INTERPTCP section . 887
260. ParmsMap section . 888
261. LUMap section . 888
262. PrtMap section . 889
263. MonitorMap section . 890
264. DVIPA status change record self-defining section . 890
265. DVIPA status change section . 891
266. DVIPA removed record self-defining section . 893
267. DVIPA removed section . 893
268. DVIPA target added record self-defining section . 895
269. DVIPA target added section. 895
270. DVIPA target removed record self-defining section . 896
271. DVIPA target removed section . 897
272. DVIPA target server started record self-defining section 898
273. DVIPA target server started section . 899
274. DVIPA target server ended record self-defining section. 900
275. DVIPA target server ended section . 900
276. SMC-R link group statistics record self-defining section 902
277. SMC-R link group specific section . 902
278. SMC-R link specific section . 903
279. SMC-R link state start record self-defining section . 905
280. SMC-R link state start specific section . 906
281. SMC-R link state end record self-defining section . 907
282. SMC-R link state end specific section . 907
283. RNIC interface statistics record self-defining section 909
284. RNIC interface statistics specific section. 909
285. CSSMTP configuration record self-defining section . 911
286. CSSMTP common information . 912
287. CSSMTP started or from MODIFY REFRESH command 912
288. CSSMTP target servers . 915
289. CSSMTP configuration data . 915
290. CSSMTP configuration data keys . 916
291. CSSMTP configuration command . 916
292. CSSMTP connection record self-defining section . 917
293. CSSMTP connection identification data . 917
294. CSSMTP connection statistics data . 918
295. CSSMTP mail record self-defining section . 920
296. CSSMTP spool identification . 921
297. CSSMTP mail data section . 921

Tables xxv

298. CSSMTP mail header sections . 923
299. CSSMTP mail commands and header keys . 923
300. CSSMTP spool file record self-defining section . 924
301. CSSMTP spool job . 925
302. CSSMTP spool job statistics . 926
303. CSSMTP spool job accounting . 929
304. CSSMTP statistical record self-defining section . 929
305. CSSMTP statistical data . 930
306. CSSMTP JES statistical data . 931
307. CSSMTP Health checker statistics . 932
308. Target server statistical data. 933
309. FTP server transfer completion record self-defining section 934
310. FTP server transfer completion record section . 936
311. FTP server transfer completion record section: Host name 937
312. FTP server transfer completion record section: First associated data set name 938
313. FTP server transfer completion record section: Second associated data set name 938
314. FTP server security section . 938
315. FTP daemon configuration record self-defining section 941
316. FTP daemon identification section . 942
317. FTP daemon general configuration section . 942
318. FTP daemon configuration data section . 956
319. FTP daemon configuration data section: SMF119FT_FDCD_ITEM structure 957
320. FTP configuration data keys . 957
321. FTP server logon failure record self-defining section 960
322. FTP server logon failure record: logon failure section 960
323. FTP server login failure security section. 961
324. IPSec IKE tunnel activation/refresh record self-defining section 963
325. IPSec common IKE tunnel specific section . 965
326. IPSec local ID specific section . 970
327. IPSec remote ID specific section . 970
328. IPSec IKE tunnel deactivation and expire record self-defining section 971
329. IPSec IKE counter specific section . 971
330. IPSec dynamic tunnel activation record self-defining section 974
331. IPSec common IP tunnel specific section . 975
332. IPSec dynamic tunnel specific section . 978
333. IPSec IKE dynamic tunnel specific section . 984
334. IPSec local client ID specific section . 986
335. IPSec remote client ID specific section . 986
336. IPSec dynamic tunnel deactivation record self-defining section 987
337. IPSec dynamic tunnel added record self-defining section 988
338. IPSec stack dynamic tunnel added specific section . 988
339. IPSec dynamic tunnel removed record self-defining section 989
340. IPSec dynamic tunnel removed specific section . 990
341. IPSec manual tunnel activation record self-defining section 991
342. IPSec manual tunnel deactivation record self-defining section 991
343. IPSec manual tunnel specific section . 992
344. Mapping macro for z/OS Communications Server ENF event code 80 (Part 1) 993
345. Mapping macro for z/OS Communications Server ENF event code 80 (Part 2) 993
346. FTP client application data format for the control connection 997
347. FTP client application data format for the control connection 998
348. FTP daemon application data format. 999
349. FTP server application data format for the control connection 1000
350. FTP server application data for the data connection 1001
351. Registered application data - CONNECT . 1002
352. Registered application data - GIVESOCKET . 1003
353. Registered application data - LISTEN . 1004
354. TAKESOCKET . 1004
355. Application data processing . 1006
356. Connections transferring message data. 1008
357. Connections monitoring target servers . 1008
358. Application data format used by Telnet . 1010

xxvi z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

359. Environment variables for X Window System Interface V11r4 1024
360. Building X client modules based on X11 functions . 1028
361. Building X client modules based on Xt Intrinsics and Athena Toolkit functions 1029
362. Opening and closing display . 1030
363. Creating and destroying windows . 1030
364. Manipulating windows . 1030
365. Changing window attributes . 1031
366. Obtaining window information . 1031
367. Properties and atoms . 1032
368. Manipulating window properties . 1032
369. Setting window selections . 1032
370. Manipulating colormaps . 1032
371. Manipulating color cells . 1033
372. Creating and freeing pixmaps. 1033
373. Manipulating graphics contexts . 1033
374. Clearing and copying areas . 1034
375. Drawing lines . 1034
376. Filling areas. 1035
377. Loading and freeing fonts . 1035
378. Querying character string sizes . 1035
379. Drawing text . 1036
380. Transferring images . 1036
381. Manipulating cursors . 1036
382. Handling window manager functions . 1037
383. Manipulating keyboard settings . 1038
384. Controlling the screen saver . 1038
385. Manipulating hosts and access control . 1038
386. Handling events . 1039
387. Enabling and disabling synchronization . 1039
388. Using default error handling . 1040
389. Communicating with window managers . 1040
390. Manipulating keyboard event functions . 1041
391. Manipulating regions . 1042
392. Using cut and paste buffers . 1042
393. Querying visual types . 1043
394. Manipulating images . 1043
395. Manipulating bit maps . 1043
396. Using the resource manager . 1043
397. Manipulating display functions . 1044
398. Extension routines . 1046
399. MIT extensions to X . 1047
400. Associate table functions . 1048
401. Miscellaneous utility routines . 1049
402. Authorization routines . 1051
403. X Intrinsic header file names . 1053
404. Xt Intrinsics routines. 1053
405. Athena widget routines . 1062
406. Athena header file names . 1064
407. Motif header file names. 1066

Tables xxvii

xxviii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

About this document

This document describes the syntax and semantics of a set of high-level application
functions that you can use to program your own applications in a TCP/IP
environment. These functions provide support for application facilities, such as
user authentication, distributed databases, distributed processing, network
management, and device sharing.

The information in this document supports both IPv6 and IPv4. Unless explicitly
noted, information describes IPv4 networking protocol. IPv6 support is qualified
within the text.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to samples in the
SEZAINST library as simply in SEZAINST. Your installation might choose a data
set name of SYS1.SEZAINST, CS390.SEZAINST or other high-level qualifiers for
the data set name.

Who should read this document
This document is intended for use by an experienced programmer familiar with
the IBM® z/OS® operating system and commands, and with the TCP/IP protocols.

This document is written for programmers interested in high-level application
functions that can be used to program applications in a TCP/IP environment.
These functions involve user authentication, distributed databases, distributed
processing, network management, and device sharing.

Before using this document, you should be familiar with the MVS™ operating
system and the IBM Time Sharing Option (TSO).

Depending on the design and function of your application, you should be familiar
with the C programming language.

In addition, z/OS Communications Server and any required programming
products should already be installed and customized for your network.

How this document is organized
The document contains the following topics:
v Chapter 1, “General programming information,” on page 1 provides an overview

of Distributed Protocol Interface (DPI) versions 1.1 and 2.0.
v Chapter 2, “SNMP agent Distributed Protocol Interface version 1.1,” on page 3

provides information about SNMP agent DPI version 1.1 agents and subagents,
compile and link samples, descriptions of DPI library routines, and a sample
client program for C sockets.

v Chapter 3, “SNMP agent Distributed Protocol Interface version 2.0,” on page 35
provides SNMP agent DPI version 2.0 programming information.

© Copyright IBM Corp. 2000, 2015 xxix

v Chapter 4, “Running the sample SNMP DPI client program for version 2.0,” on
page 115 explains how to run the sample SNMP DPI client program,
dpi_mvs_sample.c, installed in /usr/lpp/tcpip/samples.

v Chapter 5, “SNMP manager API,” on page 117 describes how use this API to
build SNMP management applications to retrieve SNMP management data.

v Chapter 6, “Resource Reservation Setup Protocol API (RAPI),” on page 149
describes the calls provided though a set of C language bindings that provide an
API for requesting enhanced Quality of Service (QoS).

v Chapter 7, “X Window System interface in the z/OS Communications Server
environment,” on page 183 describes the X Window System API.

v Chapter 8, “Remote procedure calls in the z/OS Communications Server
environment,” on page 195 describes the high-level remote procedure calls
(RPCs) implemented in TCP/IP, including the RPC programming interface to the
C language and communication between processes.

v Chapter 9, “Remote procedure calls in the z/OS UNIX System Services
environment,” on page 281 provides information on use of UNIX System
Services RPC and deviations from Sun RPC 4.0.

v Chapter 10, “Network Computing System,” on page 285 describes the NCS tools
used for heterogeneous distributed computing.

v Chapter 11, “Running the sample mail filter program,” on page 313 explains
how to run the sample mail filter program, lf_smpl.c.

v Chapter 12, “Policy API (PAPI),” on page 329 describes the Policy Agent API
(PAPI).

v Chapter 13, “FTP Client Application Programming Interface (API),” on page 343
describes the callable application programming interface to the z/OS FTP client.

v Chapter 14, “Network management interfaces,” on page 419 describes the
interfaces that allow network monitor and management applications to obtain
information about their network operations, for both TCP/IP and VTAM®.

v Chapter 15, “Application Transparent Transport Layer Security (AT-TLS),” on
page 659 describes Application Transparent Transport Layer Security (AT-TLS),
which creates a secure session at the TCP/IP layer on behalf of an application.

v Chapter 16, “Trusted TCP connections,” on page 683 describes how TCP/IP
stacks within a sysplex or a subplex can use the SO_CLUSTERCONNTYPE
socket option, the SIOCSPARTNERINFO ioctl call, and the
SIOCGPARTNERINFO ioctl to exchange security information.

v Chapter 17, “Interfacing with the Digital Certificate Access Server (DCAS),” on
page 703 documents the programming interface specifications for the Digital
Certificate Access Server (DCAS) that runs on the z/OS operating system.

v Chapter 18, “Miscellaneous programming interfaces,” on page 711 describes
programming interfaces including the TCP_KeepAlive function.

v Appendix A, “Well-known port assignments,” on page 719 lists the well-known
port assignments for transport protocols TCP and UDP.

v Appendix B, “Programming interfaces for providing classification data to be
used in differentiated services policies,” on page 723 provides information on the
Differentiated Services (DS) aspect of QoS and the passing of application
classification data on SENDMSG.

v Appendix C, “Type 109 SMF records,” on page 729 describes the format of
syslogd messages, as written to SMF.

v Appendix D, “Type 118 SMF records,” on page 731 describes the type 118 SMF
records for the Telnet and FTP servers, API calls, FTP and Telnet client calls, and
syslogd. This appendix also shows the record layouts.

xxx z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Appendix E, “Type 119 SMF records,” on page 743 describes the type 119 SMF
records that are created for several TCP/IP functions. This appendix also shows
the record layouts.

v Appendix H, “X Window System interface V11R4 and Motif version 1.1,” on
page 1013 describes the X Window System application programming interface
(API).

v Appendix J, “Related protocol specifications,” on page 1075 lists the related
protocol specifications for TCP/IP.

v Appendix K, “Accessibility,” on page 1099 describes accessibility features to help
users with physical disabilities.

v “Notices” on page 1103 contains notices and trademarks used in this document.
v “Bibliography” on page 1113 contains descriptions of the documents in the z/OS

Communications Server library.

How to use this document
To use this document, you should be familiar with z/OS TCP/IP Services and the
TCP/IP suite of protocols.

Determining whether a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager® softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last 2 characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service
For immediate assistance, visit this website: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this website, where you can submit questions
and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

About this document xxxi

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 1131.

Conventions and terminology that are used in this document
Commands in this book that can be used in both TSO and z/OS UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).
v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM, is an application program;
therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

Note: In this information, you might see the following Shared Memory
Communications over Remote Direct Memory Access (SMC-R) terminology:
v RDMA network interface card (RNIC), which is used to refer to the IBM 10GbE

RoCE Express® feature.
v Shared RoCE environment, which means that the 10GbE RoCE Express feature

operates on an IBM z13 (z13) or later system, and that the feature can be used
concurrently, or shared, by multiple operating system instances. The RoCE
Express feature is considered to operate in a shared RoCE environment even if
you use it with a single operating system instance.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology website.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

xxxii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www.ibm.com/software/globalization/terminology/index.jsp

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram
This syntax information applies to all commands and statements that do not have
their own syntax described elsewhere.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol
Description

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/OS UNIX environments use the
following conventions in syntax diagrams:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required
Required parameters are displayed on the main path.

Optional
Optional parameters are displayed below the main path.

Default
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

About this document xxxiii

For the z/OS UNIX commands, the keywords must be entered in the case
indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples

In the following example, the PUt subcommand is a keyword. The required
variable parameter is local_file, and the optional variable parameter is foreign_file.
Replace the variable parameters with your own values.

�� PUt local_file
foreign_file

��

Longer than one line

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

�� The first line of a syntax diagram that is longer than one line �

� The continuation of the subcommands, parameters, or both ��

Required operands

Required operands and values appear on the main path line. You must code
required operands and values.

�� REQUIRED_OPERAND ��

Optional values

Optional operands and values appear below the main path line. You do not have
to code optional operands and values.

��
OPERAND

��

Selecting more than one operand

An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

��

xxxiv z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Nonalphanumeric characters

If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

�� OPERAND = (001 , 0.001) ��

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

�� OPERAND = (001 FIXED) ��

Default operands

Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

��
DEFAULT

OPERAND
��

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the
text.

�� variable ��

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed
case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

�� Syntax fragment ��

Syntax fragment:

1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information
z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 1113, in the back of this document.

About this document xxxv

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collection.

Titles Order
Number

Description

IBM System z Redbooks
Collection

SK3T-7876 The IBM Redbooks® publications selected for this CD series are
taken from the IBM Redbooks inventory of over 800 books. All the
Redbooks publications that are of interest to the System z® platform
professional are identified by their authors and are included in this
collection. The System z subject areas range from e-business
application development and enablement to hardware, networking,
Linux, solutions, security, parallel sysplex, and many others. For
more information about the Redbooks publications, see
http://www-03.ibm.com/systems/z/os/zos/zfavorites/.

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap (SA23-2299). The Roadmap describes what level of
documents are supplied with each release of z/OS Communications Server, and
also describes each z/OS publication.

To find the complete z/OS library, visit the z/OS library in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

xxxvi z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www-03.ibm.com/systems/z/os/zos/zfavorites/
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www-01.ibm.com/support/knowledgecenter/

Title Number

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC14-7495

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

zEnterprise System and System z10 OSA-Express Customer's Guide and Reference SA22-7935

Redbooks publications

The following Redbooks publications might help you as you implement z/OS
Communications Server.

Title Number

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-8096

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-8097

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-8098

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 4: Security and
Policy-Based Networking

SG24-8099

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24-5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

About this document xxxvii

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers™, and
Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

Tivoli® NetView® for z/OS

Use this site to view and download product documentation about Tivoli
NetView for z/OS

http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force website, with links to the RFC
repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

xxxviii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome
http://www.rfc-editor.org/rfc.html

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience
only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the
following website, which is available to all users (no login required):
http://www-01.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zbasics/homepage.html?cp=zosbasics%2F0

About this document xxxix

http://www.ietf.org/ID.html
https://lists.isc.org/mailman/listinfo
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics%2F0
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html?cp=zosbasics%2F0

xl z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Summary of changes for IP Programmer's Guide and
Reference

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Version 2 Release 2

This document contains information previously presented in z/OS
Communications Server: IP Programmer's Guide and Reference, SC27-3659-02,
which supported z/OS Version 2 Release 1.

New information
v TLS session reuse support for FTP and AT-TLS applications, see the following

topics:
– “Set request” on page 671
– “Requesting an AT-TLS connection to resume a specific secure session” on

page 676

Changed information
v TLS session reuse support for FTP and AT-TLS applications, see the following

topics:
– “Real-time SMF NMI: FTP server transfer initialization record (subtype 100)”

on page 546
– “Real-time SMF NMI: FTP client transfer initialization record (subtype 101)”

on page 552
– “Real-time SMF NMI: FTP client login failure record (subtype 102)” on page

557
– “Real-time SMF NMI: FTP client session record (subtype 103)” on page 561
– “Real-time SMF NMI: FTP server session record (subtype 104)” on page 565
– “Using the TTLSHeader control block” on page 670
– “Get request” on page 672
– “TCP connection termination record (subtype 2)” on page 752
– “FTP client transfer completion record (subtype 3)” on page 761
– “FTP server transfer completion record (subtype 70)” on page 934
– Table 317 on page 942
– “FTP server logon failure record (subtype 72)” on page 960

v Reordering of cached Resolver results, see “GetResolverConfig response
contents” on page 575.

v Shared Memory Communications over RDMA enhancements, see “TCP
connection termination record (subtype 2)” on page 752.

v Removed support for the GATEWAY statement in the TCP/IP profile, see the
following topics:
– “The NMTP_PICODepStmts and NMTP_PICODepChanged fields” on page

773
– “TCP/IP profile record Routing section” on page 800

© Copyright IBM Corp. 2000, 2015 xli

v VIPAROUTE fragmentation avoidance, see “TCP/IP profile record Global
configuration section” on page 786.

v TCPIP profile IP security filter enhancements, see “TCP/IP profile record IPSec
rule section” on page 808.

v CSSMTP migration enablement, see “CSSMTP configuration record (CONFIG
subtype 48)” on page 911.

Changes made in z/OS Version 2 Release 1, as updated September
2014

This document contains information previously presented in z/OS
Communications Server: IP Programmer's Guide and Reference, SC27-3659-01,
which supported z/OS Version 2 Release 1.

Changes made in z/OS Version 2 Release 1, as updated December
2013

This document contains information previously presented in z/OS
Communications Server: IP Programmer's Guide and Reference, SC27-3659-00,
which supported z/OS Version 2 Release 1.

Changed information
v Network security enhancements for SNMP, see “SNMP manager API

configuration file” on page 142.
v AT-TLS enablement for DCAS, see Chapter 17, “Interfacing with the Digital

Certificate Access Server (DCAS),” on page 703.

Summary of changes for z/OS Version 2 Release 1
For specifics on the enhancements for z/OS Version 2, Release 1, see the following
publications:
v z/OS Summary of Message and Interface Changes
v z/OS Introduction and Release Guide
v z/OS Planning for Installation
v z/OS Migration

xlii z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 1. General programming information

The information presented in this reference applies only to IPv4, AF_INET sockets
unless specified as IPv6.

For the fundamental technical information you need to know before you attempt
to work with the application programming interfaces (APIs) that are provided with
TCP/IP, see z/OS Communications Server: IP Sockets Application Programming
Interface Guide and Reference.

The modules generated by the new compiler are similar to those produced by the
AD/Cycle compiler.

Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0
Two levels of Distributed Protocol Interface (DPI) are supported by z/OS
Communications Server. The following list shows some support differences
between the two versions:
v Support provided by DPI Version 1.1

– Was supported on earlier releases of TCP/IP and continues to be supported
by the SNMP agent; existing subagents written with DPI Version 1.1 still run
with no changes required.

– Supports SNMP Version 1 protocols, but not SNMP Version 2.
– Is intended for C socket API users, not z/OS UNIX C socket users.
– Supports connections from subagents using TCP sockets.
– Is documented in RFC 1228.

v Support provided by DPI Version 2.0:
– Is supported in TCP/IP z/OS UNIX and above.
– Contains more functions that make writing a subagent easier.
– Supports both SNMP Version 1 and Version 2 protocols.
– Is used by z/OS UNIX C socket users but not standard C socket users.
– Supports connections from subagents using TCP sockets and UNIX Stream

sockets.
– Is documented in RFC 1592.

While DPI Version 1.1 can continue to be used by existing subagents, users who
are writing new subagents or modifying old ones should consider upgrading to
DPI Version 2.0 to take advantage of the SNMP Version 2 protocols and the greater
functionality of DPI Version 2.0.

Although the SNMP agent that is included with z/OS Communications Server is
now enabled to support SNMP Version 3 (SNMPv3), no changes are required to
subagents written with either DPI Version 1.1 or Version 2.0. SNMPv3 did not
introduce any new protocol data unit (PDU) types. Support for the SNMPv3
framework is handled by the SNMP agent.

Users of DPI Version 1.1 must compile using the DPI library routines provided in
SEZADPIL and the version of the header file, snmp_dpx.h, that is provided in
SEZACMAC. When an included header file exists as a member of an MVS

© Copyright IBM Corp. 2000, 2015 1

partitioned data set, the underscore (_) in the header file name is changed to an at
sign (@) when the header file is located during the compiling of a program.
Therefore, header file snmp_dpx.h can be found as member SNMP@DPX in the
SEZACMAC data set. See Chapter 2, “SNMP agent Distributed Protocol Interface
version 1.1,” on page 3 for additional details.

Users of DPI Version 2.0 must compile using the DPI library routines provided in
the directory /usr/lpp/tcpip/snmp/build/libdpi20 and the DPI Version 2.0 copy of the
header file, snmp_dpi.h in /usr/lpp/tcpip/snmp/include. Additional details are in
Chapter 3, “SNMP agent Distributed Protocol Interface version 2.0,” on page 35.

For information about migrating an existing subagent from DPI Version 1.1 to DPI
Version 2.0, see “Required actions for migrating your SNMP DPI subagent to
Version 2.0” on page 39.

2 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 2. SNMP agent Distributed Protocol Interface version
1.1

Using the simple network management protocol (SNMP) agent Distributed
Protocol Interface (DPI), you can dynamically add, delete, or replace management
variables in the local management information base (MIB) without recompiling the
SNMP agent. The DPI protocol is also supported by SNMP agents on other IBM
platforms. This makes it easier to port subagents between those platforms.

For more information about the DPI interface, see RFC 1228. See Appendix J,
“Related protocol specifications,” on page 1075 for information about accessing
RFCs.

SNMP agents and subagents
To allow the subagents to perform their functions, the SNMP agent binds to an
arbitrarily chosen TCP port and listens for connection requests from subagents. A
well-known port is not used. Every invocation of the SNMP agent potentially
results in a different TCP port being used.

Agents, or SNMP servers, are responsible for performing the network management
functions requested by the network management stations.

A subagent provides an extension to the functionality provided by the SNMP
agent. You can use the subagent to define your own MIB variables, which are
useful in your environment, and register them with the SNMP agent. When
requests for these variables are received by the SNMP agent, the agent passes the
request to the subagent and returns a response to the agent. The SNMP agent
creates an SNMP response packet and sends the response to the remote network
management station that initiated the request. The existence of the subagent is
transparent to the network management station.

A subagent of the SNMP agent determines the port number by sending a GET
request for an MIB variable, which represents the value of the TCP port. The
subagent is not required to create and parse SNMP packets, because the DPI
application programming interface (API) has a library routine query_DPI_port().
After the subagent obtains the value of the DPI TCP port, it should make a TCP
connection to the appropriate port. After a successful socket connect() call, the
subagent registers the set of variables it supports with the SNMP agent. For
information about the connect() call, see the connect() call information in z/OS
Communications Server: IP Sockets Application Programming Interface Guide and
Reference. When all variable classes are registered, the subagent waits for requests
from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent's security product resource name for the connection to be accepted. See the
Simple Network Management Protocol (SNMP) information in z/OS
Communications Server: IP Configuration Guide for more information about
security product access between subagents and the z/OS Communications Server
SNMP agent.

© Copyright IBM Corp. 2000, 2015 3

Processing DPI requests
The SNMP agent can initiate three DPI requests: GET, SET, and GET-NEXT. These
requests correspond to the three SNMP requests that a network management
station can make. The subagent responds to a request with a response packet. The
response packet can be created using the mkDPIresponse() library routine, which is
part of the DPI API library.

The SNMP subagent can only initiate two requests: REGISTER and TRAP. A
REGISTER request indicates to the SNMP agent which MIB variables are
supported by the subagent. A TRAP request notifies the SNMP agent of an
asynchronous event that should be sent to network management stations.

Processing a GET request
The DPI packet is parsed to get the object ID of the requested variable. If the
specified object ID of the requested variable is not supported by the subagent, the
subagent returns an error indication of SNMP_NO_SUCH_NAME. Name, type, or
value information is not returned. For example:
unsigned char *cp;

cp = mkDPIresponse(SNMP_NO_SUCH_NAME,0);

If the object ID of the variable is supported, an error is not returned and the name,
type, and value of the object ID are returned using the mkDPIset() and
mkDPIresponse() routines. The following example shows an object ID, whose type
is string, being returned.
char *obj_id;

unsigned char *cp;
struct dpi_set_packet *ret_value;
char *data;

data = "a string to be returned";
ret_value = mkDPIset(obj_id,SNMP_TYPE_STRING,

strlen(data)+1,data);
cp = mkDPIresponse(0,ret_value);

Processing a SET request
Processing a SET request is similar to processing a GET request, but the SNMP
agent passes additional information to the subagent. This additional information
consists of the type, length, and value to be set.

If the object ID of the variable is not supported, the subagent returns an error
indication of SNMP_NO_SUCH_NAME. If the object ID of the variable is
supported, but cannot be set, an error indication of SNMP_READ_ONLY is
returned. If the object ID of the variable is supported, and is successfully set, the
message SNMP_NO_ERROR is returned.

Processing a GET-NEXT request
Parsing a GET-NEXT request yields two parameters: the object ID of the requested
variable and the reason for this request. This allows the subagent to return the
name, type, and value of the next supported variable, whose name
lexicographically follows that of the passed object ID.

Subagents can support several different groups of the MIB tree. However, the
subagent cannot jump from one group to another. You must determine the reason

4 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

for the request to then determine the path to traverse in the MIB tree. The second
parameter contains this reason and is the group prefix of the MIB tree that is
supported by the subagent.

If the object ID of the next variable supported by the subagent does not match this
group prefix, the subagent must return SNMP_NO_SUCH_NAME. If required, the
SNMP agent calls on the subagent again and passes a different group prefix.

For example, if you have two subagents, the first subagent registers two group
prefixes, A and C, and supports variables A.1, A.2, and C.1. The second subagent
registers the group prefix B, and supports variable B.1.

When a remote management station begins dumping the MIB, starting from A, the
following sequence of queries is performed:
Subagent 1 gets called:

get-next(A,A) == A.1
get-next(A.1,A) == A.2
get-next(A.2,A) == error(no such name)

Subagent 2 is then called:

get-next(A.2,B) == B.1
get-next(B.1,B) == error(no such name)

Subagent 1 is then called:
get-next(B.1,C) == C.1
get-next(C.1,C) == error(no such name)

Processing a REGISTER request
A subagent must register the variables that it supports with the SNMP agent.
Packets can be created using the mkDPIregister() routine.

For example:
unsigned char *cp;

cp = mkDPIregister("1.3.6.1.2.1.1.2.");

Note: Object IDs are registered with a trailing period (.).

Processing a TRAP request
A subagent can request that the SNMP agent generate a TRAP. The subagent must
provide the desired values for the generic and specific parameters of the TRAP.
The subagent can optionally provide a name, type, and value parameter. The DPI
API library routine mkDPItrap() can be used to generate the TRAP packet.

SNMP agent DPI header files
The following header is required to run SNMP DPI applications:

snmp_dpx.h

This header file is installed in the SEZACMAC data set as member SNMP@DPX.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 5

SNMP agent DPI: Compiling and linking
You can use several methods to compile, link-edit, and execute your TCP/IP C
source program in MVS. This topic contains information about the data sets that
you must include to run your C source program under MVS batch, using
IBM-supplied cataloged procedures.

The following list contains partitioned data set names, which are used as examples
in the following JCL statements:

USER.MYPROG.C
Contains user C source programs

USER.MYPROG.C(PROGRAM1)
Member PROGRAM1 in USER.MYPROG.C partitioned data set

USER.MYPROG.H
Contains user #include data sets

USER.MYPROG.OBJ
Contains object code for the compiled versions of user C programs in
USER.MYPROG.C

USER.MYPROG.LOAD
Contains link-edited versions of user programs in USER.MYPROG.OBJ

SNMP agent DPI: Sample compilation cataloged procedure
additions

Include the following steps in the compilation step of your cataloged procedure.
Cataloged procedures are included in the IBM-supplied samples for your MVS
system.
v Add the following statement as the first //SYSLIB DD statement:

//SYSLIB DD DSN=SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:
//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

SNMP agent DPI: Sample link-edit cataloged procedure
additions

Include the following step in the link-edit step of your cataloged procedure.

Add the following statements after the //SYSLIB DD statement:
// DD DSN=SEZACMTX,DISP=SHR
// DD DSN=SEZADPIL,DISP=SHR

Note: For more information about compiling and linking, see z/OS XL C/C++
User's Guide.

SNMP DPI library routines
This topic provides the syntax, parameters, and other appropriate information for
each DPI routine supported by TCP/IP.

mkDPIlist()
#include <snmp_dpx.h>
#include <types.h>

6 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

struct dpi_set_packet *mkDPIlist(packet, oid_name, type, len, value)
struct dpi_set_packet *packet;
char *oid_name;
int type;
int len;
char *value;

Parameters:

packet A pointer to a structure dpi_set_packet, or NULL

oid_name
The object identifier of the variable

type The type of the value

len The length of the value

value A pointer to the value

Description: The mkDPIlist() routine can be used to create the portion of the parse
tree that represents a list of name and value pairs. Each entry in the list represents
a name and value pair (as would normally be returned in a response packet). If the
pointer packet is NULL, a new dpi_set_packet structure is dynamically allocated
and the pointer to that structure is returned. The structure will contain the new
name and value pair. If the pointer packet is not NULL, a new dpi_set_packet
structure is dynamically allocated and chained to the list. The new structure will
contain the new name and value pair. The pointer packet will be returned to the
caller. If an error is detected, a NULL pointer is returned.

The value of type can be the same as for mkDPIset(). These are defined in the
snmp_dpi.h header file.

The dpi_set_packet structure has a next pointer [0 in case of a mkDPIset() call and
is also 0 upon the first mkDPIlist() call]. The structure looks like this:
struct dpi_set_packet {

char *object_id;
unsigned char type;
unsigned short value_len;
char *value;
struct dpi_set_packet *next;

};

fDPIparse()
#include <snmp_dpx.h>
#include <bsdtypes.h>

void fDPIparse(hdr)
struct snmp_dpi_hdr *hdr;

Parameters:

hdr Specifies a parse tree.

Description: The fDPIparse() routine frees a parse tree that was previously created
by a call to pDPIpacket(). After calling fDPIparse(), you cannot make additional
references to the parse tree.

Return Values: None.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 7

mkDPIregister()
#include <snmp_dpx.h>
#include <bsdtypes.h>

unsigned char *mkDPIregister(oid_name)
char *oid_name;

Parameters

oid_name
Specifies the object identifier of the variable to be registered. Object
identifiers are registered with a trailing period (.).

Description

The mkDPIregister() routine creates a register request packet and returns a pointer
to a static buffer, which holds the packet contents. The length of the remaining
packet is stored in the first 2 bytes of the packet.

Return Values

If successful, returns a pointer to a static buffer containing the packet contents. A
NULL pointer is returned if an error is detected during the creation of the packet.

Example

The following example shows the mkDPIregister() call.
unsigned char *packet;
int len;

packet = mkDPIregister(“1.3.6.1.2.1.1.1.“);

len = *packet * 256 + *(packet + 1);

mkDPIresponse()
#include <snmp_dpx.h>
#include <bsdtypes.h>

unsigned char *mkDPIresponse(ret_code, value_list)
int ret_code;
struct dpi_set_packet *value_list;

Parameters

ret_code
Specifies the error code to be returned.

value_list
Indicates a pointer to a parse tree containing the name, type, and value
information to be returned.

Description

The mkDPIresponse() routine creates a response packet. The first parameter,
ret_code, is the error code to be returned. Zero indicates no errors. Possible errors
include the following:
v SNMP_BAD_VALUE
v SNMP_GEN_ERR

8 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v SNMP_NO_ERROR
v SNMP_NO_SUCH_NAME
v SNMP_READ_ONLY
v SNMP_TOO_BIG

See the snmp_dpi.h header file for a description of these messages.

If ret_code does not indicate an error, the second parameter is a pointer to a parse
tree created by mkDPIset(), which represents the name, type, and value of the
information being returned. If an error is indicated, the second parameter is passed
as a NULL pointer.

The length of the remaining packet is stored in the first 2 bytes of the packet.

Note: mkDPIresponse() always frees the passed parse tree.

Return Values

If successful, mkDPIresponse() returns a pointer to a static buffer containing the
packet contents. This is the same buffer used by mkDPIregister(). A NULL pointer
is returned if an error is detected during the creation of the packet.

Example

The following example shows the mkDPIresponse() call.
unsigned char *packet;

int error_code;
struct dpi_set_packet *ret_value;

packet = mkDPIresponse(error_code, ret_value);

len = *packet * 256 + *(packet + 1);

mkDPIset()
#include <snmp_dpx.h>
#include <bsdtypes.h>

struct dpi_set_packet *mkDPIset(oid_name, type, len, value)
char *oid_name;
int type;
int len;
char *value;

Parameters:

oid_name
Specifies the object identifier of the variable.

type Specifies the type of the object identifier.

len Indicates the length of the value.

value Indicates the pointer to the first byte of the value of the object identifier.

Description: The mkDPIset() routine can be used to create the portion of a parse
tree that represents a name and value pair (as would normally be returned in a
response packet). It returns a pointer to a dynamically allocated parse tree

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 9

representing the name, type, and value information. If an error is detected while
creating the parse tree, a NULL pointer is returned.

The value of type can be one of the following values, which are defined in the
snmp_dpi.h header file:
v SNMP_TYPE_COUNTER
v SNMP_TYPE_GAUGE
v SNMP_TYPE_INTERNET
v SNMP_TYPE_NUMBER
v SNMP_TYPE_OBJECT
v SNMP_TYPE_STRING
v SNMP_TYPE_TICKS

The value parameter is always a pointer to the first byte of the object ID value.

Note: The parse tree is dynamically allocated, and copies are made of the passed
parameters. After a successful call to mkDPIset(), the application can dispose of the
passed parameters without affecting the contents of the parse tree.

Return Values: Returns a pointer to a parse tree containing the name, type, and
value information.

mkDPItrap()
#include <snmp_dpx.h>
#include <bsdtypes.h>

unsigned char *mkDPItrap(generic, specific, value_list)
int generic;
int specific;
struct dpi_set_packet *value_list;

Parameters

generic Specifies the generic field in the SNMP TRAP packet.

specific Specifies the specific field in the SNMP TRAP packet.

value_list
Used to pass the name and value pair to be placed into the SNMP packet.

Description

The mkDPItrap() routine creates a TRAP request packet. The information contained
in value_list is passed as the set_packet portion of the parse tree.

The length of the remaining packet is stored in the first 2 bytes of the packet.

Note: mkDPItrap() always frees the passed parse tree.

Return Values

If the packet can be created, a pointer to a static buffer containing the packet
contents is returned. This is the same buffer that is used by mkDPIregister(). If an
error is encountered while creating the packet, a NULL pointer is returned.

10 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Example

The following example shows the mkDPItrap() call.
struct dpi_set_packet *if_index_value;
unsigned long data;
unsigned char *packet;
int len;

if_index_value = mkDPIset(“1.3.6.1.2.1.2.2.1.1“, SNMP_TYPE_NUMBER,
sizeof(unsigned long), &data);

packet = mkDPItrap(2, 0, if_index_value);
len = *packet * 256 + *(packet + 1);
write(fd,packet,len);

mkDPItrape()
#include <snmp_dpx.h>
#include <types.h>

unsigned char *mkDPItrape(generic, specific, value_list, enterprise_oid)
long int generic; /* 4 octet integer */
long int specific;
struct dpi_set_packet *value_list;
char *enterprise_oid;

Parameters:

generic The generic field for the SNMP TRAP packet.

specific The specific field for the SNMP TRAP packet.

value_list
A pointer to a structure dpi_set_packet, which contains one or more
variables to be sent with the SNMP TRAP packet. Or NULL if no variables
are to be sent.

enterprise_oid
A pointer to a character string representing the enterprise object ID (in
ASN.1 notation, for example, 1.3.6.1.4.1.2.2.1.4). Or NULL if you want the
SNMP agent to use its own enterprise object ID.

Description: The mkDPItrape() routine can be used to create an extended trap. It is
basically the same as the mkDPItrap() routine, but with it you can pass a list of
variables, and also an enterprise object ID.

pDPIpacket()
#include <snmp_dpx.h>
#include <bsdtypes.h>

struct snmp_dpi_hdr *pDPIpacket(packet)
unsigned char *packet;

Parameters

packet Specifies the DPI packet to be parsed.

Description

The pDPIpacket() routine parses a DPI packet and returns a parse tree representing
its contents. The parse tree is dynamically allocated and contains copies of the
information within the DPI packet. After a successful call to pDPIpacket(), the

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 11

packet can be disposed of in any manner the application chooses, without affecting
the contents of the parse tree.

Return Values

If pDPIpacket() is successful, a parse tree is returned. If an error is encountered
during the parse, a NULL pointer is returned.

Note: The parse tree structures are defined in the snmp_dpi.h header file.

Example

The following example shows the mkDPIpacket() call.

The root of the parse tree is represented by an snmp_dpi_hdr structure.
struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_minor;
unsigned char proto_release;

unsigned char packet_type;
union {

struct dpi_get_packet *dpi_get;
struct dpi_next_packet *dpi_next;
struct dpi_set_packet *dpi_set;
struct dpi_resp_packet *dpi_response;
struct dpi_trap_packet *dpi_trap;

} packet_body;
};

The packet_type field can have one of the following values, which are defined in
the snmp_dpi.h header file:
v SNMP_DPI_GET
v SNMP_DPI_GET_NEXT
v SNMP_DPI_SET

The packet_type field indicates the request that is made of the DPI client. For each
of these requests, the remainder of the packet_body is different. If a GET request is
indicated, the object ID of the desired variable is passed in a dpi_get_packet
structure.
struct dpi_get_packet {

char *object_id;
};

A GET-NEXT request is similar, but the dpi_next_packet structure also contains the
object ID prefix of the group that is currently being traversed.
struct dpi_next_packet {

char *object_id;
char *group_id;

};

If the next object, whose object ID lexicographically follows the object ID indicated
by object_id, does not begin with the suffix indicated by the group_id, the DPI client
must return an error indication of SNMP_NO_SUCH_NAME.

A SET request has the most data associated with it, and this is contained in a
dpi_set_packet structure.

12 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

struct dpi_set_packet {
char *object_id;
unsigned char type;
unsigned short value_len;
char *value;
struct dpi_set_packet *next;

};

The object ID of the variable to be modified is indicated by object_id. The type of
the variable is provided in type and can have one of the following values:
v SNMP_TYPE_COUNTER
v SNMP_TYPE_EMPTY
v SNMP_TYPE_GAUGE
v SNMP_TYPE_INTERNET
v SNMP_TYPE_NUMBER
v SNMP_TYPE_OBJECT
v SNMP_TYPE_STRING
v SNMP_TYPE_TICKS

The length of the value to be set is stored in value_len and value contains a pointer
to the value.

Note: The storage pointed to by value is reclaimed when the parse tree is freed.
The DPI client must make provision for copying the value contents.

query_DPI_port()
#include <snmp_dpx.h>
#include <bsdtypes.h>

int query_DPI_port (host_name, community_name)
char *host_name;
char *community_name;

Parameters

host_name
Specifies a pointer to the SNMP agent host name or internet address.

community_name
Specifies a pointer to the community name to be used when making a
request. The community_name constant must be specified in ASCII.

Description

The query_DPI_port() routine is used by a DPI client to determine the TCP port
number that is associated with the DPI. This port number is needed to connect() to
the SNMP agent. The port number is obtained through an SNMP GET request.

Return Values

An integer representing the TCP port number is returned if successful; a -1 is
returned if the port cannot be determined.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 13

Sample SNMP DPI client program for C sockets for version 1.1
This topic contains an example of an SNMP DPI client program. The DPISAMPL
program can be run using the SNMP agents that support the SNMP-DPI interface
as described in RFC 1228. See Appendix J, “Related protocol specifications,” on
page 1075 for information about accessing RFCs.

It can be used to test agent DPI implementations because it provides variables of
all types and with it you can generate traps of all types.

DPISAMPL implements a set of variables in the dpiSample table, which consists of
a set of objects in the IBM Research tree (1.3.6.1.2.2.1.4). See “dpiSample table MIB
descriptions” on page 16 for the objectID and type of each object.

Using the DPISAMPL program
The DPISAMPL program accepts the following arguments:

? Explains the usage.

-d n Sets the debug at level n. The range is from 0 (for no messages) to 4 (for
the most verbose). The default is 0. If a number greater than 4 is specified,
tracing is set to level 4.

-trap gtype stype data
Generates a trap of the generic type gtype, of the specific type stype, and
pass data as an additional value for the variable dpiSample.stype.0. The
values for gtype are from 0 through 5. The values for stype indicate how
data is interpreted. The following values are valid for stype:

1 number

2 octet string

3 object ID

4 empty (ignored)

5 internet address

6 counter

7 gauge

8 time ticks

9 display string

10 octet string

-std_traps
Generates or simulates the standard SNMP traps, which are the generic
types 0 through 5. This includes a link down trap.

-ent_traps
Generates extended enterprise-specific traps, which are specific types 1
through 9, using the internal dpiSample variables.

ent_trapse
Generates extended enterprise-specific traps, which are specific types 11
through 19.

-all_traps
Generates std_traps, ent_traps, and ent_trapse.

14 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

-iucv Uses an AF_IUCV socket to connect to the SNMP agent. This is the default.

Note: Although the IUCV API is no longer supported, use of the IUCV
interaddress space communication mechanism is supported.

-u agent_userid
Specifies the user ID where the SNMP agent is running. The default is
SNMPD.

-inet Uses an AF_INET socket to connect to the SNMP agent.

agent_hostname
Specifies the host name of the system where an SNMP DPI-capable agent
is running. The default is localhost.

Note: The localhost value is not defined by default on z/OS. Ensure
localhost is defined to the name server or in the host name resolution file
as the local IP address if the agent_hostname parameter is not explicitly
specified.

community_name
Specifies the community name, which is required to get the dpiPort. The
default is public.

DPISAMPN NCCFLST for the SNMP manager
With the DPISAMPN NCCFLST, you can exercise the DPISAMPL subagent from a
Tivoli NetView SNMP management station. The DPISAMPL subagent must be
running. With this sample, you can specify which test function you want to run.

You can specify the following values on Tivoli NetView:

agent_host name
Specifies the host name or IP address of the system where the SNMP agent
is running.

community_name
Specifies the community name. The CLIST makes the community name
uppercases so the SNMP agent must be configured to accept the
community name in uppercase.

function
Specifies the test function to be performed. Valid test functions are:

ALL Runs all of the tests. This is the default.

GET Retrieves the dpiSample variables one at a time.

GETNEXT
Retrieves all the dpiSample variables.

ONEGET
Retrieves all the dpiSample variables with one GET.

ONESET
Sets all the dpiSample variables at once.

QUIT Causes the DPISAMPLE subagent to terminate.

SET Sets the dpiSample variables one at a time with one SET.

TRAPS
Instructs the DPISAMPLE subagent to generate nine
enterprise-specific traps.

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 15

The NCCFLST assumes that the definitions for the dpiSample table (see
“dpiSample table MIB descriptions”) have been added to the MIBDESC.DATA file.
You can also GET, GETNEXT, or SET dpiSample variables with regular SNMP
GET/GETNEXT/SET commands.

The DPISAMPL subagent recognizes a few special values in the variable
dpiSampleCommand. The following list shows the special values and their
associated subagent actions.

all_traps
Generates std_traps, ent_traps, and ent_trapse.

ent_traps
Generates extended enterprise-specific traps, which are specific types 1
through 9, using the internal dpiSample variables.

ent_trapse
Generates extended enterprise-specific traps, which are specific types 11
through 19.

quit Causes the subagent to terminate.

std_traps
Generates or simulates the standard SNMP traps, which are the generic
types 0 through 5. This includes a link down trap.

Compiling and linking the DPISAMPL.C source code
The source code for the sample DPI program can be found in the SEZAINST data
set, member DPISAMPL.

You can specify the following compile-time flags:

_NO_PROTO
The DPISAMPL.C code assumes that it is compiled with an ANSI-C
compliant compiler. It can be compiled without ANSI-C by defining this
flag.

MVS Indicates that compilation is for MVS and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

When linking the DPISAMPL code, you must use the SEZADPIL data set. It
contains the SNMP-DPI interface routines as described in RFC 1228. See
Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs.

dpiSample table MIB descriptions
The following sample shows the MIB descriptions for the dpiSample table.
DPISAMPLE.C supports these variables as an SNMP DPI sample sub-agent
it also generates enterprise specific traps via DPI with these objects
dpiSample 1.3.6.1.4.1.2.2.1.4. table 0
dpiSampleNumber 1.3.6.1.4.1.2.2.1.4.1. number 10
next one is to be able to send a badValue with a SET request
dpiSampleNumberString 1.3.6.1.4.1.2.2.1.4.1.1. string 10
dpiSampleOctetString 1.3.6.1.4.1.2.2.1.4.2. string 10
dpiSampleObjectID 1.3.6.1.4.1.2.2.1.4.3. object 10
XGMON/SQESERV does not allow to specify empty (so use empty string)
dpiSampleEmpty 1.3.6.1.4.1.2.2.1.4.4. string 10
dpiSampleInetAddress 1.3.6.1.4.1.2.2.1.4.5. internet 10
dpiSampleCounter 1.3.6.1.4.1.2.2.1.4.6. counter 10
dpiSampleGauge 1.3.6.1.4.1.2.2.1.4.7. gauge 10

16 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

dpiSampleTimeTicks 1.3.6.1.4.1.2.2.1.4.8. ticks 10
dpiSampleDisplayString 1.3.6.1.4.1.2.2.1.4.9. display 10
dpiSampleCommand 1.3.6.1.4.1.2.2.1.4.10. display 1

Notes:

1. dpiSample object is not accessible.
2. dpiSampleNumber object is accessible only for the SNMP GET command.
3. dpiSampleNumberString object is accessible only for the SNMP GET command.
4. dpiSampleEmpty object is not accessible for the SNMP SET command.

The DPISAMPL.C source code
The following sample is the source code for the DPISAMPL.C program.

Note: The characters shown below might vary due to differences in character sets.
This code is included as an example only.
/***/
/* */
/* TCP/IP for MVS */
/* SMP/E Distribution Name: EZAEC02Z */
/* File name: tcpip.SEZAINST(DPISAMPL) */
/* */
/* */
/* SNMP-DPI - SNMP Distributed Programming Interface */
/* */
/* May 1991 - Version 1.0 - SNMP-DPI Version 1.0 (RFC1228) */
/* Created by IBM Research. */
/* Feb 1992 - Version 1.1 - Allow enterpriseID to be passed with */
/* a (enterprise specific) trap */
/* - allow multiple variables to be passed */
/* - Use 4 octets (INTEGER from RFC1157) */
/* for generic and specific type. */
/* Jun 1992 - Make it run on OS/2 as well */
/* */
/* */
/* Licensed Materials - Property of IBM */
/* 5694-A01 */
/* Copyright IBM Corp. 1991, 2010 */
/* */
/* Status = CSV1R12 */
/* */
/* dpisampl.c - a sample SNMP-DPI subagent */
/* - can be used to test agent DPI implementations. */
/* */
/* Change Activity: */
/* */
/* Flag Reason Release Date Origin Description */
/* ---- -------- -------- ------ -------- ----------------------- */
/* $P1= MV11816 TCPV3R2 960524 jab : zero siucv fields for */
/* connect */
/* $Q1= MV27495 D316 030218 SHAGGAR: Include current header */
/* file */
/* $E1= D144106 RABASE 080327 ADAMSON : Change snmp@dpi.h to */
/* snmp_dpx.h */
/* $H1= D149128 RCBASE 091011 ADAMSON : Correct missing ending */
/* comment chars in prolog */
/* */
/***/
/* For testing with XGMON and/or SQESERV (SNMP Query Engine) */
/* it is best to keep the following define for OID in sync */
/* with the dpiSample objectID in the MIB description file */
/* (mib_desc for XGMON, MIBDESC DATA for SQESERV on VM and */
/* MIBDESC.DATA for SQESERV on MVS). */
/***/

#define OID "1.3.6.1.4.1.2.2.1.4."
#define ENTERPRISE_OID "1.3.6.1.4.1.2.2.1.4" /* dpiSample */
#define ifIndex "1.3.6.1.2.1.2.2.1.1.0"
#define egpNeighAddr "1.3.6.1.2.8.5.1.2.0"
#define PUBLIC_COMMUNITY_NAME "public"

#if defined(VM) || defined(MVS)

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 17

#define SNMPAGENTUSERID "SNMPD"
#define SNMPIUCVNAME "SNMP_DPI"
#pragma csect(CODE, "$DPISAMP")
#pragma csect(STATIC,"#DPISAMP")
#include <manifest.h> /* VM specific things */
#include "snmpnms.h" /* short external names for VM/MVS */
#include "snmp@vm.h" /* more of those short names */
#include <saiucv.h>
#include <bsdtime.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <string.h> /*@Q1C*/
#include <inet.h>
#define asciitoebcdic asciitoe
#define ebcdictoascii ebcdicto
extern char ebcdicto[], asciitoe[];
#pragma linkage(cmxlate,OS)
#define DO_ETOA(a) cmxlate((a),ebcdictoascii,strlen((a)))
#define DO_ATOE(a) cmxlate((a),asciitoebcdic,strlen((a)))
#define DO_ERROR(a) tcperror((a))
#define LOOPBACK "loopback"
#define IUCV TRUE
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

#else /* we are not on VM or MVS */

#ifdef OS2
#include <stdlib.h>
#include <types.h>
#include <doscalls.h>
#ifndef sleep
#define sleep(a) DOSSLEEP(1000 * (a))
#endif
#define close soclose
#endif

#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
// #include <arpa/inet.h>
#define DO_ETOA(a) ; /* no need for this */
#define DO_ATOE(a) ; /* no need for this */
#define DO_ERROR(a) perror((a))
#define LOOPBACK "localhost"
#define IUCV FALSE
#ifdef AIX221
#define isdigit(c) (((c) >= ’0’) && ((c) <= ’9’))
#else
// #include <sys/select.h>
#endif /* AIX221 */

#endif /* defined(VM) || defined(MVS) */

#include <stdio.h>
#include "snmp_dpx.h" /*@E1C*/

#define WAIT_FOR_AGENT 3 /* time to wait before closing agent fd */

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments();
static void send_packet();
static void print_val();
static void usage();
static void init_connection();
static void init_variables();
static void await_and_read_packet();
static void handle_packet();
static void do_get();
static void do_set();
static void issue_traps();
static void issue_one_trap();

18 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

static void issue_one_trape();
static void issue_std_traps();
static void issue_ent_traps();
static void issue_ent_trapse();
static void do_register();
static void dump_bfr();
static struct dpi_set_packet *addtoset();
extern unsigned long lookup_host();

#else /* _NO_PROTO */ /* for ANSI-C compiler */

static void check_arguments(const int argc, char *argv[]);
static void send_packet(const char * packet);
static void print_val(const int index);
static void usage(const char *progname, const int exit_rc);
static void init_connection(void);
static void init_variables(void);
static void await_and_read_packet(void);
static void handle_packet(void);
static void do_get(void);
static void do_set(void);
static void issue_traps(void);
static void issue_one_trap(void);
static void issue_one_trape(void);
static void issue_std_traps(void);
static void issue_ent_traps(void);
static void issue_ent_trapse(void);
static void do_register(void);
static void dump_bfr(const char *buf, const int len);
static struct dpi_set_packet *addtoset(struct dpi_set_packet *data,

int stype);
extern unsigned long lookup_host(const char *hostname);

#endif /* _NO_PROTO */

#define OSTRING "hex01-04:"
#define DSTRING "Initial Display String"
#define COMMAND "None"
#define BUFSIZE 4096
#define TIMEOUT 3
#define PACKET_LEN(packet) (((unsigned char)*(packet)) * 256 + \

((unsigned char)*((packet) + 1)) + 2)

/* We have the following instances for OID.x variables */
/* 0 - table */

static long number = 0; /* 1 - a number */
static unsigned char *ostring = 0; /* 2 - octet string */
static int ostring_len = 0; /* and its length */
static unsigned char *objectID = 0; /* 3 - objectID */
static int objectID_len= 0; /* and its length */

/* 4 - some empty variable */
static unsigned long ipaddr = 0; /* 5 - ipaddress */
static unsigned long counter = 1; /* 6 - a counter */
static unsigned long gauge = 1; /* 7 - a gauge */
static unsigned long ticks = 1; /* 8 - time ticks */
static unsigned char *dstring = 0; /* 9 - display string */
static unsigned char *command = 0; /* 10 - command */

static char *DPI_var[] = {
"dpiSample",
"dpiSampleNumber",
"dpiSampleOctetString",
"dpiSampleObjectID",
"dpiSampleEmpty",
"dpiSampleInetAddress",
"dpiSampleCounter",
"dpiSampleGauge",
"dpiSampleTimeTicks",
"dpiSampleDisplayString",
"dpiSampleCommand"

};

static short int valid_types[] = { /* SNMP_TYPEs accepted on SET */
-1, /* 0 do not check type */
SNMP_TYPE_NUMBER, /* 1 number */
SNMP_TYPE_STRING, /* 2 octet string */
SNMP_TYPE_OBJECT, /* 3 object identifier */
-1, /* SNMP_TYPE_EMPTY */ /* 4 do not check type */
SNMP_TYPE_INTERNET, /* 5 internet address */
SNMP_TYPE_COUNTER, /* 6 counter */

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 19

SNMP_TYPE_GAUGE, /* 7 gauge */
SNMP_TYPE_TICKS, /* 8 time ticks */
SNMP_TYPE_STRING, /* 9 display string */
SNMP_TYPE_STRING /* 10 command (display string) */

#define OID_COUNT_FOR_TRAPS 9
#define OID_COUNT 10
};

static char *packet = NULL; /* ptr to send packet. */
static char inbuf[BUFSIZE]; /* buffer for receive packets */
static int dpi_fd; /* fd for socket to DPI agent */
static short int dpi_port; /* DPI_port at agent */
static unsigned long dpi_ipaddress; /* IP address of DPI agent */
static char *dpi_hostname; /* hostname of DPI agent */
static char *dpi_userid; /* userid of DPI agent VM/MVS */
static char *var_gid; /* groupID received */
static char *var_oid; /* objectID received */
static int var_index; /* OID variable index */
static unsigned char var_type; /* SET value type */
static char *var_value; /* SET value */
static short int var_value_len; /* SET value length */
static int debug_lvl = 0; /* current debug level */
static int use_iucv = IUCV; /* optional use of AF_IUCV */
static int do_quit = FALSE;/* Quit in await loop */
static int trap_gtype = 0; /* trap generic type */
static int trap_stype = 0; /* trap specific type */
static char *trap_data = NULL;/* trap data */
static int do_trap = 0; /* switch for traps */
#define ONE_TRAP 1
#define ONE_TRAPE 2
#define STD_TRAPS 3
#define ENT_TRAPS 4
#define ENT_TRAPSE 5
#define ALL_TRAPS 6
#define MAX_TRAPE_DATA 10 /* data for extended trap */
static long trape_gtype = 6; /* trap generic type */
static long trape_stype = 11; /* trap specific type */
static char *trape_eprise = NULL; /* enterprise id */
static char *trape_data[MAX_TRAPE_DATA]; /* pointers to data values */
static int trape_datacnt; /* actual number of values */

#ifdef _NO_PROTO /* for classic K&R C */
main(argc, argv) /* main line */
int argc;
char *argv[];
#else /* _NO_PROTO */ /* for ANSI-C compiler */
main(const int argc, char *argv[]) /* main line */
#endif /* _NO_PROTO */
{

check_arguments(argc, argv); /* check callers arguments */
dpi_ipaddress = lookup_host(dpi_hostname); /* get ip address */
init_connection(); /* connect to specified agent */
init_variables(); /* initialize our variables */
if (do_trap) { /* we just need to do traps */

issue_traps(); /* issue the trap(s) */
sleep(WAIT_FOR_AGENT); /* sleep a bit, so agent can */
close(dpi_fd); /* read data before we close */
exit(0); /* and that’s it */

} /* end if (do_trap) */
do_register(); /* register our objectIDs */
printf("%s ready and awaiting queries from agent\n",argv[0]);
while (do_quit == FALSE) { /* forever until quit or error */

await_and_read_packet(); /* wait for next packet */
handle_packet(); /* handle it */
if (do_trap) issue_traps(); /* request to issue traps */

} /* while loop */
sleep(WAIT_FOR_AGENT); /* allow agent to read response */
printf("Quitting, %s set to: quit\n",DPI_var[10]);
exit(2); /* sampleDisplayString == quit */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_traps(void)
#endif /* _NO_PROTO */
{

switch (do_trap) { /* let’s see which one(s) */
case ONE_TRAP: /* only need to issue one trap */
issue_one_trap(); /* go issue the one trap */

20 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

break;
case ONE_TRAPE: /* only need to issue one trape */
issue_one_trape(); /* go issue the one trape */
break;

case STD_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
break;

case ENT_TRAPS: /* only need to issue ent traps */
issue_ent_traps(); /* enterprise specific traps */
break;

case ENT_TRAPSE: /* only need to issue ent trapse */
issue_ent_trapse(); /* enterprise specific trapse */
break;

case ALL_TRAPS: /* only need to issue std traps */
issue_std_traps(); /* standard traps gtypes 0-5 */
issue_ent_traps(); /* enterprise specific traps */
issue_ent_trapse(); /* enterprise specific trapse */
break;

default:
break;

} /* end switch (do_trap) */
do_trap = 0; /* reset do_trap switch */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void await_and_read_packet() /* await packet from DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void await_and_read_packet(void)/* await packet from DPI agent */
#endif /* _NO_PROTO */
{

int len, rc, bytes_to_read, bytes_read = 0;
#ifdef OS2

int socks[5];
#else

fd_set read_mask;
#endif

struct timeval timeout;

#ifdef OS2
socks[0] = dpi_fd;
rc = select(socks, 1, 0, 0, -1L);

#else
FD_ZERO(&read_mask);
FD_SET(dpi_fd, &read_mask); /* wait for data */
rc = select(dpi_fd+1, &read_mask, NULL, NULL, NULL);

#endif
if (rc != 1) { /* exit on error */

DO_ERROR("await_and_read_packet: select");
close(dpi_fd);
exit(1);

}
#ifdef OS2

len = recv(dpi_fd, inbuf, 2, 0); /* read 2 bytes first */
#else

len = read(dpi_fd, inbuf, 2); /* read 2 bytes first */
#endif

if (len <= 0) { /* exit on error or EOF */
if (len < 0) DO_ERROR("await_and_read_packet: read");
else printf("Quitting, EOF received from DPI-agent\n");
close(dpi_fd);
exit(1);

}
bytes_to_read = (inbuf[0] << 8) + inbuf[1]; /* bytes to follow */
if (BUFSIZE < (bytes_to_read + 2)) { /* exit if too much */

printf("Quitting, packet larger than %d byte buffer\n",BUFSIZE);
close(dpi_fd);
exit(1);

}
while (bytes_to_read > 0) { /* while bytes to read */

#ifdef OS2
socks[0] = dpi_fd;
len = select(socks, 1, 0, 0, 3000L);

#else
timeout.tv_sec = 3; /* wait max 3 seconds */
timeout.tv_usec = 0;
FD_SET(dpi_fd, &read_mask); /* check for data */
len = select(dpi_fd+1, &read_mask, NULL, NULL, &timeout);

#endif
if (len == 1) { /* select returned OK */

#ifdef OS2

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 21

len = recv(dpi_fd, &inbuf[2] + bytes_read, bytes_to_read, 0);
#else

len = read(dpi_fd, &inbuf[2] + bytes_read, bytes_to_read);
#endif

} /* end if (len == 1) */
if (len <= 0) { /* exit on error or EOF */

if (len < 0) DO_ERROR("await_and_read_packet: read");
printf("Can’t read remainder of packet\n");
close(dpi_fd);
exit(1);

} else { /* count bytes_read */
bytes_read += len;
bytes_to_read -= len;

}
} /* while (bytes_to_read > 0) */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void handle_packet() /* handle DPI packet from agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void handle_packet(void) /* handle DPI packet from agent */
#endif /* _NO_PROTO */
{

struct snmp_dpi_hdr *hdr;

if (debug_lvl > 2) {
printf("Received following SNMP-DPI packet:\n");
dump_bfr(inbuf, PACKET_LEN(inbuf));

}
hdr = pDPIpacket(inbuf); /* parse received packet */
if (hdr == 0) { /* ignore if can’t parse */

printf("Ignore received packet, could not parse it!\n");
return;

}
packet = NULL;
var_type = 0;
var_oid = "";
var_gid = "";
switch (hdr->packet_type) {
/* extract pointers and/or data from specific packet types, */
/* such that we can use them independent of packet type. */
case SNMP_DPI_GET:
if (debug_lvl > 0) printf("SNMP_DPI_GET for ");
var_oid = hdr->packet_body.dpi_get->object_id;
break;

case SNMP_DPI_GET_NEXT:
if (debug_lvl > 0) printf("SNMP_DPI_GET_NEXT for ");
var_oid = hdr->packet_body.dpi_next->object_id;
var_gid = hdr->packet_body.dpi_next->group_id;
break;

case SNMP_DPI_SET:
if (debug_lvl > 0) printf("SNMP_DPI_SET for ");
var_value_len = hdr->packet_body.dpi_set->value_len;
var_value = hdr->packet_body.dpi_set->value;
var_oid = hdr->packet_body.dpi_set->object_id;
var_type = hdr->packet_body.dpi_set->type;
break;

default: /* Return a GEN_ERROR */
if (debug_lvl > 0) printf("Unexpected packet_type %d, genErr\n",

hdr->packet_type);
packet = mkDPIresponse(SNMP_GEN_ERR, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;
break;

} /* end switch(hdr->packet_type) */
if (debug_lvl > 0) printf("objectID: %s \n",var_oid);

if (strlen(var_oid) <= strlen(OID)) { /* not in our tree */
if (hdr->packet_type == SNMP_DPI_GET_NEXT) var_index = 0; /* OK */
else { /* cannot handle */

if (debug_lvl>0) printf("...Ignored %s, noSuchName\n",var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME, NULL);
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */
send_packet(packet);
return;

}
} else { /* Extract our variable index (from OID.index.instance) */

/* We handle any instance the same (we only have one instance) */
var_index = atoi(&var_oid[strlen(OID)]);

22 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

}
if (debug_lvl > 1) {

printf("...The groupID=%s\n",var_gid);
printf("...Handle as if objectID=%s%d\n",OID,var_index);

}
switch (hdr->packet_type) {
case SNMP_DPI_GET:
do_get(); /* do a get to return response */
break;

case SNMP_DPI_GET_NEXT:
{ char toid[256]; /* space for temporary objectID */
var_index++; /* do a get for the next variable */
sprintf(toid,"%s%d",OID,var_index); /* construct objectID */
var_oid = toid; /* point to it */
do_get(); /* do a get to return response */

} break;
case SNMP_DPI_SET:
if (debug_lvl > 1) printf("...value_type=%d\n",var_type);
do_set(); /* set new value first */
if (packet) break; /* some error response was generated */
do_get(); /* do a get to return response */
break;

}
fDPIparse(hdr); /* return storage allocated by pDPIpacket() */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_get() /* handle SNMP_GET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_get(void) /* handle SNMP_GET request */
#endif /* _NO_PROTO */
{

struct dpi_set_packet *data = NULL;

switch (var_index) {
case 0: /* table, cannot be queried by itself */
printf("...Should not issue GET for table %s.0\n", OID);
break;
case 1: /* a number */
data = mkDPIset(var_oid,SNMP_TYPE_NUMBER,sizeof(number),&number);
break;
case 2: /* an octet_string (can have binary data) */
data = mkDPIset(var_oid,SNMP_TYPE_STRING,ostring_len,ostring);
break;
case 3: /* object id */
data = mkDPIset(var_oid,SNMP_TYPE_OBJECT,objectID_len,objectID);
break;
case 4: /* some empty variable */
data = mkDPIset(var_oid,SNMP_TYPE_EMPTY,0,NULL);
break;
case 5: /* internet address */
data = mkDPIset(var_oid,SNMP_TYPE_INTERNET,sizeof(ipaddr),&ipaddr);
break;
case 6: /* counter (unsigned) */
data =mkDPIset(var_oid,SNMP_TYPE_COUNTER,sizeof(counter),&counter);
break;
case 7: /* gauge (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_GAUGE,sizeof(gauge),&gauge);
break;
case 8: /* time ticks (unsigned) */
data = mkDPIset(var_oid,SNMP_TYPE_TICKS,sizeof(ticks),&ticks);
break;
case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(dstring),dstring);
DO_ATOE(dstring);
break;
case 10: /* a command request (command is a display string) */
DO_ETOA(command);
data = mkDPIset(var_oid,SNMP_TYPE_STRING,strlen(command),command);
DO_ATOE(command);
break;
default: /* Return a NoSuchName */
if (debug_lvl > 1)

printf("...GET[NEXT] for %s, not found\n", var_oid);
break;

} /* end switch (var_index) */

if (data) {
if (debug_lvl > 0) {

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 23

printf("...Sending response oid: %s type: %d\n",
var_oid, data->type);

printf("......Current value: ");
print_val(var_index); /* prints \n at end */

}
packet = mkDPIresponse(SNMP_NO_ERROR,data);

} else { /* Could have been an error in mkDPIset though */
if (debug_lvl > 0) printf("...Sending response noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);

} /* end if (data) */
if (packet) send_packet(packet);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_set() /* handle SNMP_SET request */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_set(void) /* handle SNMP_SET request */
#endif /* _NO_PROTO */
{

unsigned long *ulp;
long *lp;

if (valid_types[var_index] != var_type &&
valid_types[var_index] != -1) {
printf("...Ignored set request with type %d, expect type %d,",

var_type, valid_types[var_index]);
printf(" Returning badValue\n");
packet = mkDPIresponse(SNMP_BAD_VALUE, NULL);
if (packet) send_packet(packet);
return;

}
switch (var_index) {
case 0: /* table, cannot set table. */
if (debug_lvl > 0) printf("...Ignored set TABLE, noSuchName\n");
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;
case 1: /* a number */
lp = (long *)var_value;
number = *lp;
break;
case 2: /* an octet_string (can have binary data) */
free(ostring);
ostring = (char *)malloc(var_value_len + 1);
bcopy(var_value, ostring, var_value_len);
ostring_len = var_value_len;
ostring[var_value_len] = ’\0’; /* so we can use it as a string */
break;
case 3: /* object id */
free(objectID);
objectID = (char *)malloc(var_value_len + 1);
bcopy(var_value, objectID, var_value_len);
objectID_len = var_value_len;
if (objectID[objectID_len -1]) {

objectID[objectID_len++] = ’\0’; /* a valid one needs a null */
if (debug_lvl > 0)

printf("...added a terminating null to objectID\n");
}
break;
case 4: /* an empty variable, cannot set */
if (debug_lvl > 0) printf("...Ignored set EMPTY, readOnly\n");
packet = mkDPIresponse(SNMP_READ_ONLY,NULL);
break;
case 5: /* Internet address */
ulp = (unsigned long *)var_value;
ipaddr = *ulp;
break;
case 6: /* counter (unsigned) */
ulp = (unsigned long *)var_value;
counter = *ulp;
break;
case 7: /* gauge (unsigned) */
ulp = (unsigned long *)var_value;
gauge = *ulp;
break;
case 8: /* time ticks (unsigned) */
ulp = (unsigned long *)var_value;
ticks = *ulp;
break;
case 9: /* a display_string (printable ascii only) */
free(dstring);

24 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

dstring = (char *)malloc(var_value_len + 1);
bcopy(var_value, dstring, var_value_len);
dstring[var_value_len] = ’\0’; /* so we can use it as a string */
DO_ATOE(dstring);
break;
case 10: /* a request to execute a command */
free(command);
command = (char *)malloc(var_value_len + 1);
bcopy(var_value, command, var_value_len);
command[var_value_len] = ’\0’; /* so we can use it as a string */
DO_ATOE(command);
if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("std_traps",command) == 0) do_trap = STD_TRAPS;
else if (strcmp("ent_traps",command) == 0) do_trap = ENT_TRAPS;
else if (strcmp("ent_trapse",command) == 0) do_trap = ENT_TRAPSE;
else if (strcmp("all_traps",command) == 0) do_trap = ALL_TRAPS;
else if (strcmp("quit",command) == 0) do_quit = TRUE;
else break;
if (debug_lvl > 0)

printf("...Action requested: %s set to: %s\n",
DPI_var[10], command);

break;
default: /* NoSuchName */
if (debug_lvl > 0)

printf("...Ignored set for %s, noSuchName\n", var_oid);
packet = mkDPIresponse(SNMP_NO_SUCH_NAME,NULL);
break;

} /* end switch (var_index) */
if (packet) send_packet(packet);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_std_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_std_traps(void)
#endif /* _NO_PROTO */
{

trap_stype = 0;
trap_data = dpi_hostname;
for (trap_gtype=0; trap_gtype<6; trap_gtype++) {

issue_one_trap();
if (trap_gtype == 0) sleep(10); /* some managers purge cache */

}
}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_traps()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_traps(void)
#endif /* _NO_PROTO */
{

char temp_string[256];

trap_gtype = 6;
for (trap_stype = 1; trap_stype < 10; trap_stype++) {
trap_data = temp_string;
switch (trap_stype) {
case 1 :
sprintf(temp_string,"%ld",number);
break;

case 2 :
sprintf(temp_string,"%s",ostring);
break;

case 3 :
trap_data = objectID;
break;

case 4 :
trap_data = "";
break;

case 5 :
trap_data = dpi_hostname;
break;

case 6 :
sleep(1); /* give manager a break */
sprintf(temp_string,"%lu",counter);
break;

case 7 :
sprintf(temp_string,"%lu",gauge);
break;

case 8 :

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 25

sprintf(temp_string,"%lu",ticks);
break;

case 9 :
trap_data = dstring;
break;

} /* end switch (trap_stype) */
issue_one_trap();

}
}

/* issue a set of extended traps, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_ent_trapse()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_ent_trapse(void)
#endif /* _NO_PROTO */
{
int i, n;
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oid[256];
char *cp;

trape_gtype = 6;
trape_eprise = ENTERPRISE_OID;
for (n=11; n < (11+OID_COUNT_FOR_TRAPS); n++) {

data = 0;
trape_stype = n;
for (i=1; i<=(n-10); i++)

data = addtoset(data, i);
if (data == 0) {

printf("Could not make dpi_set_packet\n");
return;

}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",
trape_gtype, trape_stype, trape_eprise);

}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}
}

/* issue one extended trap, pass enterprise ID and multiple
* variable (assume octect string) as passed by caller
*/
#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trape()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trape(void)
#endif /* _NO_PROTO */
{
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
char oid[256];
char *cp;
int i;

for (i=0; i<trape_datacnt; i++) {
sprintf(oid,"%s2.%d",OID,i);
/* assume an octet_string (could have hex data) */
data = mkDPIlist(data, oid, SNMP_TYPE_STRING,

strlen(trape_data[i]), trape_data[i]);
if (data == 0) {

printf("Could not make dpiset_packet\n");
} else if (debug_lvl > 0) {

printf("Preparing: [oid=%s] value: ", oid);
printf("’");
for (cp = trape_data[i]; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

}
}
packet = mkDPItrape(trape_gtype,trape_stype,data,trape_eprise);
if ((debug_lvl > 0) && (packet)) {

printf("sending trape packet: %lu %lu enterprise=%s\n",

26 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

trape_gtype, trape_stype, trape_eprise);
}
if (packet) send_packet(packet);
else printf("Could not make trape packet\n");

}

#ifdef _NO_PROTO /* for classic K&R C */
static void issue_one_trap()
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void issue_one_trap(void)
#endif /* _NO_PROTO */
{
long int num; /* must be 4 bytes */
struct dpi_set_packet *data = NULL;
unsigned char *packet = NULL;
unsigned long ipaddr, ulnum;
char oid[256];
char *cp;

switch (trap_gtype) {
/* all traps are handled more or less the same sofar. */
/* could put specific handling here if needed/wanted. */
case 0: /* simulate cold start */
case 1: /* simulate warm start */
case 4: /* simulate authentication failure */
strcpy(oid,"none");
break;

case 2: /* simulate link down */
case 3: /* simulate link up */
strcpy(oid,ifIndex);
num = 1;
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 5: /* simulate EGP neighbor loss */
strcpy(oid,egpNeighAddr);
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* simulate enterprise specific trap */
sprintf(oid,"%s%d.0",OID, trap_stype);
switch (trap_stype) {
case 1: /* a number */
num = strtol(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_NUMBER, sizeof(num), &num);
break;

case 2: /* an octet_string (could have hex data) */
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
break;

case 3: /* object id */
data = mkDPIset(oid,SNMP_TYPE_OBJECT,strlen(trap_data) + 1,

trap_data);
break;

case 4: /* an empty variable value */
data = mkDPIset(oid, SNMP_TYPE_EMPTY, 0, 0);
break;

case 5: /* internet address */
ipaddr = lookup_host(trap_data);
data = mkDPIset(oid, SNMP_TYPE_INTERNET, sizeof(ipaddr), &ipaddr);
break;

case 6: /* counter (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_COUNTER, sizeof(ulnum), &ulnum);
break;

case 7: /* gauge (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_GAUGE, sizeof(ulnum), &ulnum);
break;

case 8: /* time ticks (unsigned) */
ulnum = strtoul(trap_data,(char **)0,10);
data = mkDPIset(oid, SNMP_TYPE_TICKS, sizeof(num), &ulnum);
break;

case 9: /* a display_string (ascii only) */
DO_ETOA(trap_data);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);
DO_ATOE(trap_data);
break;

default: /* handle as string */
printf("Unknown specific trap type: %s, assume octet_string\n",

trap_stype);
data = mkDPIset(oid,SNMP_TYPE_STRING,strlen(trap_data),trap_data);

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 27

break;
} /* end switch (trap_stype) */
break;

default: /* unknown trap */
printf("Unknown general trap type: %s\n", trap_gtype);
return;
break;

} /* end switch (trap_gtype) */

packet = mkDPItrap(trap_gtype,trap_stype,data);
if ((debug_lvl > 0) && (packet)) {

printf("sending trap packet: %u %u [oid=%s] value: ",
trap_gtype, trap_stype, oid);

if (trap_stype == 2) {
printf("’");
for (cp = trap_data; *cp; cp++) /* loop through data */

printf("%2.2x",*cp); /* hex print one byte */
printf("’H\n");

} else printf("%s\n", trap_data);
}
if (packet) send_packet(packet);
else printf("Could not make trap packet\n");

}

#ifdef _NO_PROTO /* for classic K&R C */
static void send_packet(packet) /* DPI packet to agent */
char *packet;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void send_packet(const char *packet) /* DPI packet to agent */
#endif /* _NO_PROTO */
{

int rc;

if (debug_lvl > 2) {
printf("...Sending DPI packet:\n");
dump_bfr(packet, PACKET_LEN(packet));

}
#ifdef OS2

rc = send(dpi_fd,packet,PACKET_LEN(packet),0);
#else
rc = write(dpi_fd,(unsigned char *)packet,PACKET_LEN(packet));
#endif

if (rc != PACKET_LEN(packet)) DO_ERROR("send_packet: write");
/* no need to free packet (static buffer in mkDPI.... routine) */

}

#ifdef _NO_PROTO /* for classic K&R C */
static void do_register() /* register our objectIDs with agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void do_register(void) /* register our objectIDs with agent */
#endif /* _NO_PROTO */
{

int i, rc;
char toid[256];

if (debug_lvl > 0) printf("Registering variables:\n");
for (i=1; i<=OID_COUNT; i++) {

sprintf(toid,"%s%d.",OID,i);
packet = mkDPIregister(toid);

#ifdef OS2
rc = send(dpi_fd, packet, PACKET_LEN(packet),0);

#else
rc = write(dpi_fd, packet, PACKET_LEN(packet));

#endif
if (rc <= 0) {

DO_ERROR("do_register: write");
printf("Quitting, unsuccessful register for %s\n",toid);
close(dpi_fd);
exit(1);

}
if (debug_lvl > 0) {

printf("...Registered: %-25s oid: %s\n",DPI_var[i],toid);
printf("......Initial value: ");
print_val(i); /* prints \n at end */

}
}

}

/* add specified variable to list of variable in the dpi_set_packet
*/

28 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

#ifdef _NO_PROTO /* for classic K&R C */
struct dpi_set_packet *addtoset(data, stype)
struct dpi_set_packet *data;
int stype;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
struct dpi_set_packet *addtoset(struct dpi_set_packet *data, int stype)
#endif /* _NO_PROTO */
{

char var_oid[256];

sprintf(var_oid,"%s%d.0",OID, stype);
switch (stype) {
case 1: /* a number */
data = mkDPIlist(data, var_oid, SNMP_TYPE_NUMBER,

sizeof(number), &number);
break;

case 2: /* an octet_string (can have binary data) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

ostring_len, ostring);
break;
case 3: /* object id */
data = mkDPIlist(data, var_oid, SNMP_TYPE_OBJECT,

objectID_len, objectID);
break;
case 4: /* some empty variable */
data = mkDPIlist(data, var_oid, SNMP_TYPE_EMPTY, 0, NULL);
break;
case 5: /* internet address */
data = mkDPIlist(data, var_oid, SNMP_TYPE_INTERNET,

sizeof(ipaddr), &ipaddr);
break;
case 6: /* counter (unsigned) */
data =mkDPIlist(data, var_oid, SNMP_TYPE_COUNTER,

sizeof(counter), &counter);
break;
case 7: /* gauge (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_GAUGE,

sizeof(gauge), &gauge);
break;
case 8: /* time ticks (unsigned) */
data = mkDPIlist(data, var_oid, SNMP_TYPE_TICKS,

sizeof(ticks), &ticks);
break;
case 9: /* a display_string (printable ascii only) */
DO_ETOA(dstring);
data = mkDPIlist(data, var_oid, SNMP_TYPE_STRING,

strlen(dstring), dstring);
DO_ATOE(dstring);
break;
} /* end switch (stype) */
return(data);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void print_val(index)
int index;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void print_val(const int index)
#endif /* _NO_PROTO */
{

char *cp;
struct in_addr temp_ipaddr;

switch (index) {
case 1 :
printf("%ld\n",number);
break;

case 2 :
printf("’");
for (cp = ostring; cp < ostring + ostring_len; cp++)

printf("%2.2x",*cp);
printf("’H\n");
break;

case 3 :
printf("%*s\n", objectID_len, objectID);
break;

case 4 :
printf("no value (EMPTY)\n");
break;

case 5 :

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 29

temp_ipaddr.s_addr = ipaddr;
printf("%s\n",inet_ntoa(temp_ipaddr));

/* This worked on VM, MVS and AIX, but not on OS/2
* printf("%d.%d.%d.%d\n", (ipaddr >> 24), ((ipaddr << 8) >> 24),
* ((ipaddr << 16) >> 24), ((ipaddr << 24) >> 24));
*/

break;
case 6 :
printf("%lu\n",counter);
break;

case 7 :
printf("%lu\n",gauge);
break;

case 8 :
printf("%lu\n",ticks);
break;

case 9 :
printf("%s\n",dstring);
break;

case 10 :
printf("%s\n",command);
break;

} /* end switch(index) */
}

#ifdef _NO_PROTO /* for classic K&R C */
static void check_arguments(argc, argv) /* check arguments */
int argc;
char *argv[];
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void check_arguments(const int argc, char *argv[])
#endif /* _NO_PROTO */
{

char *hname, *cname;
int i, j;

dpi_userid = hname = cname = NULL;
for (i=1; argc > i; i++) {

if (strcmp(argv[i],"-d") == 0) {
i++;
if (argc > i) {

debug_lvl = atoi(argv[i]);
if (debug_lvl >= 5) {

DPIdebug(1);
}

}
} else if (strcmp(argv[i],"-trap") == 0) {

if (argc > i+3) {
trap_gtype = atoi(argv[i+1]);
trap_stype = atoi(argv[i+2]);
trap_data = argv[i+3];
i = i + 3;
do_trap = ONE_TRAP;

} else usage(argv[0], 1);
} else if (strcmp(argv[i],"-trape") == 0) {

if (argc > i+4) {
trape_gtype = strtoul(argv[i+1],(char**)0,10);
trape_stype = strtoul(argv[i+2],(char**)0,10);
trape_eprise = argv[i+3];
for (i = i + 4, j = 0;

(argc > i) && (j < MAX_TRAPE_DATA);
i++, j++) {
trape_data[j] = argv[i];

}
trape_datacnt = j;
do_trap = ONE_TRAPE;
break; /* -trape must be last option */

} else usage(argv[0], 1);
} else if (strcmp(argv[i],"-all_traps") == 0) {

do_trap = ALL_TRAPS;
} else if (strcmp(argv[i],"-std_traps") == 0) {

do_trap = STD_TRAPS;
} else if (strcmp(argv[i],"-ent_traps") == 0) {

do_trap = ENT_TRAPS;
} else if (strcmp(argv[i],"-ent_trapse") == 0) {

do_trap = ENT_TRAPSE;
#if defined(VM) || defined(MVS)

} else if (strcmp(argv[i],"-inet") == 0) {
use_iucv = 0;

} else if (strcmp(argv[i],"-iucv") == 0) {

30 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

use_iucv = TRUE;
} else if (strcmp(argv[i],"-u") == 0) {

use_iucv = TRUE; /* -u implies -iucv */
i++;
if (argc > i) {

dpi_userid = argv[i];
}

#endif
} else if (strcmp(argv[i],"?") == 0) {

usage(argv[0], 0);
} else {
if (hname == NULL) hname = argv[i];
else if (cname == NULL) cname = argv[i];
else usage(argv[0], 1);

}
}
if (hname == NULL) hname = LOOPBACK; /* use default */
if (cname == NULL) cname = PUBLIC_COMMUNITY_NAME; /* use default */

#if defined(VM) || defined(MVS)
if (dpi_userid == NULL) dpi_userid = SNMPAGENTUSERID;
if (debug_lvl > 2)

printf("hname=%s, cname=%s, userid=%s\n",hname,cname,dpi_userid);
#else

if (debug_lvl > 2)
printf("hname=%s, cname=%s\n",hname,cname);

#endif
if (use_iucv != TRUE) {

DO_ETOA(cname); /* for VM or MVS */
dpi_port = query_DPI_port(hname,cname);
DO_ATOE(cname); /* for VM or MVS */
if (dpi_port == -1) {

printf("No response from agent at %s(%s)\n",hname,cname);
exit(1);

}
} else dpi_port == -1;
dpi_hostname = hname;

}

#ifdef _NO_PROTO /* for classic K&R C */
static void usage(pname, exit_rc)
char *pname;
int exit_rc;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void usage(const char *pname, const int exit_rc)
#endif /* _NO_PROTO */
{

printf("Usage: %s [-d debug_lvl] [-trap g_type s_type data]", pname);
printf(" [-all_traps]\n");
printf("%*s[-trape g_type s_type enterprise data1 data2 .. datan]\n",

strlen(pname)+8,"");
printf("%*s[-std_traps] [-ent_traps] [-ent_trapse]\n",

strlen(pname)+8,"");
#if defined(VM) || defined(MVS)

printf("%*s[-iucv] [-u agent_userid]\n",strlen(pname)+8, "");
printf("%*s", strlen(pname)+8, "");
printf("[-inet] [agent_hostname [community_name]]\n");
printf("default: -d 0 -iucv -u %s\n", SNMPAGENTUSERID);
printf(" -inet %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#else
printf("%*s[agent_hostname [community_name]]\n",strlen(pname)+8,"");
printf("default: -d 0 %s %s\n", LOOPBACK, PUBLIC_COMMUNITY_NAME);

#endif
exit(exit_rc);

}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_variables() /* initialize our variables */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_variables(void) /* initialize our variables */
#endif /* _NO_PROTO */
{

char ch, *cp;

ostring = (char *)malloc(strlen(OSTRING) + 4 + 1);
bcopy(OSTRING,ostring,strlen(OSTRING));
ostring_len = strlen(OSTRING);
for (ch=1;ch<5;ch++) /* add hex data 0x01020304 */

ostring[ostring_len++] = ch;
ostring[ostring_len] = ’\0’; /* so we can use it as a string */
objectID = (char *)malloc(strlen(OID));

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 31

objectID_len = strlen(OID);
bcopy(OID,objectID,strlen(OID));
if (objectID[objectID_len - 1] == ’.’) /* if trailing dot, */

objectID[objectID_len - 1] = ’\0’; /* remove it */
else objectID_len++; /* length includes null */
dstring = (char *)malloc(strlen(DSTRING)+1);
bcopy(DSTRING,dstring,strlen(DSTRING)+1);
command = (char *)malloc(strlen(COMMAND)+1);
bcopy(COMMAND,command,strlen(COMMAND)+1);
ipaddr = dpi_ipaddress;

}

#ifdef _NO_PROTO /* for classic K&R C */
static void init_connection() /* connect to the DPI agent */
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void init_connection(void) /* connect to the DPI agent */
#endif /* _NO_PROTO */
{

int rc;
int sasize; /* size of socket structure */
struct sockaddr_in sin; /* socket address AF_INET */
struct sockaddr *sa; /* socket address general */

#if defined(VM) || defined (MVS)
struct sockaddr_iucv siu; /* socket address AF_IUCV */

if (use_iucv == TRUE) {
printf("Connecting to %s userid %s (TCP, AF_IUCV)\n",

dpi_hostname,dpi_userid); /* @P1C*/
bzero(&siu,sizeof(siu));
siu.siucv_family = AF_IUCV;
siu.siucv_addr = 0; /* @P1C*/
siu.siucv_port = 0; /* @P1C*/
memset(siu.siucv_nodeid, ’ ’, sizeof(siu.siucv_nodeid));
memset(siu.siucv_userid, ’ ’, sizeof(siu.siucv_userid));
memset(siu.siucv_name, ’ ’, sizeof(siu.siucv_name));
bcopy(dpi_userid, siu.siucv_userid, min(8,strlen(dpi_userid)));
bcopy(SNMPIUCVNAME, siu.siucv_name, min(8,strlen(SNMPIUCVNAME)));
dpi_fd = socket(AF_IUCV, SOCK_STREAM, 0);
sa = (struct sockaddr *) &siu;
sasize = sizeof(struct sockaddr_iucv);

} else {
#endif

printf("Connecting to %s DPI_port %d (TCP, AF_INET)\n",
dpi_hostname,dpi_port);

bzero(&sin,sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(dpi_port);
sin.sin_addr.s_addr = dpi_ipaddress;
dpi_fd = socket(AF_INET, SOCK_STREAM, 0);
sa = (struct sockaddr *) &sin;
sasize = sizeof(struct sockaddr_in);

#if defined(VM) || defined (MVS)
}

#endif
if (dpi_fd < 0) { /* exit on error */

DO_ERROR("init_connection: socket");
exit(1);

}
rc = connect(dpi_fd, sa, sasize); /* connect to agent */
if (rc != 0) { /* exit on error */

DO_ERROR("init_connection: connect");
close(dpi_fd);
exit(1);

}
}

#ifdef _NO_PROTO /* for classic K&R C */
static void dump_bfr(buf, len) /* hex dump buffer */
char *buf;
int len;
#else /* _NO_PROTO */ /* for ANSI-C compiler */
static void dump_bfr(const char *buf, const int len)
#endif /* _NO_PROTO */
{

register int i;

if (len == 0) printf(" empty buffer\n"); /* buffer is empty */
for (i=0;i<len;i++) { /* loop through buffer */

if ((i&15) == 0) printf(" "); /* indent new line */

32 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

printf("%2.2x",(unsigned char)buf[i]);/* hex print one byte */
if ((i&15) == 15) printf("\n"); /* nl every 16 bytes */
else if ((i&3) == 3) printf(" "); /* space every 4 bytes */

}
if (i&15) printf("\n"); /* always end with nl */

}

Figure 1. SNMP Dist Prog Interface subagent sample

Chapter 2. SNMP agent Distributed Protocol Interface version 1.1 33

34 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 3. SNMP agent Distributed Protocol Interface version
2.0

Using the simple network management protocol (SNMP) agent Distributed
Protocol Interface (DPI), you can dynamically add, delete, or replace management
variables in the local management information base (MIB). The SNMP DPI protocol
is also supported with the SNMP agent on OS/2, VM, and AIX®. This makes it
easier to port subagents between those platforms and z/OS, and to connect agents
and subagents across these platforms.

The SNMP agent DPI Application Programming Interface (API) is for the DPI
subagent programmer.

The following RFCs are related to SNMP and will be helpful when you are
programming an SNMP API (see Appendix J, “Related protocol specifications,” on
page 1075 for information about accessing RFCs):
v RFC 1592 is the SNMP DPI 2.0 RFC.
v RFC 1901 through RFC 1908 are the SNMP Version 2 RFCs.

The primary goal of RFC 1592 is to specify the SNMP DPI. This is a protocol by
which subagents can exchange SNMP related information with an agent.

To provide an environment that is generally platform independent, RFC 1592
strongly suggests that you also define a DPI API. There is a sample DPI API
available in the RFC. The document describes the same sample API as the IBM
supported DPI Version 2.0 API. See “DPI subagent example” on page 90.

SNMP agents and subagents
SNMP agents are primarily responsible for responding to SNMP operation
requests. An operation request can originate from any entity that supports the
management portion of the SNMP protocol. An example of this is z/OS UNIX
SNMP command, osnmp, included with this version of TCP/IP. Examples of
SNMP operations are GET, GETNEXT, and SET. An operation is performed on an
MIB object.

A subagent extends the set of MIB objects provided by the SNMP agent. With the
subagent, you define MIB objects useful in your own environment and register
them with the SNMP agent.

When the agent receives a request for an MIB object, it passes the request to the
subagent. The subagent then returns a response to the agent. The agent creates an
SNMP response packet and sends the response to the remote network management
station that initiated the request. The existence of the subagent is transparent to the
network management station.

To allow the subagents to perform these functions, the agent provides for subagent
connections through:
v A TCP connection
v An AF_UNIX streams connection

© Copyright IBM Corp. 2000, 2015 35

For the TCP connections, the agent binds to an arbitrarily chosen TCP port and
listens for connection requests. A well-known port is not used. Every invocation of
the SNMP agent could potentially use a different TCP port.

For UNIX streams connections, the agent is within the same machine. AF_UNIX
connections should be used if possible, because they do not pass into TCP/IP, but
flow only within UNIX System Services and hence require fewer system resources.

A DPI SNMP Subagent does not have to directly retrieve a dpiMIB object or
objects, but instead uses either DPIconnect_to_agent_TCP() or
DPIconnect_to_agent_UNIXstream(). DPIconnect_to_agent_TCP automatically
retrieves the object dpiPortForTCP from the dpiMIB through an SNMP agent.
DPIconnect_to_agent_TCP then establishes an AF_INET6 or AF_INET TCP socket
connection with the SNMP agent.

The query_DPI_port() function issued in Version 1.1 is implicitly run by the
DPIconnect_to_agent_TCP() function. The DPI subagent programmer would
normally use the DPIconnect_to_agent_TCP() function to connect to the agent, and
hence does not need to explicitly retrieve the value of the DPI TCP port.

Conversely, DPIconnect_to_agent_UNIXstream retrieves the value of the object
dpiPathNameForUnixStream from the dpiMIB to establish an AF_UNIX connection
with the SNMP agent.

After a successful connection to the SNMP agent the subagent registers the MIB
trees for the set of variables it supports with the SNMP agent. When all variable
classes are registered, the subagent waits for requests from the SNMP agent.

If connections to the SNMP agent are restricted by the security product, then the
security product user ID associated with the subagent must be permitted to the
agent's security product resource name for the connection to be accepted. See the
Simple Network Management Protocol (SNMP) information in z/OS
Communications Server: IP Configuration Guide for more information about
security product access between subagents and the z/OS Communications Server
SNMP agent.

DPI agent requests
The SNMP agent can initiate several DPI requests:
v CLOSE
v COMMIT
v GET
v GETBULK
v GETNEXT
v SET
v UNDO
v UNREGISTER

The GET, GETNEXT, and SET requests correspond to the SNMP requests that a
network management station can make. The subagent responds to a request with a
response packet. The response packet can be created using the mkDPIresponse()
library routine, which is part of the DPI API library.

36 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The GETBULK requests are translated into multiple GETNEXT requests by the
agent. According to RFC 1592, a subagent can request that the GETBULK be
passed to it, but the z/OS version of DPI does not yet support that request. (See
Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs.)

The COMMIT, UNDO, UNREGISTER, and CLOSE are specific SNMP DPI requests.

The subagent normally responds to a request with a RESPONSE packet. For the
CLOSE and UNREGISTER request, the subagent does not need to send a
RESPONSE.

See the following related information.
v “DPI subagent GETNEXT processing” on page 47
v “DPI subagent UNREGISTER request” on page 49
v “DPI subagent TRAP request” on page 49
v “DPI subagent CLOSE request” on page 50
v “Overview of subagent processing” on page 90
v “SNMP DPI: Connecting to the agent” on page 92
v “SNMP DPI: Registering a subtree with the agent” on page 94
v “SNMP DPI: Processing requests from the agent” on page 97
v “SNMP DPI: Processing a GET request” on page 100
v “SNMP DPI: Processing a SET/COMMIT/UNDO request” on page 107

SNMP DPI version 2.0 library
z/OS Communications Server provides the following DPI library routines:

Table 1. Components of DPI version 2.0

Name Contents Location

snmp_dpi.h header file /usr/lpp/tcpip/snmp/include

snmp_lDPI.o

snmp_mDPI.o

snmp_qDPI.o

v z/OS UNIX System Services
object files

v DPI Version 2.0 library
functions

/usr/lpp/tcpip/snmp/build/libdpi20

dpi_mvs_sample.c SNMP DPI Version 2.0 C sample
source

/usr/lpp/tcpip/samples

dpiSimpl.mi2 SNMP DPI Version 2.0 sample
MIB definitions

/usr/lpp/tcpip/samples

SNMP DPI Version 2.0 API
DPI Version 2.0 is intended for use with UNIX System Services sockets and is not
for use with other socket libraries. A DPI subagent must include the snmp_dpi.h
header in any C part that intends to use DPI. The path for snmp_dpi.h is
/usr/lpp/tcpip/snmp/include. By default, when you include the snmp_dpi.h
include file, you will be exposed to the DPI Version 2.0 API. For a list of the
functions provided, read more about the “The snmp_dpi.h include file” on page
89. This is the recommended use of the SNMP DPI API.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 37

When you prelink your object code into an executable file, you must use the DPI
Version 2.0 functions as provided in the snmp_lDPI.o, snmp_mDPI.o, and
snmp_qDPI.o object files in /usr/lpp/tcpip/snmp/build/libdpi20.

Notes:

1. The object files are located only in a z/OS UNIX file system. Files in a z/OS
UNIX file system can be accessed from JCL using the path parameter on an
explicit DD definition.

2. Together the snmp_dpi.h include file and the dpi_mvs_sample.c file comprise
an example of the DPI Version 2.0 API.

3. Debugging information (resulting from the DPIdebug function) is routed to
SYSLOGD. Ensure the SYSLOG daemon is active.

4. Compile your subagent code using the DEF(MVS) compiler option.
5. Waiting for a DPI packet depends on the platform and how the chosen

transport protocol is implemented. In addition, some subagents want to control
the sending of and waiting for packets themselves, because they might need to
be driven by other interrupts as well.

6. There is a set of DPI transport-related functions that are implemented on all
platforms to hide the platform-dependent issues for those subagents that do not
need detailed control for the transport themselves.

For more information about SNMP, see the Simple Network Management Protocol
(SNMP) information in z/OS Communications Server: IP Configuration Guide or
the Managing TCP/IP network resources with SNMP information in z/OS
Communications Server: IP System Administrator's Commands.

Compiling and linking DPI Version 2.0
DPI Version 2.0 is installed in a z/OS UNIX file system only. You can build a
subagent for either the UNIX System Services shell (using a z/OS UNIX file
system and c89) or MVS (using JCL).

See the documentation provided by your C compiler for exact details of building a
C application. The information provided in the following topics is intended as
general guidance.

Compiling and linking DPI Version 2.0: UNIX System Services
environment

Use c89 to compile a DPI subagent under the UNIX System Services shell. Every C
file using DPI functions must include the DPI header file (snmp_dpi.h) from
/usr/lpp/tcpip/snmp/include. Also include the three DPI library object files
(snmp_qDPI.o, snmp_lDPI.o, and snmp_mDPI.o) from /usr/lpp/tcpip/snmp/build/
libdpi20.

The following example shoes how c89 is called to compile and build
dpi_mvs_sample.c:
c89 -o dpi_mvs_sample -I /usr/lpp/tcpip/snmp/include \
/usr/lpp/tcpip/samples/dpi_mvs_sample.c \
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o \
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o \
/usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o

Use the -I option to add the z/OS UNIX file system directory where snmp_dpi.h is
to the compiler include search path.

38 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Compiling and linking DPI Version 2.0: MVS environment
C programs that use DPI must:
v Compile with the longname compiler option
v Include snmp_dpi.h from /usr/lpp/tcpip/snmp/include

Add #include to the source code. You must inform the compiler that
/usr/lpp/tcpip/snmp/include should be searched for include files. Use either a
SYSLIB DD with a PATH parameter pointing to the z/OS UNIX file system
directory, or use the SEARCH compiler parameter.

Prelink DPI subagent to resolve longnames. In the prelink JCL, define three DDs
pointing to each DPI object file, and then include each, such as:
DPI1 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_lDPI.o’
DPI2 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_mDPI.o’
DPI3 DD PATH=’/usr/lpp/tcpip/snmp/build/libdpi20/snmp_qDPI.o’

INCLUDE DPI1
INCLUDE DPI2
INCLUDE DPI3

Then, link edit the prelink output as usual.

DPI Version 1.x base code considerations
Use the DPI Version 1.1 API as described in Chapter 2, “SNMP agent Distributed
Protocol Interface version 1.1,” on page 3.

The DPI Version 2.0 API provided with z/OS is for UNIX System Services sockets
use only. Earlier versions of DPI were supported on C sockets.

See “Migrating your SNMP DPI subagent to Version 2.0” for more detail about the
changes that you must make to your DPI Version 1.x source.

If you want to convert to DPI Version 2.0, which prepares you also for SNMP
Version 2, you must make changes to your code.

You can keep your existing DPI Version 1.1 subagent and communicate with a
DPI-capable agent that supports DPI Version 1.1 in addition to DPI Version 2.0. For
example, the z/OS SNMP agent provides support for multiple versions of DPI,
including Version 1.0, Version 1.1, and Version 2.0.

Migrating your SNMP DPI subagent to Version 2.0
The information presented in this topic are guidelines and are not exact procedures.
Your specific implementation will vary from the guidelines presented.

When you want to change your DPI Version 1.x-based subagent code to the DPI
Version 2.0 level, use these guidelines for the required actions and the
recommended actions.

Required actions for migrating your SNMP DPI subagent to
Version 2.0

The following actions are required to migrate SNMP DPI subagent to Version 2.0:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 39

v Add an mkDPIopen() call and send the created packet to the agent. This opens
your DPI connection with the agent. Wait for the response and ensure that the
open is accepted. You need to pass a subagent ID (object identifier), which must
be a unique ASN.1 OID.
See “The mkDPIopen() function” on page 57 for more information.

v Change your mkDPIregister() calls and pass the parameters according to the
new function prototype. You must also expect a RESPONSE to the REGISTER
request.
See “The mkDPIregister() function” on page 59 for more information.

v Change mkDPIset() and mkDPIlist() calls to the new mkDPIset() call. Basically
all mkDPIset() calls are now of the DPI Version 1.1 mkDPIlist() form.
See “The mkDPIset() function” on page 62 for more information.

v Change mkDPItrap() and mkDPItrape() calls to the new mkDPItrap() call.
Basically all mkDPItrap() calls are now of the DPI Version 1.1 mkDPItrape()
form.
See “The mkDPItrap() function” on page 64 for more information.

v Add code to recognize DPI RESPONSE packets, which should be expected as a
result of OPEN, REGISTER, and UNREGISTER requests.

v Add code to expect and handle the DPI UNREGISTER packet from the agent. It
might send such packets if an error occurs or if a higher priority subagent
registers the same subtree as you have registered.

v Add code to unregister your subtrees and close the DPI connection when you
want to terminate the subagent.
See “The mkDPIunregister() function” on page 65 and “The mkDPIclose()
function” on page 56 for more information.

v Change your code to use the new SNMP Version 2 error codes as defined in the
snmp_dpi.h include file.

v When migrating DPI Version 1.1 subagents to DPI Version 2.0, remove the
include for manifest.h.

v Change your code that handles a GET request. It should return a varBind with
SNMP_TYPE_noSuchObject value or SNMP_TYPE_noSuchInstance value instead
of an error SNMP_ERROR_noSuchName if the object or the instance do not
exist. This is not considered an error any more. Therefore, you should return an
SNMP_ERROR_noError with an error index of 0.

Note: A varBind (variable binding) is the group ID, instance ID, type, length,
and value that completely describes a variable in the MIB.

v Change your code that handles a GETNEXT request. It should return a varBind
with SNMP_TYPE_endOfMibView value instead of an error
SNMP_ERROR_noSuchName if you reach the end of your MIB or subtree. This
is not considered an error any more. Therefore, you should return an
SNMP_ERROR_noError with an error index of 0.

v Change your code that handles SET requests to follow the two-phase
SET/COMMIT scheme as described in “DPI subagent SET processing” on page
46.
See the sample handling of SET/COMMIT/UNDO in “SNMP DPI: Processing a
SET/COMMIT/UNDO request” on page 107.

Recommended actions for migrating your SNMP DPI subagent
to Version 2.0

The following actions are recommended:

40 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Do not refer to the object ID pointer (object_p) in the snmp_dpi_xxxx_packet
structures any more. Instead start using the group_p and instance_p pointers.
The object_p pointer might be removed in a future version of the DPI API.

v Check “Transport-related DPI API functions” on page 67 to see if you want to
use those functions instead of using your own code for those functions.

v Consider using more than one varBind per DPI packet. You can specify this on
the REGISTER request. You must then be prepared to handle multiple varBinds
per DPI packet. The varBinds are chained through the various
snmp_dpi_xxxx_packet structures.
See “The mkDPIopen() function” on page 57 for more information.

v Consider specifying a timeout when you issue a DPI OPEN or DPI REGISTER.
See “The mkDPIopen() function” on page 57 and “The mkDPIregister() function”
on page 59 for more information.

v Ensure SYSLOGD is active. The result of using DPIdebug is routed to
SYSLOGD. For information on how to configure SYSLOGD, see the Syslog
daemon information in z/OS Communications Server: IP Configuration
Reference.

DPI Version 2.0 recognizes mkDPIlist; however, Version 2.0 subagents should use
mkDPIset instead.

snmp_dpi_xxxx_packet structures name changes
A number of field names in the snmp_dpi_xxxx_packet structures have changed so
that the names are now more consistent throughout the DPI code.

The new names indicate if the value is a pointer (_p) or a union (_u). The names
that have changed and that affect the subagent code are listed in the table below.

Old name New name Data structure (XXXX)

group_id group_p getnext
object_id object_p get, getnext, set
value value_p set
type value_type set
next next_p set
enterprise enterprise_p trap
packet_body data_u dpi_hdr
dpi_get get_p hdr (packet_body)
dpi_getnext next_p hdr (packet_body)
dpi_set set_p hdr (packet_body)
dpi_trap trap_p hdr (packet_body)

There is no clean approach to make this change transparent. You probably will
need to change the names in your code. You can try a simple set of defines like:
#define packet_body data_u
#define dpi_get get_p
#define dpi_set set_p
#define dpi_next next_p
#define dpi_response resp_p
#define dpi_trap trap_p
#define group_id group_p
#define object_id object_p

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 41

#define value value_p
#define type value_type
#define next next_p
#define enterprise enterprise_p

If the names conflict with other definitions, change your code.

SNMP DPI environment variables
Table 2 provides a list of environment variables for the SNMP DPI.

Table 2. Environment variables for the SNMP DPI

Environment variable Description

SNMP_PORT Specifies the port to which a DPI subagent
will direct a connection query. This variable
defaults to 161, which is the default port on
which the SNMP agent listens for queries.

SNMP DPI subagent programming concepts
When implementing a subagent, use the DPI Version 2 approach and keep the
following information in mind:
v Use the SNMP Version 2 error codes only, even though there are definitions for

the SNMP Version 1 error codes.
v Implement the SET, COMMIT, UNDO processing properly.
v Use the SNMP Version 2 approach for GET requests, and pass back

noSuchInstance value or noSuchObject value if appropriate. Continue to process
all remaining varBinds.
More than one varBind can be specified in the SNMP PDU for the requested
operation. For example, using the SNMP network manager, a user can request
the retrieval of multiple objects in the same request (GET or GETNEXT). The
varBind portion of the PDU sent would include multiple object identifiers
(OIDs). The subagent limitations are passed to the agent through the
max_varBinds parameter on the mkDPIopen call. When the subagent receives a
request from the agent, it needs to handle multiple OIDs per request if it
specified a max_varBinds value other than 1.

v Use the SNMP Version 2 approach for GETNEXT, and pass back endOfMibView
value if appropriate. Continue to process all remaining varBinds.

v Specify the timeout period in the OPEN and REGISTER packets, when you are
processing a request from the agent (GET, GETNEXT, SET, COMMIT, or UNDO).
If you fail to respond within the timeout period, the agent will probably close
your DPI connection and discard your RESPONSE packet if it comes in later. If
you can detect that the response is not going to be received in the time period,
then you might decide to stop the request and return an SNMP_ERROR_genErr
in the RESPONSE.

v Issue an SNMP DPI ARE_YOU_THERE request periodically to ensure that the
agent is still connected and still knows about you.

v OS/2 runs on an ASCII based machine. However, when you are running a
subagent on an EBCDIC based machine and you use the (default) native
character set, all OID strings and all variable values of type
OBJECT_IDENTIFIER or DisplayString objects that are known by the agent (in

42 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

its compiled MIB) will be passed to you in EBCDIC format. OID strings include
the group ID, instance ID, enterprise ID, and subagent ID. You should structure
your response with the EBCDIC format.

v If you receive an error RESPONSE on the OPEN packet, you will also receive a
DPI CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the
agent closes the connection.

v The DisplayString is only a textual convention. In the SNMP PDU (SNMP
packet), the type is an OCTET_STRING.
When the type is OCTET_STRING, it is not clear if this is a DisplayString or any
arbitrary data. This means that the agent can only know about an object being a
DisplayString if the object is included in some sort of a compiled MIB. If it is,
the agent will use SNMP_TYPE_DisplayString in the type field of the varBind in
a DPI SET packet. When you send a DisplayString in a RESPONSE packet, the
agent will handle it as such.

See the following related information.
“DPI subagent example” on page 90

Specifying the SNMP DPI API
The following topics describe each type of DPI processing in this order:
v Connect processing
v OPEN request
v REGISTER request
v GET, SET, GETNEXT, GETBULK, TRAP, and ARE_YOU_THERE processing
v UNREGISTER request
v CLOSE request

DPI subagent connect processing
There are various connect functions that allow connections through either TCP or
UNIXstream. Determine which is appropriate for you by evaluating whether you
are connecting to the same machine or a different machine. If the agent and the
subagent are using the same machine, use the UNIXstream connection for better
performance. If the agent and the subagent are using different machines, you must
use the TCP connection. There are two connect processing parameters:
v Hostname—name or the IP address of the agent
v Community name—password that allows the DPI connect function to obtain the

port (for TCP) or path name (for UNIX) that allows the socket connect to occur.

See the following related information.
“SNMP DPI: Connecting to the agent” on page 92

DPI subagent OPEN request
Next, the DPI subagent must open a connection with the agent. To do so, it must
send a DPI OPEN packet in which these parameters must be specified:
v The maximum timeout value in seconds. The agent is requested to wait this long

for a response to any request for an object that is being handled by this
subagent.
The agent can have an absolute maximum timeout value which is used if the
subagent asks for too large a timeout value. The value 0 can be used to indicate
that the agent default timeout value should be used. A subagent is advised to

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 43

use a reasonably short interval of a few seconds. If a specific subtree needs more
time, a specific REGISTER can be done for that subtree with a longer timeout
value.

v The maximum number of varBinds that the subagent is prepared to handle per
DPI packet. Specifying 1 would result in DPI Version 1 behavior of one varBind
per DPI packet that the agent sends to the subagent. The value 0 means that the
agent will try to combine up to as many varBinds as are present in the SNMP
packet that belongs to the same subtree.

v The character set you want to use. The default value 0 is the native character set
of the machine platform where the agent runs. Because the subagent and agent
normally run on the same system or platform, use the native EBCDIC character
set on MVS.
If your platform is EBCDIC-based, using the native EBCDIC character set makes
it easy to recognize the string representations of the fields, such as the group ID
and instance ID. At the same time, the agent translates the value from ASCII
NVT to EBCDIC and from EBCDIC to ASCII NVT for objects that it knows from
a compiled MIB to have a textual convention of DisplayString. This fact cannot
be determined from the SNMP PDU encoding because, in the PDU, the object is
known only to be an OCTET_STRING.
If your subagent runs on an ASCII-based platform and the agent runs on an
EBCDIC-based platform (or the other way around), you can specify that you
want to use the ASCII character set. The agent and subagent programmers know
how to handle the string-based data in this situation.

v The subagent ID. This is an ASN.1 object identifier that uniquely identifies the
subagent. This OID is represented as a null-terminated string using the selected
character set.
For example: 1.3.5.1.2.3.4.5

v The subagent description. This is a DisplayString describing the subagent. This
is a character string using the selected character set.
For an example see “DPI subagent example” on page 90.

After a subagent has sent a DPI OPEN packet to an agent, it should expect a DPI
RESPONSE packet that informs the subagent about the result of the request. The
packet ID of the RESPONSE packet should be the same as that of the OPEN
request to which the RESPONSE packet is the response. See “DPI RESPONSE error
codes” on page 85 for a list of valid codes that can be expected.

If you receive an error RESPONSE on the OPEN packet, you also receive a DPI
CLOSE packet with an SNMP_CLOSE_openError code. In this situation, the agent
closes the connection.

If the OPEN is accepted, the next step is to REGISTER one or more MIB subtrees.

See the following related information.
“SNMP DPI: Connecting to the agent” on page 92

DPI subagent REGISTER request
Before a subagent receives any requests for MIB objects, it must first register with
the SNMP agent the variables or subtree that it supports. The subagent must
specify the following parameters in the REGISTER request:
v The subtree to be registered.

Object level registration: This is a null-terminated string in the selected
character set that specifies the subtree to be registered. Object level registration

44 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

requires a trailing period following the object number, indicating a register
request to support all instances of an object (for example, ifDescr). Object level
registration requires that the subtree must have a trailing period. For example:
1.3.6.1.2.1.2.2.1.2.
Instance level registration: Instance level registration does not require a trailing
period for the subtree. Instance level registration can be used to allow different
subagents to support separate instances of a particular MIB object. Registration
by subagents at the instance level rather than the object level is accomplished by
adding the instance number after the object number when building the
registration packet using the mkDPIregister call. For example, passing the object
number 1.3.6.1.2.1.2.2.1.2. (note the ending period) would support all instances
of ifDescr. However, a subagent can pass an object or instance number like
1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8 after the period) to support only
ifDescr.8 (instance 8).

v The requested priority for the registration. The values are:

-1 Request for the best available priority

0 Request for the next best available priority than the highest (best)
priority currently registered for this subtree

NNN Any other positive value requests a specific priority, if available, or the
next best priority that is available.

v The maximum timeout value in seconds. The agent is requested to wait this long
for a response to any request for an object in this subtree. The agent can have an
absolute maximum timeout value that is used if the subagents ask for too large
a timeout value. The value 0 can be used to indicate that the DPI OPEN value
should be used for timeout.

After a subagent has sent a DPI REGISTER packet to the agent, it should expect a
DPI RESPONSE packet that informs the subagent about the result of the request.
The packet ID of the RESPONSE packet should be the same as that of the
REGISTER packet to which the RESPONSE packet is the response.

If the response is successful, the error_index field in the RESPONSE packet
contains the priority that the agent assigned to the subtree registration. See “DPI
RESPONSE error codes” on page 85 for a list of valid codes that can be expected.

Error Code: higherPriorityRegistered: The response to a REGISTER request might
return the error code higherPriorityRegistered. This error might be caused by the
result of one of the following situations:
v Another subagent already registered the same subtree at a better priority than

what you are requesting.
v Another subagent already registered a subtree at a higher level (at any priority).

For instance, if a registration already exists for subtree 1.2.3.4.5.6 and you try to
register for subtree 1.2.3.4.5.6.<anything> then you will receive the
higherPriorityRegistered error code.

If you receive this error code, your subtree will be registered, but you will not see
any requests for the subtree. These requests are passed to the subagent that
registered with a better priority. If you remain connected and the other subagent
goes away, you will get control over the subtree at that point in time.

See the following related information.
“SNMP DPI: Registering a subtree with the agent” on page 94

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 45

DPI subagent GET processing
The DPI GET packet holds one or more varBinds that the subagent has taken
responsibility for.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
sets the error_index to the position of the varBind at which the error occurs. The
first varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to be provided in the packet because, by
definition, the varBind information is the same as in the request to which this is a
response and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. The
packet must also include the name, type, length, and value of each varBind
requested.

When you get a request for a nonexisting object or a nonexisting instance of an
object, you must return a NULL value with a type of SNMP_TYPE_noSuchObject
or SNMP_TYPE_noSuchInstance respectively. These two values are not considered
errors, so the error_code and error_index values should be 0.

The DPI RESPONSE packet is then sent back to the agent.

See the following related information.
“SNMP DPI: Processing a GET request” on page 100
“The mkDPIresponse() function” on page 60

DPI subagent SET processing
A DPI SET packet contains the name, type, length, and value of each requested
varBind, plus the value type, value length, and value to be set.

If the subagent encounters an error while processing the request, it creates a DPI
RESPONSE packet with an appropriate error indication in the error_code field and
an error_index listing the position of the varBind at which the error occurs. The
first varBind is index 1, the second varBind is index 2, and so on. No name, type,
length, or value information needs to provided in the packet because, by
definition, the varBind information is the same as in the request to which this is a
response and the agent still has that information.

If there are no errors, the subagent creates a DPI RESPONSE packet in which the
error_code is set to SNMP_ERROR_noError (0) and error_index is set to 0. No
name, type, length, or value information is needed because the RESPONSE to a
SET should contain exactly the same varBind data as the data present in the
request. The agent can use the values it already has.

This suggests that the agent must keep state information, and that is the case. It
needs to do that anyway to be able to later pass the data with a DPI COMMIT or
DPI UNDO packet. Because there are no errors, the subagent must have allocated
the required resources and prepared itself for the SET. It does not yet carry out the
SET, which will be done at COMMIT time.

The subagent sends a DPI RESPONSE packet, indicating success or failure for the
preparation phase, back to the agent. The agent will issue a SET request for all

46 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

other varBinds in the same original SNMP request it received. This can be to the
same subagent or to one or more different subagents.

After all SET requests have returned a "no error" condition, the agent starts
sending DPI COMMIT packets to the subagents. If any SET request returns an
error, the agent sends DPI UNDO packets to those subagents that indicated
successful processing of the SET preparation phase.

When the subagent receives the DPI COMMIT packet, all the varBind information
will again be available in the packet. The subagent can now carry out the SET
request.

If the subagent encounters an error while processing the COMMIT request, it
creates a DPI RESPONSE packet with value SNMP_ERROR_commitFailed in the
error_code field and an error_index that lists at which varBind the error occurs.
The first varBind is index 1, the second varBind is 2, and so on. No name, type,
length, or value information is needed. The fact that a commitFailed error exists
does not mean that this error should be returned easily. A subagent should do all
that is possible to make a COMMIT succeed.

If there are no errors and the SET and COMMIT have been carried out with
success, the subagent creates a DPI RESPONSE packet in which the error_code is
set to SNMP_ERROR_noError (0) and error_index is set to 0. No name, type,
length, or value information is needed.

So far discussion has focused on successful SET and COMMIT sequences.
However, after a successful SET, the subagent might receive a DPI UNDO packet.
The subagent must now undo any preparations it made during the SET processing,
such as free allocated memory.

Even after a COMMIT, a subagent might still receive a DPI UNDO packet. This
occurs if some other subagent cannot complete a COMMIT request. Because of the
SNMP requirement that all varBinds in a single SNMP SET request must be
changed as if simultaneous, all committed changes must be undone if any of the
COMMIT requests fail. In this case the subagent must try and undo the committed
SET operation.

If the subagent encounters an error while processing the UNDO request, it creates
a DPI RESPONSE packet with value SNMP_ERROR_undoFailed in the error_code
field and an error_index that lists at which varBind the error occurs. The first
varBind is index 1, the second varBind is 2, and so on. No name, type, length, or
value information is needed. The fact that an undoFailed error exists does not
mean that this error should be returned easily. A subagent should do all that is
possible to make an UNDO succeed.

If there are no errors and the UNDO has been successful, the subagent creates a
DPI RESPONSE packet in which the error_code is set to SNMP_ERROR_noError
(0) and error_index is set to 0. No name, type, length, or value information is
needed.

“SNMP DPI: Processing a SET/COMMIT/UNDO request” on page 107

DPI subagent GETNEXT processing
The DPI GETNEXT packet contains the objects on which the GETNEXT operation
must be performed. For this operation, the subagent is to return the name, type,

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 47

length, and value of the next variable it supports whose (ASN.1) name
lexicographically follows the one passed in the group ID (subtree) and instance ID.

In this case, the instance ID might not be present (NULL) in the incoming DPI
packet, implying that the NEXT object must be the first instance of the first object
in the subtree that was registered.

It is important to realize that a given subagent might support several
discontinuous sections of the MIB tree. In that situation, it would be incorrect to
jump from one section to another. This problem is correctly handled by examining
the group ID in the DPI packet. This group ID represents the reason why the
subagent is being called. It holds the prefix of the tree that the subagent had
indicated it supported (registered).

If the next variable supported by the subagent does not begin with that prefix, the
subagent must return the same object instance as in the request, for example the
group ID and instance ID with a value of SNMP_TYPE_endOfMibView (implied
NULL value). This endOfMibView is not considered an error, so the error_code
and error_index should be 0. If required, the SNMP agent will call upon the
subagent again, but pass it a different group ID (prefix). This is illustrated in the
discussion below.

Assume there are two subagents. The first subagent registers two distinct sections
of the tree: A and C. In reality, the subagent supports variables A.1 and A.2, but it
correctly registers the minimal prefix required to uniquely identify the variable
class it supports.

The second subagent registers section B, which appears between the two sections
registered by the first agent.

If a management station begins browsing the MIB, starting from A, the following
sequence of queries of the form GET-NEXT (group ID, instance ID) would be
performed:

Subagent 1 gets called:
get-next(A,none) = A.1
get-next(A,1) = A.2
get-next(A,2) = endOfMibView

Subagent 2 is then called:
get-next(B,none) = B.1
get-next(B,1) = endOfMibView

Subagent 1 gets called again:
get-next(C,none) = C.1

DPI subagent GETBULK processing request
You must ask the agent to translate GETBULK requests into multiple GETNEXT
requests. This is basically the default and is specified in the DPI REGISTER packet.
The majority of DPI subagents will run on the same machine as the agent, or on
the same physical network. Therefore, repetitive GETNEXT requests remain local,
and, in general, should not be a problem.

Note: Currently, z/OS SNMP does not support GETBULK protocol between agent
and subagent. These requests are translated into multiple GETNEXT requests.

See the following related information.
“DPI subagent GETNEXT processing” on page 47

48 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DPI subagent TRAP request
A subagent can request that the SNMP agent generates a trap. The subagent must
provide the desired values for the generic and specific parameters of the trap. It
can optionally provide a set of one or more name, type, length, or value
parameters that will be included in the trap packet.

It can optionally specify an enterprise ID (object identifier) for the trap to be
generated. If a NULL value is specified for the enterprise ID, the agent will use the
subagent identifier from the DPI OPEN packet as the enterprise ID to be sent with
the trap.

See the following related information.
“SNMP DPI: Generating a TRAP” on page 111

DPI subagent ARE_YOU_THERE request
A subagent can send an ARE_YOU_THERE packet to the agent. If the connection
is in a healthy state, the agent responds with a RESPONSE packet with
SNMP_ERROR_DPI_noError. If the connection is not in a healthy state, the agent
might respond with a RESPONSE packet with an error indication, but the agent
might not react at all. In this situation, you would time out while waiting for a
response.

DPI subagent UNREGISTER request
A subagent can unregister a previously registered subtree. The subagent must
specify the following parameters in the UNREGISTER request:
v The subtree to be unregistered.

Object level unregistration: This is a null-terminated string in the selected
character set specifying the subtree that is to be unregistered. Object level
unregistration requires a trailing period, which is following the object number,
indicating an unregister request to all supported instances of an object (for
example, ifDescr). Object level unregistration requires that the subtree must have
a trailing period. For example: 1.3.6.1.2.1.2.2.1.2.
Instance level unregistration: Instance level unregistration does not require a
trailing period for the subtree.

Note: Unregistration at the instance level can be done only if the original
registration was done using instance level registration.
Unregistration by subagent at the instance level, rather than the object level, is
accomplished by adding the instance number after the object number when
building the unregistration packet using the mkDPIunregister call. For example,
passing the object number 1.3.6.1.2.1.2.2.1.2. (note the ending period) would
support all instances of ifDescr. However, a subagent can pass an object or
instance number 1.3.6.1.2.1.2.2.1.2.8 (note the addition of the 8 after the period)
to support only ifDescr.8 (instance 8).

v The reason for the unregister. See “DPI UNREGISTER reason codes” on page 86
for a list of valid reason codes.

After a subagent has sent a DPI UNREGISTER packet to the agent, it should
expect a DPI RESPONSE packet that informs the subagent about the result of the
request. The packet ID of the RESPONSE packet should be the same as that of the
REGISTER packet to which the RESPONSE packet is the response. See “DPI
RESPONSE error codes” on page 85 for a list of valid codes that can be expected.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 49

A subagent should also be prepared to handle incoming DPI UNREGISTER
packets from the agent. In this situation, the DPI packet contains a reason code for
the UNREGISTER request. A subagent does not have to send a response to an
UNREGISTER request. The agent assumes that the subagent will handle it
appropriately. The registration is removed regardless of what the subagent returns.

See the following related information.
“SNMP DPI: Processing an UNREGISTER request” on page 110

DPI subagent CLOSE request
When a subagent is finished and wants to end processing, it should first
UNREGISTER its subtrees and then close the connection with the agent. To do so,
the subagent must send a DPI CLOSE packet, which specifies a reason for the
closing. See “DPI CLOSE reason codes” on page 85 for a list of valid codes. You
should not expect a response to the CLOSE request.

A subagent should also be prepared to handle an incoming DPI CLOSE packet
from the agent. In this case, the packet contains a reason code for the CLOSE
request. A subagent does not have to send a response to a CLOSE request. The
agent assumes that the subagent will handle it appropriately. The close takes place
regardless of what the subagent does with it.

See the following related information.
“SNMP DPI: Processing a CLOSE request” on page 110

Multithreading programming considerations
The DPI Version 2.0 program does not support multithreaded subagents.

There are several static buffers in the DPI code. For compatibility reasons, that
cannot be changed. Real multithread support will probably mean several
potentially incompatible changes to the DPI Version 2.0 API.

Use a locking mechanism: Because the DPI API is not reentrant, to use your
subagent in a multithreaded process you should use some locking mechanism of
your own around the static buffers. Otherwise, one thread might be writing into
the static buffer while another is writing into the same buffer at the same time.
There are two static buffers. One buffer is for building the serialized DPI packet
before sending it out and the other buffer is for receiving incoming DPI packets.

Basically, all DPI functions that return a pointer to an unsigned character are the
DPI functions that write into the static buffer to create a serialized DPI packet:
mkDPIAreYouThere()
mkDPIopen()
mkDPIregister()
mkDPIunregister()
mkDPItrap()
mkDPIresponse()
mkDPIpacket()
mkDPIclose ()

After you have called the DPIsend_packet_to_agent() function for the buffer, which
is pointed to by the pointer returned by one of the preceding functions, the buffer
is free to use again.

There is one function that reads the static input buffer:

50 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

pDPIpacket()

The input buffer gets filled by the DPIawait_packet_from_agent() function. Upon
return from the await, you receive a pointer to the static input buffer. The
pDPIpacket() function parses the static input buffer and returns a pointer to
dynamically allocated memory. Therefore, after the pDPIpacket() call the buffer is
available for use again.

The DPI internal handle structures and control blocks used by the underlying code
to send and receive data to and from the agent are also static data areas. Ensure
that you use your own locking mechanism around the functions that add, change,
or delete data in those static structures. The functions that change those internal
static structures are:
DPIconnect_to_agent_TCP() /* everyone has this one */
DPIconnect_to_agent_UNIXstream() /* supported */
DPIdisconnect_from_agent() /* everyone has this one */

Other functions will access the static structures. These other functions must be
assured that the structure is not being changed while they are referencing it during
their execution. The other functions are:
DPIawait_packet_from_agent()
DPIsend_packet_to_agent()
DPIget_fd_for_handle()

While the last three functions can be executed concurrently in different threads,
you must ensure that no other thread is adding or deleting handles in these static
structures during this process.

Functions, data structures, and constants
Use these lists to locate the descriptions for the functions, data structures, and
constants.

Basic DPI Functions:
“The DPIdebug() function” on page 53
“The DPI_PACKET_LEN() macro” on page 53
“The fDPIparse() function” on page 54
“The fDPIset() function” on page 54
“The mkDPIAreYouThere() function” on page 55
“The mkDPIclose() function” on page 56
“The mkDPIopen() function” on page 57
“The mkDPIregister() function” on page 59
“The mkDPIresponse() function” on page 60
“The mkDPIset() function” on page 62
“The mkDPItrap() function” on page 64
“The mkDPIunregister() function” on page 65
“The pDPIpacket() function” on page 66

DPI Transport-Related Functions:
“The DPIawait_packet_from_agent() function” on page 67
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 51

“The DPIdisconnect_from_agent() function” on page 71
“The DPIget_fd_for_handle() function” on page 72
“The DPIsend_packet_to_agent() function” on page 73
“The lookup_host() function” on page 74
“The lookup_host6() function” on page 75

Data Structures:
“The snmp_dpi_close_packet structure” on page 76
“The snmp_dpi_get_packet structure” on page 76
“The snmp_dpi_hdr structure” on page 77
“The snmp_dpi_next_packet structure” on page 79
“The snmp_dpi_resp_packet structure” on page 80
“The snmp_dpi_set_packet structure” on page 81
“The snmp_dpi_ureg_packet structure” on page 82
“The snmp_dpi_u64 structure” on page 83

Constants and Values:
“DPI CLOSE reason codes” on page 85
“DPI packet types” on page 85
“DPI RESPONSE error codes” on page 85
“DPI UNREGISTER reason codes” on page 86
“DPI SNMP value types” on page 87
“Value representation of DPI SNMP value types” on page 87

Related Information:
“DPI OPEN character set selection” on page 84
“The snmp_dpi.h include file” on page 89

Basic DPI API functions
This topic describes each of the basic DPI functions that are available to the DPI
subagent programmer.

The Basic DPI Functions are:
v “The DPIdebug() function” on page 53
v “The DPI_PACKET_LEN() macro” on page 53
v “The fDPIparse() function” on page 54
v “The fDPIset() function” on page 54
v “The mkDPIAreYouThere() function” on page 55
v “The mkDPIclose() function” on page 56
v “The mkDPIopen() function” on page 57
v “The mkDPIregister() function” on page 59
v “The mkDPIresponse() function” on page 60
v “The mkDPIset() function” on page 62
v “The mkDPItrap() function” on page 64
v “The mkDPIunregister() function” on page 65
v “The pDPIpacket() function” on page 66

52 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The DPIdebug() function
Format
#include <snmp_dpi.h>

void DPIdebug(int level);

Parameters

level If this value is 0, tracing is turned off. If it has any other value, tracing is
turned on at the specified level. The higher the value, the more detail. A
higher level includes all lower levels of tracing. Currently there are two
levels of detail:

1 Display packet creation and parsing.

2 Display hex dump of incoming and outgoing DPI packets.

Usage

The DPIdebug() function turns DPI internal debugging or tracing on or off.

The trace output is sent to the SYSLOG Daemon. See the IBM 3172
Enterprise-specific MIB variables information in z/OS Communications Server: IP
System Administrator's Commands for more information.

Examples
#include <snmp_dpi.h>

DPIdebug(2);

Context
“The snmp_dpi.h include file” on page 89

The DPI_PACKET_LEN() macro
Format
#include <snmp_dpi.h>

int DPI_PACKET_LEN(unsigned char *packet_p)

Parameters

packet_p
A pointer to a serialized DPI packet

Return codes
An integer representing the total DPI packet length

Usage

The DPI_PACKET_LEN macro generates C code that returns an integer
representing the length of a DPI packet. It uses the first two octets in network byte
order of the packet to calculate the length.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
int length;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 53

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

length = DPI_PACKET_LEN(pack_p);
/* send packet to agent */

} /* endif */

The fDPIparse() function
Format
#include <snmp_dpi.h>

void fDPIparse(snmp_dpi_hdr *hdr_p);

Parameters

hdr_p A pointer to the parse tree. The parse tree is represented by an
snmp_dpi_hdr structure.

Usage

The fDPIparse() function frees a parse tree that was previously created by a call to
pDPIpacket(). The parse tree might have been created in other ways too. After
calling fDPIparse(), no further references to the parse tree can be made.

A complete or partial DPI parse tree is also implicitly freed by a call to a DPI
function that serializes a parse tree into a DPI packet. The section that describes
each function tells you if this is the case. An example of such a function is
mkDPIresponse().

Examples
#include <snmp_dpi.h>
snmp_dpi_hdr *hdr_p;
unsigned char *pack_p; /* assume pack_p points to */

/* incoming DPI packet */
hdr_p = pDPIpacket(pack_p);

/* handle the packet and when done do the following */
if (hdr_p) fDPIparse(hdr_p);

Context
“The snmp_dpi_hdr structure” on page 77
“The pDPIpacket() function” on page 66
“The snmp_dpi.h include file” on page 89

The fDPIset() function
Format
#include <snmp_dpi.h>

void fDPIset(snmp_dpi_set_packet *packet_p);

Parameters

packet_p
A pointer to the first snmp_dpi_set_packet structure in a chain of such
structures.

54 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The fDPIset() function is typically used if you must free a chain of one or more
snmp_dpi_set_packet structures. This might be the case if you are in the middle of
preparing a chain of such structures for a DPI RESPONSE packet, but then run
into an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass
the chain of snmp_dpi_set_packet structures, the mkDPIresponse() function will
free the chain of snmp_dpi_set_packet structures.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p, *first_p;
long int num1 = 0, num2 = 0;

hdr_p = pDPIpacket(pack_p); /* assume pack_p */
/* analyze packet and assume all OK */ /* points to the */
/* now prepare response; 2 varBinds */ /* incoming packet */

set_p = mkDPIset(snmp_dpi_NULL_p, /* create first one */
"1.3.6.1.2.3.4.5.","1.0", /* OID=1, instance=0 */
SNMP_TYPE_Integer32,
sizeof(num1), &num1);

if (set_p) { /* if success, then */
first_p = set_p; /* save ptr to first */
set_p = mkDPIset(set_p, /* chain next one */

"1.3.6.1.2.3.4.5.","1.1", /* OID=1, instance=1 */
SNMP_TYPE_Integer32,
sizeof(num2), &num2);

if (set_p) { /* success 2nd one */
pack_p = mkDPIresponse(hdr_p, /* make response */

SNMP_ERROR_noError, /* It will also free */
0L, first_p); /* the set_p tree */

/* send DPI response to agent */
} else { /* 2nd mkDPIset fail */

fDPIset(first_p); /* must free chain */
} /* endif */

} /* endif */

Context
“The fDPIparse() function” on page 54
“The snmp_dpi_set_packet structure” on page 81
“The mkDPIresponse() function” on page 60

The mkDPIAreYouThere() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIAreYouThere(void);

Parameters

None

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 55

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

Usage

The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE
packet that can be sent to the DPI peer, which is normally the agent.

A subagent connected through TCP or UNIXstream probably does not need this
function because, normally when the agent breaks the connection, you will receive
an EOF on the file descriptor.

If your connection to the agent is still healthy, the agent will send a DPI
RESPONSE with SNMP_ERROR_DPI_noError in the error code field and 0 in the
error index field. The RESPONSE will have no varBind data. If your connection is
not healthy, the agent might send a response with an error indication, or might not
send a response at all.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIAreYouThere();
if (pack_p) {

/* send the packet to the agent */
} /* endif */
/* wait for response with DPIawait_packet_from_agent() */
/* normally the response should come back pretty quickly, */
/* but it depends on the load of the agent */

Context
“The snmp_dpi_resp_packet structure” on page 80
“The DPIawait_packet_from_agent() function” on page 67

The mkDPIclose() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIclose(char reason_code);

Parameters

reason_code
The reason for closing the DPI connection. See “DPI CLOSE reason codes”
on page 85 for a list of valid reason codes.

56 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

Usage

The mkDPIclose() function creates a serialized DPI CLOSE packet that can be sent
to the DPI peer. As a result of sending the packet, the DPI connection will be
closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREGISTER
for all registered subtrees on the connection being closed.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
if (pack_p) {

/* send the packet to the agent */
} /* endif */

Context
“The snmp_dpi_close_packet structure” on page 76
“DPI CLOSE reason codes” on page 85

The mkDPIopen() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIopen(/* Make a DPI open packet */
char *oid_p, /* subagent Identifier (OID) */
char *description_p, /* subagent descriptive name */
unsigned long timeout, /* requested default timeout */
unsigned long max_varBinds, /* max varBinds per DPI packet*/
char character_set, /* selected character set */
#define DPI_NATIVE_CSET 0 /* 0 = native character set */
#define DPI_ASCII_CSET 1 /* 1 = ASCII character set */

unsigned long password_len, /* length of password (if any)*/
unsigned char *password_p); /* ptr to password (if any) */

Parameters

oid_p A pointer to a null-terminated character string representing the object
identifier which uniquely identifies the subagent. The OID valued pointed
to by oid_p must be in the EBCDIC character set when communicating
with a TCP/IP UNIX System Services SNMP agent. The agent will add the
OID passed in the mkDPIopen call to the sysORTable as sysORID in a
corresponding new entry. By convention, sysORID should match a
capabilities statement OID to refer to the MIBs supported by the subagent.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 57

For a list of MIB variables, see z/OS Communications Server: IP System
Administrator's Commands.

description_p
A pointer to a null-terminated character string, which is a descriptive name
for the subagent. This can be any DisplayString.

timeout
The requested timeout for this subagent. An agent often has a limit for this
value and it will use that limit if this value is larger. A timeout of 0 has a
special meaning in the sense that the agent will use its own default
timeout value.

max_varBinds
The maximum number of varBinds per DPI packet that the subagent is
prepared to handle. It must be a positive number or 0.
v If a value greater than 1 is specified, the agent will try to combine as

many varBinds that belong to the same subtree per DPI packet as
possible up to this value.

v If a value of 0 is specified, the agent will try to combine up to as many
varBinds as are present in the SNMP packet and belong to the same
subtree; there is no limit on the number of varBinds present in the DPI
packet.

character_set
The character set that you want to use for string-based data fields in the
DPI packets and structures. See “DPI OPEN character set selection” on
page 84 for more information.

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the
platform on which the agent that you connect to is running.

password_len
The length in octets of an optional password. It depends on the agent
implementation if a password is needed.

If coded, this parameter is ignored with the z/OS SNMP agent.

password_p
A pointer to an octet string representing the password for this subagent. A
password might include any character value, including the NULL
character. If the password_len is 0, this can be a NULL pointer.

If coded, this parameter is ignored with the SNMP agent.

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

58 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The mkDPIopen() function creates a serialized DPI OPEN packet that can then be
sent to the DPI peer that is a DPI-capable SNMP agent.

Normally you will want to use the native character set, which is the easiest for the
subagent programmer. However, if the agent and subagent each run on their own
platforms and those platforms use different native character sets, you must select
the ASCII character set, so that you both know exactly how to represent
string-based data that is being sent back and forth.

Currently, if you specify a password parameter, it will be ignored. You do not need
to specify a password to connect to the SNMP agent; you can pass a length of 0
and a NULL pointer for the password.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
"Sample DPI subagent"
0L,2L, DPI_NATIVE_CSET, /* max 2 varBinds */
0,(char *)0);

if (pack_p) {
/* send packet to the agent */

} /* endif */

Context
“DPI OPEN character set selection” on page 84

The mkDPIregister() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIregister(/* Make a DPI register packet */
unsigned short timeout, /* in seconds (16-bit) */
long int priority, /* requested priority */
char *group_p, /* ptr to group ID (subtree) */
char bulk_select);/* Bulk selection (GETBULK) */
#define DPI_BULK_NO 0 /* map GETBULK into GETNEXTs */
*/

Parameters

timeout
The requested timeout in seconds. An agent often has a limit for this value
and it will use that limit if this value is larger. The value 0 has special
meaning in the sense that it tells the agent to use the timeout value that
was specified in the DPI OPEN packet.

priority
The requested priority. This field can contain any of these values:

-1 Requests the best available priority.

0 Requests a better priority than the highest priority currently
registered. Use this value to obtain the SNMP DPI Version 1
behavior.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 59

nnn Any positive value. You will receive that priority if available;
otherwise, you will receive the next best priority that is available.

group_p
A pointer to a null-terminated character string that represents the subtree
to be registered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

bulk_select
Specifies if you want the agent to pass GETBULK on to the subagent or to
map them into multiple GETNEXT requests. The choices are:

DPI_BULK_NO
Do not pass any GETBULK requests, but instead map a GETBULK
request into multiple GETNEXT requests.

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not failure, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

Usage

The mkDPIregister() function creates a serialized DPI REGISTER packet that can
then be sent to the DPI peer that is a DPI-capable SNMP agent.

Normally, the SNMP agent sends a DPI RESPONSE packet back. This packet
identifies if the register was successful or not.

The agent returns the assigned priority in the error index field of the response
packet.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIregister(0,0L,"1.3.6.1.2.3.4.5."
DPI_BULK_NO);

if (pack_p) {
/* send packet to agent and await response */

} /* endif */

Context
“The snmp_dpi_resp_packet structure” on page 80

The mkDPIresponse() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIresponse(/* Make a DPI response packet*/
snmp_dpi_hdr *hdr_p, /* ptr to packet to respnd to*/
long int error_code, /* error code: SNMP_ERROR_xxx*/

60 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

long int error_index, /* index to varBind in error */
snmp_dpi_set_packet *packet_p);/* ptr to varBinds, a chain */

/* of dpi_set_packets */

Parameters

hdr_p A pointer to the parse tree of the DPI request to which this DPI packet will
be the response. The function uses this parse tree to copy the packet_id
and the DPI version and release, so that the DPI packet is correctly
formatted as a response.

error_code
The error code.

See “DPI RESPONSE error codes” on page 85 for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first
varBind. This field should be 0 if there is no error.

packet_p
A pointer to a chain of snmp_dpi_set_packet structures. This partial parse
tree will be freed by the mkDPIresponse() function, so upon return you
cannot refer to it anymore. Pass a NULL pointer if there are no varBinds to
be returned.

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

Usage

The mkDPIresponse() function is used at the subagent side to prepare a DPI
RESPONSE packet to a GET, GETNEXT, SET, COMMIT, or UNDO request. The
resulting packet can be sent to the DPI peer, which is normally a DPI-capable
SNMP agent.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p;
long int num;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

SNMP_ERROR_noError, 0L, set_p);

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 61

if (pack_p) {
/* send packet to agent */

} /* endif */
} /* endif */

} /* endif */

Context
“The pDPIpacket() function” on page 66
“The snmp_dpi_hdr structure” on page 77
“The snmp_dpi_set_packet structure” on page 81

The mkDPIset() function
Format
#include <snmp_dpi.h>

snmp_dpi_set_packet *mkDPIset(/* Make DPI set packet tree */
snmp_dpi_set_packet *packet_p, /* ptr to SET structure */
char *group_p, /* ptr to group ID(subtree)*/
char *instance_p,/* ptr to instance OIDstring*/
int value_type,/* value type: SNMP_TYPE_xxx*/
int value_len, /* length of value */
void *value_p); /* ptr to value */

Parameters

packet_p
A pointer to a chain of snmp_dpi_set_packet structures. Pass a NULL
pointer if this is the first structure to be created.

group_p
A pointer to a null-terminated character string that represents the
registered subtree that caused this GET request to be passed to this DPI
subagent. The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece that follows the subtree part, of the object identifier of
the variable instance being accessed. Use of the term instance_p here should
not be confused with an OBJECT instance because this string can consist of
a piece of the object identifier plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See “DPI SNMP value types” on page 87 for a list of currently defined
value types.

value_len
This is the value that specifies the length in octets of the value pointed to
by the value field. The length can be 0 if the value is of type
SNMP_TYPE_NULL.

The maximum value is 64KB minus 1. However, the implementation often
makes the length significantly less.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of implicit or explicit type SNMP_TYPE_NULL.

62 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes
If successful and a chain of one or more packets was passed in the packet_p
parameter, the same pointer that was passed in packet_p is returned. A new
dynamically allocated structure has been added to the end of that chain of
snmp_dpi_get_packet structures.
If successful and a NULL pointer was passed in the packet_p parameter, a
pointer to a new dynamically allocated structure is returned.
If not successful, a NULL pointer is returned.

Usage

The mkDPIset() function is used at the subagent side to prepare a chain of one or
more snmp_dpi_set_packet structures. This chain is used to create a DPI
RESPONSE packet by a call to mkDPIresponse() that can be sent to the DPI peer,
which is normally a DPI-capable SNMP agent.

The chain of snmp_dpi_set_packet structures can also be used to create a DPI
TRAP packet that includes varBinds as explained in “The mkDPItrap() function”
on page 64.

For the value_len, the maximum value is 64KB minus 1. However, the
implementation often makes the length significantly less. For example, the SNMP
PDU size might be limited to 484 bytes at the SNMP manager or agent side. In this
case, the total response packet cannot exceed 484 bytes, so a value_len is limited to
484 bytes. You can send the DPI packet to the agent, but the manager will never
see it.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p;
long int num;

hdr_p = pDPIpacket(pack_p) /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, assume GET, no error */
set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPIresponse(hdr_p,

SNMP_ERROR_noError,
0L, set_p);

if (pack_p)
/* send packet to agent */

} /* endif */
} /* endif */

} /* endif */

If you must chain many snmp_dpi_set_packet structures, be sure to note that the
packets are chained only by forward pointers. It is recommended that you use the
last structure in the existing chain as the packet_p parameter. Then, the underlying
code does not have to scan through a possibly long chain of structures to chain the
new structure at the end.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 63

Context
“The pDPIpacket() function” on page 66
“The mkDPIresponse() function” on page 60
“The mkDPItrap() function”
“The snmp_dpi_hdr structure” on page 77
“The snmp_dpi_set_packet structure” on page 81
“DPI SNMP value types” on page 87
“Value representation of DPI SNMP value types” on page 87

The mkDPItrap() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPItrap(/* Make a DPI trap packet */
long int generic, /* generic traptype (32 bit)*/
long int specific, /* specific traptype (32 bit)*/
snmp_dpi_set_packet *packet_p, /* ptr to varBinds, a chain */

/* of dpi_set_packets */
char *enterprise_p); /* ptr to enterprise OID */

Parameters

generic
The generic trap type. The range of this value is 0-6, where 6, which is
enterprise specific, is the type that is probably used most by DPI subagent
programmers. The values in the range 0-5 are well defined standard SNMP
traps.

specific
The enterprise specific trap type. This can be any value that is valid for the
MIB subtrees that the subagent implements.

packet_p
A pointer to a chain of snmp_dpi_set_structures, representing the varBinds
to be passed with the trap. This partial parse tree will be freed by the
mkDPItrap() function so you cannot refer to it anymore upon completion
of the call. A NULL pointer means that there are no varBinds to be
included in the trap.

enterprise_p
A pointer to a null-terminated character string representing the enterprise
ID (object identifier) for which this trap is defined. A NULL pointer can be
used. In this case, the subagent identifier, as passed in the DPI OPEN
packet, will be used when the agent receives the DPI TRAP packet.

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

64 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The mkDPItrap() function is used at the subagent side to prepare a DPI TRAP
packet. The resulting packet can be sent to the DPI peer, which is normally a
DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_set_packet *set_p;
long int num;

set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
"1.3.6.1.2.3.4.5.", "1.0",
SNMP_TYPE_Integer32,
sizeof(num), &num);

if (set_p) {
pack_p = mkDPItrap(6,1,set_p, (char *)0);
if (pack_p) {

/* send packet to agent */
} /* endif */

} /* endif */

Context
“The mkDPIset() function” on page 62

The mkDPIunregister() function
Format
#include <snmp_dpi.h>

unsigned char *mkDPIunregister(/* Make DPI unregister packet */
char reason_code; /* unregister reason code */
char *group_p); /* ptr to group ID (subtree) */

Parameters

reason_code
The reason for the unregister.

See “DPI UNREGISTER reason codes” on page 86 for a list of the currently
defined reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree
to be unregistered. For object level registration, this group ID must have a
trailing period. For instance level registration, this group ID would simply
have the instance number follow the object number subtree.

Return codes
If successful, a pointer to a static DPI packet buffer is returned. The first 2 bytes
of the buffer in network byte order contain the length of the remaining packet.
The macro DPI_PACKET_LEN can be used to calculate the total length of the
DPI packet.
If not successful, a NULL pointer is returned.

Note: The static buffer for the DPI packet is shared by other mkDPIxxxx()
functions that create a serialized DPI packet.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 65

Usage

The mkDPIunregister() function creates a serialized DPI UNREGISTER packet that
can be sent to the DPI peer, which is a DPI-capable SNMP agent.

Normally, the SNMP peer then sends a DPI RESPONSE packet back. This packet
identifies if the unregister was successful or not.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;

pack_p = mkDPIunregister(
SNMP_UNREGISTER_goingDown,
"1.3.6.1.2.3.4.5.");

if (pack_p) {
/* send packet to agent and await response */

} /* endif */

Context
“The snmp_dpi_ureg_packet structure” on page 82

The pDPIpacket() function
Format
#include <snmp_dpi.h>

snmp_dpi_hdr *pDPIpacket(unsigned char *packet_p);

Parameters

packet_p
A pointer to a serialized DPI packet.

Return codes
If successful, a pointer to a DPI parse tree (snmp_dpi_hdr) is returned. Memory
for the parse tree has been dynamically allocated, and it is the callers
responsibility to free it when no longer needed. You can use the fDPIparse()
function to free the parse tree.
If not successful, a NULL pointer is returned.

Usage

The pDPIpacket() function parses the buffer pointed to by the packet_p parameter.
It ensures that the buffer contains a valid DPI packet and that the packet is for a
DPI version and release that is supported by the DPI functions in use.

Examples
#include <snmp_dpi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;

hdr_p = pDPIpacket(pack_p); /* parse incoming packet */
/* assume it’s in pack_p */

if (hdr_p) {
/* analyze packet, and handle it */

}

66 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Context
“The snmp_dpi_hdr structure” on page 77
“The snmp_dpi.h include file” on page 89
“The fDPIparse() function” on page 54

Transport-related DPI API functions
This topic describes each of the DPI transport-related functions that are available to
the DPI subagent programmer. These functions try to hide any platform specific
issues for the DPI subagent programmer so that the subagent can be made as
portable as possible. If you need detailed control for sending and awaiting DPI
packets, you might have to do some of the transport-related code yourself.

The transport-related functions are basically the same for any platform, except for
the initial call to set up a connection. SNMP currently supports the TCP transport
type and UNIXstream.

The Transport-Related DPI API Functions are:
v “The DPIawait_packet_from_agent() function”
v “The DPIconnect_to_agent_TCP() function” on page 69
v “The DPIconnect_to_agent_UNIXstream() function” on page 70
v “The DPIdisconnect_from_agent() function” on page 71
v “The DPIget_fd_for_handle() function” on page 72
v “The DPIsend_packet_to_agent() function” on page 73
v “The lookup_host() function” on page 74
v “The lookup_host6() function” on page 75

The DPIawait_packet_from_agent() function
Format
#include <snmp_dpi.h>

int DPIawait_packet_from_agent(/* await a DPI packet */
int handle, /* on this connection */
int timeout, /* timeout in seconds */
unsigned char **message_p, /* receives ptr to data */
unsigned long *length); /* receives length of data */

Parameters

handle
A handle as obtained with a DPIconnect_to_agent_xxxx() call.

timeout
A timeout value in seconds. There are two special values:

-1 Causes the function to wait forever until a packet arrives.

0 Means that the function will check only if a packet is waiting. If
not, an immediate return is made. If there is a packet, it will be
returned.

message_p
The address of a pointer that will receive the address of a static DPI packet
buffer or, if there is no packet, a NULL pointer.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 67

length The address of an unsigned long integer that will receive the length of the
received DPI packet or, if there is no packet, a 0 value.

Return codes
If successful, a 0 (DPI_RC_OK) is returned. The buffer pointer and length of the
caller will be set to point to the received DPI packet and to the length of that
packet.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See “Return codes from DPI transport-related functions” on
page 88 for a list of possible error codes.

DPI_RC_NOK
This is a return code indicating the DPI code is out of sync or has a bug.

DPI_RC_EOF
End of file on the connection. The connection has been closed.

DPI_RC_IO_ERROR
An error occurred with an underlying select() or recvfrom() call, or a DPI
packet was read that was less than 2 bytes. DPI uses the first 2 bytes to get
the packet length.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

DPI_RC_TIMEOUT
No packet was received during the specified timeout period.

DPI_RC_PACKET_TOO_LARGE
The packet received was too large.

Usage

The DPIawait_packet_from_agent() function is used at the subagent side to await a
DPI packet from the DPI-capable SNMP agent. The programmer can specify how
long to wait.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;
unsigned long length;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
/* do useful stuff */
rc = DPIawait_packet_from_agent(handle, -1,

&pack_p, &length);
if (rc) {

printf("Error %d from await packet\n");
exit(1);

} /* endif */
/* handle the packet */

Context
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70

68 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The DPIconnect_to_agent_TCP() function
Format
#include <snmp_dpi.h>

int DPIconnect_to_agent_TCP(/* Connect to DPI TCP port */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

Parameters

hostname_p
A pointer to a null-terminated character string representing the host name
or IP address in IPv4 dotted-decimal or IPv6 colon-hexadecimal notation of
the host where the DPI-capable SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the dpiPort from the SNMP agent through
an SNMP GET request.

Note: For z/OS Communications Server, the SNMP community passed by
the subagent must be in ASCII only.

Return codes

If successful, a nonnegative integer that represents the connection is returned. It is
to be used as a handle in subsequent calls to DPI transport-related functions.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page 88
for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the dpiPort number. There are many reasons for this, for
example: bad host name, bad community name, or default timeout (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set
up a socket (might be due to an error on a socket(), bind(), connect() call,
or other internal errors).

Usage

The DPIconnect_to_agent_TCP() function is used at the subagent side to set up a
TCP connection to the DPI-capable SNMP agent.

As part of the connection processing, the DPIconnect_to_agent_TCP() function
sends an SNMP GET request to the SNMP agent to retrieve the port number of the
DPI port to be used for the TCP connection. By default, this SNMP GET request is
sent to the well-known SNMP port 161. If the SNMP agent is listening on a port
other than well-known port 161, the SNMP_PORT environment variable can be set
to the port number of the SNMP agent prior to issuing the
DPIconnect_to_agent_TCP(). Use setenv() to override port 161 before using this
function.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 69

Examples
#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */

Context
“Return codes from DPI transport-related functions” on page 88
“The DPIconnect_to_agent_UNIXstream() function”

The DPIconnect_to_agent_UNIXstream() function
Format
#include <snmp_dpi.h>

int DPIconnect_to_agent_UNIXstream(/* Connect to DPI UNIXstream */
char *hostname_p, /* target hostname/IP address */
char *community_p); /* community name */

Parameters

hostname_p
A pointer to a null-terminated character string representing the local host
name or IP address in IPv4 dotted-decimal or IPv6 colon-hexadecimal
notation of the local host where the DPI-capable SNMP agent is running.

community_p
A pointer to a null-terminated character string representing the community
name that is required to obtain the UNIX® path name from the SNMP
agent through an SNMP GET request.

Note: For z/OS Communications Server, the SNMP community passed by
the subagent must be in ASCII only.

Return codes
If successful, a nonnegative integer that represents the connection is returned. It
is to be used as a handle in subsequent calls to DPI transport-related functions.
If not successful, a negative integer is returned, which indicates the kind of
error that occurred. See “Return codes from DPI transport-related functions” on
page 88 for a list of possible error codes.

DPI_RC_NO_PORT
Unable to obtain the UNIX path name. There are many reasons for this, for
example: bad host name, bad community name, or default timeout (9
seconds) before a response from the agent.

DPI_RC_IO_ERROR
An error occurred with an underlying select(), or DPI was not able to set
up a socket (might be due to an error on a socket(), bind(), connect() call,
or other internal errors).

Usage

The DPIconnect_to_agent_UNIXstream() function is used at the subagent side to
set up an AF_UNIX connection to the DPI-capable SNMP agent.

70 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

As part of the connection processing, the DPIconnect_to_agent_UNIXstream()
function sends an SNMP GET request to the SNMP agent to retrieve the path name
for the UNIX streams connection. By default, this SNMP GET request is sent to the
well-known SNMP port 161. If the SNMP agent is listening on a port other than
well-known port 161, the SNMP_PORT environment variable can be set to the port
number of the SNMP agent prior to issuing the
DPIconnect_to_agent_UNIXstream(). Use setenv() to override port 161 before using
this function.

The DPIconnect_to_agent_UNIXstream() function uses a path name in the z/OS
UNIX file system as the name of the socket for the connect. This path name is
available at the SNMP agent through the MIB object 1.3.6.1.4.1.2.2.1.1.3, which has
the name dpiPathNameForUnixStream. The SNMP agent uses the default name
/var/dpi_socket if you do not supply another name in the agent startup parameter
(-s) or in the OSNMPD.DATA file. Whichever name is used, the SNMP agent
creates the path name as a character special file during initialization.

You must either define the subagents with superuser authority or set the read and
write file access permission bits for the path name for the class associated with the
user ID of the subagent before subagents can successfully connect to the agent
using the path name. You can use the agent -C startup parameter to specify which
permission bits should be set.

To run a user-written subagent from a non-privileged user ID, set the permission
bits for the character special file to write access. Otherwise, a subagent using this
function must be run from a superuser or other user with appropriate privileges.

Examples
#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_UNIXstream("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */

Context
“Return codes from DPI transport-related functions” on page 88
“The DPIconnect_to_agent_TCP() function” on page 69

The DPIdisconnect_from_agent() function
Format
#include <snmp_dpi.h>

void DPIdisconnect_from_agent(/* disconnect from DPI (agent)*/
int handle); /* close this connection */

Parameters

handle
A handle as obtained with a DPIconnect_to_agent_xxxx() call.

Usage

The DPIdisconnect_from_agent() function is used at the subagent side to terminate
a connection to the DPI-capable SNMP agent.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 71

Examples
#include <snmp_dpi.h>
int handle;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
/* do useful stuff */
DPIdisconnect_from_agent(handle);

Context
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70

The DPIget_fd_for_handle() function
Format
#include <snmp_dpi.h>

int DPIget_fd_for_handle(/* get the file descriptor */
int handle); /* for this handle */

Parameters

handle
A handle that was obtained with a DPIconnect_to_agent_xxxx() call.

Return codes

If successful, a positive integer representing the file descriptor associated with the
specified handle.

If not successful, a negative integer is returned, which indicates the error that
occurred. See “Return codes from DPI transport-related functions” on page 88 for a
list of possible error codes.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Usage

The DPIget_fd_for_handle function is used to obtain the file descriptor for the
handle, which was obtained with a DPIconnect_to_agent_TCP() call or a
DPIconnect_to_agent_UNIXstream() call.

Using this function to retrieve the file descriptor associated with your DPI
connections enables you to use either the select or selectex socket calls. Using
selectex enables your program to wait for event control blocks (ECBs), in addition
to a read condition. This is one example of how an MVS application can wait for
notification of the receipt of a modify command (through an ECB post) or DPI
packet at the same time.

Examples
#include <snmp_dpi.h>
#include /* other include files for BSD sockets and such */
int handle;

72 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

int fd;

handle = DPIconnect_to_agent_TCP("127.0.0.1","public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

}
fd = DPIget_fd_for_handle(handle);
if (fd <0) {

printf("Error %d from get_fd\n",fd);
exit(1);

}

Context
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70

The DPIsend_packet_to_agent() function
Format
#include <snmp_dpi.h>

int DPIsend_packet_to_agent(/* send a DPI packet */
int handle, /* on this connection */
unsigned char *message_p, /* ptr to the packet data */
unsigned long length); /* length of the packet */

Parameters

handle
A handle as obtained with a DPIconnect_to_agent_xxxx() call.

message_p
A pointer to the buffer containing the DPI packet to be sent.

length The length of the DPI packet to be sent. The DPI_PACKET_LEN macro is a
useful macro to calculate the length.

Return codes

If successful, a 0 (DPI_RC_OK) is returned.

If not successful, a negative integer is returned, which indicates the kind of error
that occurred. See “Return codes from DPI transport-related functions” on page 88
for a list of possible error codes.

DPI_RC_NOK
This is a return code, but it really means the DPI code is out of sync or has
a bug.

DPI_RC_IO_ERROR
An error occurred with an underlying send(), or the send() failed to send
all of the data on the socket (incomplete send).

DPI_RC_INVALID_ARGUMENT
The message_p parameter is NULL or the length parameter has a value of
0.

DPI_RC_INVALID_HANDLE
A bad handle was passed as input. Either the handle is not valid, or it
describes a connection that has been disconnected.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 73

Usage

The DPIsend_packet_to_agent() function is used at the subagent side to send a DPI
packet to the DPI-capable SNMP agent.

Examples
#include <snmp_dpi.h>
int handle;
unsigned char *pack_p;

handle = DPIconnect_to_agent_TCP("127.0.0.1", "public");
if (handle < 0) {

printf("Error %d from connect\n",handle);
exit(1);

} /* endif */
pack_p = mkDPIopen("1.3.6.1.2.3.4.5",

"Sample DPI subagent"
0L,2L,,DPI_NATIVE_CSET,
0,(char *)0);

if (pack_p) {
rc = DPIsend_packet_to_agent(handle,pack_p,

DPI_PACKET_LEN(pack_p));
if (rc) {

printf("Error %d from send packet\n");
exit(1);

} /* endif */
} else {

printf("Can’t make DPI OPEN packet\n");
exit(1);

} /* endif */
/* await the response */

Context
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70
“The DPI_PACKET_LEN() macro” on page 53

The lookup_host() function
Format
#include <snmp_dpi.h>

unsigned long lookup_host(/* find IP address in network */
char *hostname_p); /* byte order for this host */

Parameters

hostname_p
A pointer to a null-terminated character string representing the host name
or IP address in dotted-decimal notation of the host where the DPI-capable
SNMP agent is running.

Return codes

If successful, the IP address is returned in network byte order, so it is ready to be
used in a sockaddr_in structure.

If not successful, a value of 0 is returned.

74 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The lookup_host() function is used to obtain the IP address in network byte order
of a host or IP address in dotted decimal notation. This function is implicitly
executed by both DPIconnect_to_agent_TCP and
DPIconnect_to_agent_UNIXstream.

Context

“The DPIconnect_to_agent_TCP() function” on page 69

The lookup_host6() function
Format
#include <snmp_dpi.h>

struct sockaddr_in6 *lookup_host6(/* find IPv6 address in network */
char *hostname_p); /* byte order for this host */

Parameters

hostname_p
A pointer to a null-terminated character string representing the host name
or IPv6 address in colon-hexadecimal notation of the host where the
DPI-capable SNMP agent is running.

Return codes

If successful, a pointer to a sockaddr_in6 structure is returned. The structure is
filled in with the IPv6 address of the specified host in network byte order.

If not successful, a NULL pointer is returned.

Usage

The lookup_host6() function is used to obtain an IPv6 address in network byte
order of a host specified by host name or IPv6 address in colon-hexadecimal
notation. This function can be implicitly executed by DPIconnect_to_agent_TCP
and DPIconnect_to_agent_UNIXstream.

If the function is successful, the caller does not own the sockaddr_in6 structure
pointed to by the return value. If the caller needs to store the IPv6 address or the
entire structure, it must do so immediately after lookup_host6() returns, because
subsequent calls to lookup_host6() will cause the contents of the sockaddr_in6 to
be overwritten.

Context

“The DPIconnect_to_agent_TCP() function” on page 69

DPI structures
This topic describes each data structure that is used in the SNMP DPI API:
v “The snmp_dpi_close_packet structure” on page 76
v “The snmp_dpi_get_packet structure” on page 76
v “The snmp_dpi_hdr structure” on page 77

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 75

v “The snmp_dpi_next_packet structure” on page 79
v “The snmp_dpi_resp_packet structure” on page 80
v “The snmp_dpi_set_packet structure” on page 81
v “The snmp_dpi_ureg_packet structure” on page 82
v “The snmp_dpi_u64 structure” on page 83

The snmp_dpi_close_packet structure
Format
struct dpi_close_packet {

char reason_code; /* reason for closing */
};
typedef struct dpi_close_packet snmp_dpi_close_packet;
#define snmp_dpi_close_packet_NULL_p ((snmp_dpi_close_packet*)0)

Parameters

reason_code
The reason for the close.

See “DPI CLOSE reason codes” on page 85 for a list of valid reason codes.

Usage

The snmp_dpi_close_packet structure represents a parse tree for a DPI CLOSE
packet.

The snmp_dpi_close_packet structure might be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_CLOSE. The
snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_close_packet
structure.

An snmp_dpi_close_packet_structure is also created as a result of an mkDPIclose()
call, but the programmer never sees the structure because mkDPIclose()
immediately creates a serialized DPI packet from it and then frees the structure.

It is recommended that DPI subagent programmer uses mkDPIclose() to create a
DPI CLOSE packet.

Context
“The pDPIpacket() function” on page 66
“The mkDPIclose() function” on page 56
“The snmp_dpi_hdr structure” on page 77

The snmp_dpi_get_packet structure
Format
struct dpi_get_packet {

char *object_p; /* ptr to OID string */
char *group_p; /* ptr to subtree(group)*/
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

76 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Parameters

object_p
A pointer to a null-terminated character string that represents the full
object identifier of the variable instance that is being accessed. It basically
is a concatenation of the fields group_p and instance_p. Using this field is
not recommended because it is included only for DPI Version 1
compatibility and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the
registered subtree that caused this SET request to be passed to this DPI
subagent. The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece that follows the subtree part, of the object identifier of
the variable instance being accessed.

Use of the term instance_p here must not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_get_packet structure. If this next
field contains the NULL pointer, this is the end of the chain.

Usage

The snmp_dpi_get_packet structure represents a parse tree for a DPI GET packet.

At the subagent side, the snmp_dpi_get_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GET. The snmp_dpi_hdr structure then contains a pointer to a chain of
one or more snmp_dpi_get_packet structures.

The DPI subagent programmer uses this structure to find out which variable
instances are to be returned in a DPI RESPONSE.

Context
“The pDPIpacket() function” on page 66
“The snmp_dpi_hdr structure”

The snmp_dpi_hdr structure
Format
struct snmp_dpi_hdr {

unsigned char proto_major; /* always 2: SNMP_DPI_PROTOCOL*/
unsigned char proto_version; /* DPI version */
unsigned char proto_release; /* DPI release */
unsigned short packet_id; /* 16-bit, DPI packet ID */
unsigned char packet_type; /* DPI packet type */
union {

snmp_dpi_reg_packet *reg_p;
snmp_dpi_ureg_packet *ureg_p;
snmp_dpi_get_packet *get_p;
snmp_dpi_next_packet *next_p;
snmp_dpi_next_packet *bulk_p;
snmp_dpi_set_packet *set_p;
snmp_dpi_resp_packet *resp_p;
snmp_dpi_trap_packet *trap_p;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 77

snmp_dpi_open_packet *open_p;
snmp_dpi_close_packet *close_p;
unsigned char *any_p;

} data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

Parameters

proto_major
The major protocol. For SNMP DPI, it is always 2.

proto_version
The DPI version.

proto_release
The DPI release.

packet_id
This field contains the packet ID of the DPI packet. When you create a
response to a request, the packet ID must be the same as that of the
request. This is taken care of if you use the mkDPIresponse() function.

packet_type
The type of DPI packet (parse tree) that you are dealing with.

See “DPI packet types” on page 85 for a list of currently defined DPI
packet types.

data_u
A union of pointers to the different types of data structures that are created
based on the packet_type field. The pointers themselves have names that are
self-explanatory.

The fields proto_major, proto_version, proto_release, and packet_id are basically for DPI
internal use, so the DPI programmer normally does not need to be concerned
about them.

Usage

The snmp_dpi_hdr structure is the anchor of a DPI parse tree. At the subagent
side, the snmp_dpi_hdr structure is normally created as a result of a call to
pDPIpacket().

The DPI subagent programmer uses this structure to interrogate packets.
Depending on the packet_type, the pointer to the chain of one or more packet_type
specific structures that contain the actual packet data can be picked.

The storage for a DPI parse tree is always dynamically allocated. It is the
responsibility of the caller to free this parse tree when it is no longer needed. You
can use the fDPIparse() function to do that.

Note: Some mkDPIxxxx functions do free the parse tree that is passed to them. An
example is the mkDPIresponse() function.

Context
“The fDPIparse() function” on page 54
“The pDPIpacket() function” on page 66
“The snmp_dpi_close_packet structure” on page 76

78 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

“The snmp_dpi_get_packet structure” on page 76
“The snmp_dpi_next_packet structure”
“The snmp_dpi_resp_packet structure” on page 80
“The snmp_dpi_set_packet structure” on page 81
“The snmp_dpi_ureg_packet structure” on page 82

The snmp_dpi_next_packet structure
Format
struct dpi_next_packet {

char *object_p; /* ptr to OID (string) */
char *group_p; /* ptr to subtree(group)*/
char *instance_p;/* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

Parameters

object_p
A pointer to a null-terminated character string that represents the full
object identifier of the variable instance that is being accessed. It basically
is a concatenation of the fields group_p and instance_p. Using this field is
not recommended because it is included only for DPI Version 1
compatibility and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the
registered subtree that caused this GETNEXT request to be passed to this
DPI subagent. This subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece that follows the subtree part, of the object identifier of
the variable instance being accessed.

Use of the term instance_p here must not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

next_p
A pointer to a possible next snmp_dpi_next_packet structure. If this next
field contains the NULL pointer, this is the end of the chain.

Usage

The snmp_dpi_next_packet structure represents a parse tree for a DPI GETNEXT
packet.

At the subagent side, the snmp_dpi_next_packet structure is normally created as a
result of a call to pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_GETNEXT. The snmp_dpi_hdr structure then contains a pointer to a
chain of one or more snmp_dpi_next_packet structures.

The DPI subagent programmer uses this structure to find out which variables
instances are to be returned in a DPI RESPONSE.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 79

Context
“The pDPIpacket() function” on page 66
“The snmp_dpi_hdr structure” on page 77

The snmp_dpi_resp_packet structure
Format
struct dpi_resp_packet {

char error_code; /* like: SNMP_ERROR_xxx */
unsigned long int error_index;/* 1st varBind in error */
#define resp_priority error_index /* if respons to register*/
struct dpi_set_packet *varBind_p; /* ptr to varBind, chain */

/* of dpi_set_packets */
};
typedef struct dpi_resp_packet snmp_dpi_resp_packet;
#define snmp_dpi_resp_packet_NULL_p ((snmp_dpi_resp_packet *)0)

Parameters

error_code
The return code or the error code.

See “DPI RESPONSE error codes” on page 85 for a list of valid codes.

error_index
Specifies the first varBind in error. Counting starts at 1 for the first
varBind. This field should be 0 if there is no error.

resp_priority
This is a redefinition of the error_index field. If the response is a response to
a DPI REGISTER request and the error_code is equal to
SNMP_ERROR_DPI_noError or
SNMP_ERROR_DPI_higherPriorityRegistered, then this field contains the
priority that was actually assigned. Otherwise, this field is set to 0 for
responses to a DPI REGISTER.

varBind_p
A pointer to the chain of one or more snmp_dpi_set_structures,
representing varBinds of the response. This field contains a NULL pointer
if there are no varBinds in the response.

Usage

The snmp_dpi_resp_packet structure represents a parse tree for a DPI RESPONSE
packet.

The snmp_dpi_resp_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_RESPONSE.
The snmp_dpi_hdr structure then contains a pointer to an snmp_dpi_resp_packet
structure.

At the DPI subagent side, a DPI RESPONSE must be expected only at initialization
and termination time when the subagent has issued a DPI OPEN, DPI REGISTER,
or DPI UNREGISTER request.

The DPI programmer is advised to use the mkDPIresponse() function to prepare a
DPI RESPONSE packet.

80 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Context
“The pDPIpacket() function” on page 66
“The mkDPIresponse() function” on page 60
“The snmp_dpi_set_packet structure”
“The snmp_dpi_hdr structure” on page 77

The snmp_dpi_set_packet structure
Format
struct dpi_set_packet {

char *object_p; /* ptr to Object ID (string) */
char *group_p; /* ptr to subtree (group) */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* value type: SNMP_TYPE_xxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to the value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

Parameters

object_p
A pointer to a null-terminated character string that represents the full
object identifier of the variable instance that is being accessed. It basically
is a concatenation of the fields group_p and instance_p. Using this field is
not recommended because it is included only for DPI Version 1
compatibility and it might be withdrawn in a later version.

group_p
A pointer to a null-terminated character string that represents the
registered subtree that caused this SET, COMMIT, or UNDO request to be
passed to this DPI subagent. The subtree must have a trailing period.

instance_p
A pointer to a null-terminated character string that represents the rest,
which is the piece that follows the subtree part, of the object identifier of
the variable instance being accessed.

Use of the term instance_p here must not be confused with an OBJECT
instance because this string might consist of a piece of the object identifier
plus the INSTANCE IDENTIFIER.

value_type
The type of the value.

See “DPI SNMP value types” on page 87 for a list of currently defined
value types.

value_len
This is an unsigned 16-bit integer that specifies the length in octets of the
value pointed to by the value field. The length can be 0 if the value is of
type SNMP_TYPE_NULL.

value_p
A pointer to the actual value. This field can contain a NULL pointer if the
value is of type SNMP_TYPE_NULL.

See “Value representation of DPI SNMP value types” on page 87 for
information on how the data is represented for the various value types.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 81

next_p
A pointer to a possible next snmp_dpi_set_packet structure. If this next
field contains the NULL pointer, this is the end of the chain.

Usage

The snmp_dpi_set_packet structure represents a parse tree for a DPI SET request.

The snmp_dpi_set_packet structure might be created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type SNMP_DPI_SET,
SNMP_DPI_COMMIT, or SNMP_DPI_UNDO. The snmp_dpi_hdr structure then
contains a pointer to a chain of one or more snmp_dpi_set_packet structures.

This structure can also be created with an mkDPIset() call, which is typically used
when preparing varBinds for a DPI RESPONSE packet.

Context
“The pDPIpacket() function” on page 66
“The mkDPIset() function” on page 62
“DPI SNMP value types” on page 87
“Value representation of DPI SNMP value types” on page 87
“The snmp_dpi_hdr structure” on page 77

The snmp_dpi_ureg_packet structure
Format
struct dpi_ureg_packet {

char reason_code;/* reason for unregister */
char *group_p; /* ptr to subtree(group)*/
struct dpi_ureg_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_ureg_packet snmp_dpi_ureg_packet;
#define snmp_dpi_ureg_packet_NULL_p ((snmp_dpi_ureg_packet *)0)

Parameters

reason_code
The reason for the unregister.

See “DPI UNREGISTER reason codes” on page 86 for reason codes.

group_p
A pointer to a null-terminated character string that represents the subtree
to be unregistered. This subtree must have a trailing period.

next_p
A pointer to a possible next snmp_dpi_ureg_packet structure. If this next
field contains the NULL pointer, this is the end of the chain. Currently,
multiple unregister requests are not supported in one DPI packet, so this
field should always be 0.

Usage

The snmp_dpi_ureg_packet structure represents a parse tree for a DPI
UNREGISTER request.

82 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The snmp_dpi_ureg_packet structure is normally created as a result of a call to
pDPIpacket(). This is the case if the DPI packet is of type
SNMP_DPI_UNREGISTER. The snmp_dpi_hdr structure then contains a pointer to
an snmp_dpi_ureg_packet structure.

The DPI programmer is advised to use the mkDPIunregister() function to create a
DPI UNREGISTER packet.

Context
“The pDPIpacket() function” on page 66
“The mkDPIunregister() function” on page 65
“The snmp_dpi_hdr structure” on page 77

The snmp_dpi_u64 structure
Format
struct snmp_dpi_u64 { /* for unsigned 64-bit int */

unsigned long high; /* - high order 32 bits */
unsigned long low; /* - low order 32 bits */

};
typedef struct snmp_dpi_u64 snmp_dpi_u64;

Note: This structure is supported only in SNMP Version 2.

Parameters

high The high order, most significant, 32 bits.

low The low order, least significant, 32 bits.

Usage

The snmp_dpi_u64 structure represents an unsigned 64-bit integer as needed for
values with a type of SNMP_TYPE_Counter64.

The snmp_dpi_u64 structure might be created as a result of a call to pDPIpacket().
This is the case if the DPI packet is of type SNMP_DPI_SET and one of the values
has a type of SNMP_TYPE_Counter64. The value_p pointer of the
snmp_dpi_set_packet structure will then point to an snmp_dpi_u64 structure.

The DPI programmer must also use an snmp_dpi_u64 structure as the parameter
to an mkDPIset() call if you want to create a value of type
SNMP_TYPE_Counter64.

Context
“The pDPIpacket() function” on page 66
“The snmp_dpi_set_packet structure” on page 81
“DPI SNMP value types” on page 87
“Value representation of DPI SNMP value types” on page 87

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 83

DPI OPEN character set selection
The version of DPI Version 2.0 included with SNMP requires use of the EBCDIC
character set. Any DisplayString MIB objects known to the agent (in its compiled
MIB) supplied with SNMP will have ASCII conversion handled by the agent. The
subagent will always deal with the values of these objects in EBCDIC. Any portion
of an instance identifier that is a DisplayString must be in ASCII. The agent does
not handle instance IDs.

When the DPI subagent sends a DPI OPEN packet, it must specify the character
set that it wants to use. The subagent here needs to know or determine in an
implementation dependent manner if the agent is running on a system with the
same character set as the subagent. If you connect to the agent at loopback or your
own machine, you might assume that you are using the same character set.

The DPI subagent has two choices:

DPI_NATIVE_CSET
Specifies that you want to use the native character set of the platform on
which the agent that you connect to is running.

DPI_ASCII_CSET
Specifies that you want to use the ASCII character set. The agent will not
translate between ASCII and the native character set.

Although you can specify ASCII, the SNMP agent does not support it.

The DPI packets have a number of fields that are represented as strings. The fields
that must be represented in the selected character set are:
v The null-terminated string pointed to by the description_p, enterprise_p, group_p,

instance_p, and oid_p parameters in the various mkDPIxxxx(...) functions.
v The string pointed to by the value_p parameter in the mkDPIset(...) function, that

is if the value_type parameter specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

v The null-terminated string pointed to by the description_p, enterprise_p, group_p,
instance_p, and oid_p pointers in the various snmp_dpi_xxxx_packet structures.

v The string pointed to by the value_p pointer in the snmp_dpi_set_packet structure,
that is if the value_type field specifies that the value is an
SNMP_TYPE_DisplayString or an SNMP_TYPE_OBJECT_IDENTIFIER.

See the following related information.
“The mkDPIopen() function” on page 57

SNMP DPI constants, values, return codes, and include file
This topic describes all the constants and names for values as they are defined in
the snmp_dpi.h include file (see “The snmp_dpi.h include file” on page 89):

“DPI CLOSE reason codes” on page 85
“DPI packet types” on page 85
“DPI RESPONSE error codes” on page 85
“DPI UNREGISTER reason codes” on page 86
“DPI SNMP value types” on page 87
“Value representation of DPI SNMP value types” on page 87
“Value ranges and limits for DPI SNMP value types” on page 88

84 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

“Return codes from DPI transport-related functions” on page 88

DPI CLOSE reason codes
The currently defined DPI CLOSE reason codes as defined in the snmp_dpi.h
include file are:

#define SNMP_CLOSE_otherReason 1
#define SNMP_CLOSE_goingDown 2
#define SNMP_CLOSE_unsupportedVersion 3
#define SNMP_CLOSE_protocolError 4
#define SNMP_CLOSE_authenticationFailure 5
#define SNMP_CLOSE_byManager 6
#define SNMP_CLOSE_timeout 7
#define SNMP_CLOSE_openError 8

These codes are used in the reason_code parameter for the mkDPIclose() function and
in the reason_code field in the snmp_dpi_close_packet structure.

See the following related information.

“The snmp_dpi_close_packet structure” on page 76
“The mkDPIclose() function” on page 56

DPI packet types
The currently defined DPI packet types as defined in the snmp_dpi.h include file
are:

#define SNMP_DPI_GET 1
#define SNMP_DPI_GET_NEXT 2 /* old DPI Version 1.x style */
#define SNMP_DPI_GETNEXT 2
#define SNMP_DPI_SET 3
#define SNMP_DPI_TRAP 4
#define SNMP_DPI_RESPONSE 5
#define SNMP_DPI_REGISTER 6
#define SNMP_DPI_UNREGISTER 7
#define SNMP_DPI_OPEN 8
#define SNMP_DPI_CLOSE 9
#define SNMP_DPI_COMMIT 10
#define SNMP_DPI_UNDO 11
#define SNMP_DPI_GETBULK 12
#define SNMP_DPI_TRAPV2 13 /* reserved, not implmented */
#define SNMP_DPI_INFORM 14 /* reserved, not implemented */
#define SNMP_DPI_ARE_YOU_THERE 15

These packet types are used in the type parameter for the packet_type field in the
snmp_dpi_hdr structure.

See the following related information.
“The snmp_dpi_hdr structure” on page 77

DPI RESPONSE error codes
In case of an error on an SNMP request like GET, GETNEXT, SET, COMMIT, or
UNDO, the RESPONSE can have one of these currently defined error codes. They
are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_noError 0
#define SNMP_ERROR_tooBig 1
#define SNMP_ERROR_noSuchName 2

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 85

#define SNMP_ERROR_badValue 3
#define SNMP_ERROR_readOnly 4
#define SNMP_ERROR_genErr 5
#define SNMP_ERROR_noAccess 6
#define SNMP_ERROR_wrongType 7
#define SNMP_ERROR_wrongLength 8
#define SNMP_ERROR_wrongEncoding 9
#define SNMP_ERROR_wrongValue 10
#define SNMP_ERROR_noCreation 11
#define SNMP_ERROR_inconsistentValue 12
#define SNMP_ERROR_resourceUnavailable 13
#define SNMP_ERROR_commitFailed 14
#define SNMP_ERROR_undoFailed 15
#define SNMP_ERROR_authorizationError 16
#define SNMP_ERROR_notWritable 17
#define SNMP_ERROR_inconsistentName 18

In case of an error on a DPI only request (OPEN, REGISTER, UNREGISTER,
ARE_YOU_THERE), the RESPONSE can have one of these currently defined error
codes. They are defined in the snmp_dpi.h include file:

#define SNMP_ERROR_DPI_noError 0
#define SNMP_ERROR_DPI_otherError 101
#define SNMP_ERROR_DPI_notFound 102
#define SNMP_ERROR_DPI_alreadyRegistered 103
#define SNMP_ERROR_DPI_higherPriorityRegistered 104
#define SNMP_ERROR_DPI_mustOpenFirst 105
#define SNMP_ERROR_DPI_notAuthorized 106
#define SNMP_ERROR_DPI_viewSelectionNotSupported 107
#define SNMP_ERROR_DPI_getBulkSelectionNotSupported 108
#define SNMP_ERROR_DPI_duplicateSubAgentIdentifier 109
#define SNMP_ERROR_DPI_invalidDisplayString 110
#define SNMP_ERROR_DPI_characterSetSelectionNotSupported 111

These codes are used in the error_code parameter for the mkDPIresponse() function
and in the error_code field in the snmp_dpi_resp_packet structure.

See the following related information.
“The snmp_dpi_resp_packet structure” on page 80
“The mkDPIresponse() function” on page 60

DPI UNREGISTER reason codes
These are the currently defined DPI UNREGISTER reason codes. They are defined
in the snmp_dpi.h include file:

#define SNMP_UNREGISTER_otherReason 1
#define SNMP_UNREGISTER_goingDown 2
#define SNMP_UNREGISTER_justUnregister 3
#define SNMP_UNREGISTER_newRegistration 4
#define SNMP_UNREGISTER_higherPriorityRegistered 5
#define SNMP_UNREGISTER_byManager 6
#define SNMP_UNREGISTER_timeout 7

These codes are used in the reason_code parameter for the mkDPIunregister()
function and in the reason_code field in the snmp_dpi_ureg_packet structure.

See the following related information.
“The snmp_dpi_ureg_packet structure” on page 82
“The mkDPIunregister() function” on page 65

86 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DPI SNMP value types
These are the currently defined value types as as defined in the snmp_dpi.h
include file:
#define SNMP_TYPE_MASK 0x7f /* mask to isolate type*/
#define SNMP_TYPE_Integer32 (128|1) /* 32-bit INTEGER */
#define SNMP_TYPE_OCTET_STRING 2 /* OCTET STRING */
#define SNMP_TYPE_OBJECT_IDENTIFIER 3 /* OBJECT IDENTIFIER */
#define SNMP_TYPE_NULL 4 /* NULL, no value */
#define SNMP_TYPE_IpAddress 5 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_Counter32 (128|6) /* 32-bit Counter */
#define SNMP_TYPE_Gauge32 (128|7) /* 32-bit Gauge */
#define SNMP_TYPE_TimeTicks (128|8) /* 32-bit TimeTicks in */

/* hundredths of a sec */
#define SNMP_TYPE_DisplayString 9 /* DisplayString (TC) */
#define SNMP_TYPE_BIT_STRING 10 /* BIT STRING */
#define SNMP_TYPE_NsapAddress 11 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_UInteger32 (128|12) /* 32-bit INTEGER */
#define SNMP_TYPE_Counter64 13 /* 64-bit Counter */
#define SNMP_TYPE_Opaque 14 /* IMPLICIT OCTETSTRING*/
#define SNMP_TYPE_noSuchObject 15 /* IMPLICIT NULL */
#define SNMP_TYPE_noSuchInstance 16 /* IMPLICIT NULL */
#define SNMP_TYPE_endOfMibView 17 /* IMPLICIT NULL */

These value types are used in the value_type parameter for the mkDPIset() function
and in the value_type field in the snmp_dpi_set_packet structure.

See the following related information.
“The snmp_dpi_set_packet structure” on page 81
“The mkDPIset() function” on page 62
“Value representation of DPI SNMP value types”
“Value ranges and limits for DPI SNMP value types” on page 88

Value representation of DPI SNMP value types
Values in the snmp_dpi_set_packet structure are represented as follows:
v 32-bit integers are defined as long int or unsigned long int. A long int is

assumed to be 4 bytes.
v 64-bit integers are represented as an snmp_dpi_u64.

Unsigned 64 bit integers are dealt with only in SNMP. In a structure that has
two fields, the high order piece and the low order piece, each is of type
unsigned long int. These are assumed to be 4 bytes.

v Object identifiers are null-terminated strings in the selected character set,
representing the OID in ASN.1 dotted-decimal notation. The length includes the
terminating NULL.
An ASCII example:
’312e332e362e312e322e312e312e312e3000’h

represents "1.3.6.1.2.1.1.1.0" which is sysDescr.0.
An EBCDIC example:
’f14bf34bf64bf14bf24bf14bf14bf14bf000’h

represents "1.3.6.1.2.1.1.1.0" which is sysDescr.0.
v DisplayStrings are in the selected character set. The length specifies the length of

the string.
An ASCII example:
’6162630d0a’h

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 87

represents "abc\r\n", no NULL.
An EBCDIC example:
’8182830d25’h

represents "abc\r\n", no NULL.
v IpAddress and Opaque are implicit OCTET_STRING, so they are a sequence of

octets or bytes. This means, for instance, that the IP address is in network byte
order.

v NULL has a 0 length for the value, no value data, so a NULL pointer is returned
in the value_p field.

v noSuchObject, noSuchInstance, and endOfMibView are implicit NULL and are
represented as such.

v BIT_STRING is an OCTET_STRING of the form uubbbb...bb, where the first
octet (uu) is 0x00-0x07 and indicates the number of unused bits in the last octet
(bb). The bb octets represent the bit string itself, where bit 0 comes first and so
on.

See the following related information.
“Value ranges and limits for DPI SNMP value types”

Value ranges and limits for DPI SNMP value types
The following rules apply to object IDs in ASN.1 notation:
v The object ID consists of 1 to 128 subIDs, which are separated by periods.
v Each subID is a positive number. No negative numbers are allowed.
v The value of each number cannot exceed 4294967295. This value is 2 to the

power of 32 minus 1.
v The valid values of the first subID are 0, 1, or 2.
v If the first subID has a value of 0 or 1, the second subID can have a value only

of 0 through 39.

The following rules apply to DisplayString:
v A DisplayString (Textual Convention) is basically an OCTET STRING in SNMP

terms.
v The maximum size of a DisplayString is 255 octets or bytes.

More information on the DPI SNMP value types can be found in the SNMP
Structure of Management Information (SMI) and SNMP Textual Conventions (TC)
RFCs. These two RFCs are RFC 1902 and RFC 1903. See Appendix J, “Related
protocol specifications,” on page 1075 for information about accessing RFCs.

Return codes from DPI transport-related functions
These are the currently defined values for the return codes from DPI
transport-related functions. They are defined in the snmp_dpi.h include file:
#define DPI_RC_OK 0 /* all OK, no error */
#define DPI_RC_NOK -1 /* some other error */
#define DPI_RC_NO_PORT -2 /* can’t determine DPIport */
#define DPI_RC_NO_CONNECTION -3 /* no connection to DPIagent*/
#define DPI_RC_EOF -4 /* EOF receivd on connection*/
#define DPI_RC_IO_ERROR -5 /* Some I/O error on connect*/
#define DPI_RC_INVALID_HANDLE -6 /* unknown/invalid handle */
#define DPI_RC_TIMEOUT -7 /* timeout occurred */

88 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

#define DPI_RC_PACKET_TOO_LARGE -8 /* packed too large, dropped*/
#define DPI_RC_UNSUPPORTED_DOMAIN -9 /*unsupported domain for connect*/
#define DPI_RC_INVALID_ARGUMENT -10 /*invalid argument passed*/

These values are used as return codes for the transport-related DPI functions.

See the following related information.
“The DPIconnect_to_agent_TCP() function” on page 69
“The DPIconnect_to_agent_UNIXstream() function” on page 70
“The DPIawait_packet_from_agent() function” on page 67
“The DPIsend_packet_to_agent() function” on page 73

The snmp_dpi.h include file
#include <snmp_dpi.h>

snmp_dpi.h include parameters
None

snmp_dpi.h include description
The snmp_dpi.h include file defines the SNMP DPI API to the DPI subagent
programmer. It has all the function prototype statements, and it also has the
definitions for the snmp_dpi structures.

The same include file is used at the agent side, so you will see some definitions
that are unique to the agent side. Also, other functions or prototypes of functions
not implemented on SNMP might exist. Therefore, use the API only as it is
documented in this manual.

Macros, functions, structures, constants, and values defined in the snmp_dpi.h
include file are:
v “The DPIawait_packet_from_agent() function” on page 67
v “The DPIconnect_to_agent_TCP() function” on page 69
v “The DPIconnect_to_agent_UNIXstream() function” on page 70
v “The DPIdebug() function” on page 53
v “The DPIdisconnect_from_agent() function” on page 71
v “The DPI_PACKET_LEN() macro” on page 53
v “The DPIsend_packet_to_agent() function” on page 73
v “The fDPIparse() function” on page 54
v “The fDPIset() function” on page 54
v “The mkDPIAreYouThere() function” on page 55
v “The mkDPIclose() function” on page 56
v “The mkDPIopen() function” on page 57
v “The mkDPIregister() function” on page 59
v “The mkDPIresponse() function” on page 60
v “The mkDPIset() function” on page 62
v “The mkDPItrap() function” on page 64
v “The mkDPIunregister() function” on page 65
v “The pDPIpacket() function” on page 66
v “The snmp_dpi_close_packet structure” on page 76

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 89

v “The snmp_dpi_get_packet structure” on page 76
v “The snmp_dpi_next_packet structure” on page 79
v “The snmp_dpi_hdr structure” on page 77
v “The lookup_host() function” on page 74
v “The snmp_dpi_resp_packet structure” on page 80
v “The snmp_dpi_set_packet structure” on page 81
v “The snmp_dpi_ureg_packet structure” on page 82
v “DPI CLOSE reason codes” on page 85
v “DPI packet types” on page 85
v “DPI RESPONSE error codes” on page 85
v “DPI UNREGISTER reason codes” on page 86
v “DPI SNMP value types” on page 87
v “DPI OPEN character set selection” on page 84

DPI subagent example
This is an example of a DPI version 2.0 subagent. The code is called
dpi_mvs_sample.c in the /usr/lpp/tcpip/samples directory.

Note: The example code in this document was copied from the sample file at the
time of the publication. There might be differences in the code presented and the
code that is included with the product. Always use the code provided in the
/usr/lpp/tcpip/samples directory as the authoritative sample code.

The DPI subagent example includes:
v “Overview of subagent processing”
v “SNMP DPI: Connecting to the agent” on page 92
v “SNMP DPI: Registering a subtree with the agent” on page 94
v “SNMP DPI: Processing requests from the agent” on page 97
v “SNMP DPI: Processing a GET request” on page 100
v “SNMP DPI: Processing a GETNEXT request” on page 103
v “SNMP DPI: Processing a SET/COMMIT/UNDO request” on page 107
v “SNMP DPI: Processing an UNREGISTER request” on page 110
v “SNMP DPI: Processing a CLOSE request” on page 110
v “SNMP DPI: Generating a TRAP” on page 111

See the following related information.
“SNMP DPI subagent programming concepts” on page 42

Overview of subagent processing
This overview assumes that the subagent communicates with the agent over a TCP
connection. Other connection implementations are possible and, in that case, the
processing approach might be a bit different.

In this overview, the agent is requested to send at most one varBind per DPI
packet, so there is no need to loop through a list of varBinds. You might gain
performance improvements if you allow for multiple varBinds per DPI packet on
GET, GETNEXT, SET requests. To allow multiple varBinds, your code must loop

90 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

through the varBind list, which makes the situation more complicated. The DPI
subagent programmer can handle that when you understand the basics of the DPI
API.

The following sample shows the supported MIB variable definitions for
DPI_SIMPLE:
DPISimple-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, snmpModules, enterprises

FROM SNMPv2-SMI
DisplayString

FROM SNMPv2-TC

ibm OBJECT IDENTIFIER ::= { enterprises 2 }
ibmDPI OBJECT IDENTIFIER ::= { ibm 2 }
dpi20MIB OBJECT IDENTIFIER ::= { ibmDPI 1 }

-- dpiSimpleMIB MODULE-IDENTITY
-- LAST-UPDATED "9401310000Z"

-- DESCRIPTION
-- "The MIB module describing DPI Simple Objects for
-- the dpi_samp.c program"
-- ::= { snmpModules x }

dpiSimpleMIB OBJECT IDENTIFIER ::= { dpi20MIB 5 }

dpiSimpleInteger OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A sample integer32 value"
::= { dpiSimpleMIB 1 }

dpiSimpleString OBJECT-TYPE
SYNTAX DisplayString
ACCESS read-write
STATUS mandatory
DESCRIPTION

"A sample Display String"
::= { dpiSimpleMIB 2 }

dpiSimpleCounter32 OBJECT-TYPE
SYNTAX Counter -- Counter32 is SNMPv2
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A sample 32-bit counter"
::= { dpiSimpleMIB 3 }

dpiSimpleCounter64 OBJECT-TYPE
SYNTAX Counter -- Counter64 is SNMPv2,

-- No SMI support for it yet
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A sample 64-bit counter"
::= { dpiSimpleMIB 4 }

END

To make the code more readable, the following names have been defined in our
dpi_mvs_sample.c source file.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 91

#define DPI_SIMPLE_SUBAGENT "1.3.6.1.4.1.2.2.1.5"
#define DPI_SIMPLE_MIB "1.3.6.1.4.1.2.2.1.5."
#define DPI_SIMPLE_INTEGER "1.0" /* dpiSimpleInteger.0 */
#define DPI_SIMPLE_STRING "2.0" /* dpiSimpleString.0 */
#define DPI_SIMPLE_COUNTER32 "3.0" /* dpiSimpleCounter32.0 */
#define DPI_SIMPLE_COUNTER64 "4.0" /* dpiSimpleCounter64.0 */

In addition, the following variables have been defined as global variables in our
dpi_mvs_sample.c source file.
static int /*handle has global scope */
int global_role=0; /*flag for debug macros */
static int instance_level = 0;
static long int value1 = 5;
#define value2_p cur_val_p /* writable object */
#define value2_len cur_val_len /* writable object */
static char *cur_val_p = (char *)0;
static char *new_val_p = (char *)0;
static char *old_val_p = (char *)0;
static unsigned long cur_val_len = 0;
static unsigned long new_val_len = 0;
static unsigned long old_val_len = 0;
static unsigned long value3 = 1;
#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
static snmp_dpi_u64 value4 = {0x80000000,1L};
#endif/*ndef EXCLUDE_SNMP_SMIv2_SUPPORT*/
static int unix_sock =0; /*default use TCP */
static unsigned short timeout = 3; /*default timeout */

SNMP DPI: Connecting to the agent
Before a subagent can receive or send any DPI packets from or to the SNMP
DPI-capable agent, it must connect to the agent and identify itself to the agent.

The following example code returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView must
be returned as defined by the SNMP Version 2 rules. You will need to specify:
v A host name or IP address in dotted decimal notation that specifies where the

agent is running. Often the name loopback can be used if the subagent runs on
the same system as the agent.

v A community name that is used to obtain the dpi TCP port from the agent.
Internally that is done by sending a regular SNMP GET request to the agent. In
an open environment, the well-known community name public can probably be
used.

The function returns a negative error code if an error occurs. If the connection
setup is successful, it returns a handle that represents the connection and that must
be used on subsequent calls to send or await DPI packets.

The second step is to identify the subagent to the agent. This is done by making a
DPI-OPEN packet, sending it to the agent, and then awaiting the response from
the agent. The agent can accept or deny the OPEN request. Making a DPI-OPEN
packet is done by calling mkDPIopen(), which expects the following parameters:
v A unique subagent identification (an object identifier).
v A description, which can be the NULL string ("").

92 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Overall subagent timeout in seconds. The agent uses this value as a timeout
value for a response when it sends a request to the subagent. The agent may
have a maximum value for this timeout that will be used if you exceed it.

v The maximum number of varBinds per DPI packet that the subagent is willing
or is able to handle.

v The desired character set. In most cases you want to use the native character set.
v Length of a password. A 0 means no password.
v Pointer to the password or NULL if no password. It depends on the agent if

subagents must specify a password to open up a connection.

The function returns a pointer to a static buffer holding the DPI packet if
successful. If it fails, it returns a NULL pointer.

When the DPI-OPEN packet has been created, you must send it to the agent. You
can use the DPIsend_packet_to_agent() function, which expects the following
parameters:
v The handle of a connection from DPIconnect_to_agent_TCP.
v A pointer to the DPI packet from mkDPIopen.
v The length of the packet. The snmp_dpi.h include file provides a macro

DPI_PACKET_LEN that calculates the packet length of a DPI packet.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an
appropriate DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

Now wait for a response to the DPI-OPEN. To await such a response, you call the
DPIawait_packet_from_agent() function, which expects the following parameters:
v The handle of a connection from DPIconnect_to_agent_TCP.
v A timeout in seconds, which is the maximum time to wait for response.
v A pointer to a pointer, which will receive a pointer to a static buffer containing

the awaited DPI packet. If the system fails to receive a packet, a NULL pointer is
stored.

v A pointer to a long integer (32-bit), which will receive the length of the awaited
packet. If it fails, it will be set to 0.

This function returns DPI_RC_OK (value 0) if successful. Otherwise, an
appropriate DPI_RC_xxxx error code as defined in snmp_dpi.h is returned.

The last step is to ensure that you received a DPI-RESPONSE back from the agent.
If so, ensure that the agent accepted you as a valid subagent. This will be shown
by the error_code field in the DPI response packet.

The following example code establishes a connection and opens it by identifying
you to the agent.
static void do_connect_and_open(char *hostname_p, char *community_p)
{

unsigned char *packet_p;
int rc;
unsigned long length;
snmp_dpi_hdr *hdr_p;

#ifdef MVS
__etoa(community_p); /* Translate to ASCII */
#endif /* MVS */

#ifndef DPI_MINIMAL_SUBAGENT

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 93

#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI
if (unix_sock) {

handle =
DPIconnect_to_agent_UNIXstream(/* (UNIX) connect to */

hostname_p, /* agent on this host */
community_p); /* snmp community name */

} else
#endif /* def INCLUDE_UNIX_DOMAIN_FOR_DPI */
#endif /* ndef DPI_MINIMAL_SUBAGENT */

handle =
DPIconnect_to_agent_TCP(/* (TCP) connect to agent */

hostname_p, /* on this host */
community_p); /* snmp community name */

if (handle < 0) exit(1); /* If it failed, exit */

packet_p = mkDPIopen(/* Make DPI-OPEN packet */
DPI_SIMPLE_SUBAGENT, /* Our identification */
"Simple DPI subAgent", /* description */
10L, /* Our overall timeout */
1L, /* max varBinds/packet */
DPI_NATIVE_CSET, /* native character set */
0L, /* password length */
(unsigned char *)0); /* ptr to password */

if (!packet_p) exit(1); /* If it failed, exit */

rc = DPIsend_packet_to_agent(/* send OPEN packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

rc = DPIawait_packet_from_agent(/* wait for response */
handle, /* on this connection */
10, /* timeout in seconds */
packet_p, /* receives ptr to packet */
length;); /* receives packet length */

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit */

hdr_p = pDPIpacket(packet_p); /* parse DPI packet */
if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it */

exit(1); /* then exit */

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;
if (rc != SNMP_ERROR_DPI_noError) exit(1);

} /* end of do_connect_and_open() */

SNMP DPI: Registering a subtree with the agent
After setting up a connection to the agent and identifying yourself, register one or
more MIB subtrees or instances for which you want to be responsible to handle
SNMP requests.

To do so, the subagent must create a DPI-REGISTER packet and send it to the
agent. The agent will then send a response to indicate success or failure of the
register request.

94 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

To create a DPI-REGISTER packet, the subagent uses a call to the mkDPIregister()
function, which expects these parameters:
v A timeout value in seconds for this subtree. If you specify 0, your overall

timeout value that was specified in DPI-OPEN is used. You can specify a
different value if you expect longer processing time for a specific subtree.

v A requested priority. Multiple subagents may register the same subtree at
different priorities. For example, 0 is better than 1 and so on. The agent
considers the subagent with the best priority to be the active subagent for the
subtree. If you specify -1, you are asking for the best priority available. If you
specify 0, you are asking for a better priority than any existing subagent may
already have.

v The MIB subtree or instance that you want to control. For object level
registration, this group ID must have a trailing dot. For instance level
registration, this group ID would simply have the instance number follow the
object number subtree.

v You have no choice in GETBULK processing. You must ask the agent to map a
GETBULK into multiple GETNEXT packets.

The function returns a pointer to a static buffer holding the DPI packet if
successful. If it fails, it returns a NULL pointer.

Now send this DPI-REGISTER packet to the agent with the
DPIsend_packet_to_agent() function. This is similar to sending the DPI_OPEN
packet. Then wait for a response from the agent. Again, use the
DPIawait_packet_from_agent() function in the same way as you awaited a
response on the DPI-OPEN request. After you have received the response, check
the return code to ensure that registration was successful.

The following code example demonstrates how to register one MIB subtree with
the agent.
static
void do_register(void)

{

unsigned char *packet_p;

int rc;

unsigned long length;

snmp_dpi_hdr *hdr_p;

int i;

char buf 512 ;

for (i=0; i<4; i++) {

strcpy(buf,DPI_SIMPLE_MIB);

if (instance_level) {

switch (i) {

case 0:

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 95

strcat(buf,DPI_SIMPLE_INTEGER);

break;

case 1:

strcat(buf,DPI_SIMPLE_STRING);

break;

case 2:

strcat(buf,DPI_SIMPLE_COUNTER32);

break;

case 3:

strcat(buf,DPI_SIMPLE_COUNTER64);

break;

} /* endswitch */

}

packet_p = mkDPIregister(/* Make DPIregister packet
*/

timeout, /* timeout in seconds
*/

0, /* requested priority
*/

buf, /* ptr to the subtree
*/

DPI_BULK_NO); /* Map GetBulk into GetNext*/

if (!packet_p) exit(1); /* If it failed, exit
*/

rc = DPIsend_packet_to_agent(/* send REGISTER packet
*/

handle, /* on this connection
*/

packet_p, /* this is the packet
*/

DPI_PACKET_LEN(packet_p));/* and this is its length
*/

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit
*/

rc = DPIawait_packet_from_agent(/* wait for response
*/

handle, /* on this connection
*/

10, /* timeout in seconds
*/

&packet_p, /* receives ptr to packet
*/

&length); /* receives packet length
*/

96 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit
*/

hdr_p = pDPIpacket(packet_p); /* parse DPI packet
*/

if (hdr_p == snmp_dpi_hdr_NULL_p) /* If we fail to parse it
*/

exit(1); /* then exit
*/

if (hdr_p->packet_type != SNMP_DPI_RESPONSE) exit(1);

rc = hdr_p->data_u.resp_p->error_code;

if (rc != SNMP_ERROR_DPI_noError) exit(1);

if (!instance_level) break;

} /* endfor */

} /* end of do_register() */

SNMP DPI: Processing requests from the agent
After registering your sample MIB subtree with the agent, expect that SNMP
requests for that subtree are passed back to you for processing. Because the
requests arrive in the form of DPI packets on the connection that you have
established, go into a While loop to await DPI packets from the agent.

Because the subagent cannot know in advance which kind of packet arrives from
the agent, await a DPI packet (forever), then parse the packet, check the packet
type, and process the request based on the DPI packet type. A call to pDPIpacket,
which expects as parameter a pointer to the encoded or serialized DPI packet,
returns a pointer to a DPI parse tree. The pointer points to an snmp_dpi_hdr
structure which looks as follows:
struct snmp_dpi_hdr {

unsigned char proto_major;
unsigned char proto_version;
unsigned char proto_release;
unsigned short packet_id;
unsigned char packet_type;
union {

snmp_dpi_reg_packet *reg_p;
snmp_dpi_ureg_packet *ureg_p;
snmp_dpi_get_packet *get_p;
snmp_dpi_next_packet *next_p;
snmp_dpi_next_packet *bulk_p;
snmp_dpi_set_packet *set_p;
snmp_dpi_resp_packet *resp_p;
snmp_dpi_trap_packet *trap_p;
snmp_dpi_open_packet *open_p;

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 97

snmp_dpi_close_packet *close_p;
unsigned char *any_p;

} data_u;
};
typedef struct snmp_dpi_hdr snmp_dpi_hdr;
#define snmp_dpi_hdr_NULL_p ((snmp_dpi_hdr *)0)

With the DPI parse tree, you decide how to process the DPI packet. The following
code example demonstrates the high-level process of a DPI subagent.
main(int argc, char
*argv[], char *envp][{}[][])
{

unsigned char *packet_p;
int i = 0;
int rc = 0;

#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent
*/

int debug = 0;
#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */

unsigned long length;
snmp_dpi_hdr *hdr_p;
char *hostname_p = NULL; /* @L1C*/
char *community_p = SNMP_COMMUNITY;
char *cmd_p = "";
char hostname[MAX_HOSTNAME_LEN+1]; /*

@L1A*/

if (argc >= 1) cmd_p = argv[0];

for (i=1; i < argc; i++) {
if (strcmp(argv[i],"-h") == 0) {

if (i+1 >= argc) {
printf("Need hostname\n\n");
usage(cmd_p);

} /* endif */
hostname_p = argv[++i];

#ifndef DPI_VERY_MINIMAL_SUBAGENT /* with VERY minimal agent
*/

} else if (strcmp(argv[i],"-c") == 0) {
if (i+1 >= argc) {

printf("Need community name\n\n");
usage(cmd_p);

} /* endif */
community_p = argv[++i];

#ifdef INCLUDE_UNIX_DOMAIN_FOR_DPI
} else if (strcmp(argv[i],"-unix") == 0) {

unix_sock = 1;
#endif /* def INCLUDE_UNIX_DOMAIN_FOR_DPI */

} else if (strcmp(argv[i],"-ireg") == 0) {
instance_level = 1;

} else if (strcmp(argv[i],"-d") == 0) {
if (i+1 >= argc) {

debug = 1;
continue;

}
if ((strlen(argv[i+1]) == 1) && isdigit(*argv[i+1]))

{
i++;
debug = atoi(argv[i]);

} else {
debug = 1;

} /* endif */
#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */

} else {
usage(cmd_p);

} /* endif */

98 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

} /* endfor */

#ifndef DPI_VERY_MINIMAL_SUBAGENT
if (debug) {

printf("\n%s - %s\n",__FILE__, VERSION);
DPIdebug(debug); /* turn on DPI dubugging

*/
timeout += 6; /* longer timeout please

*/
} /* endif */

#endif /* ndef DPI_VERY_MINIMAL_SUBAGENT */

if (hostname_p == NULL) { /* -h not specified. Try
to

obtain local host name
@L1A*/

if (gethostname(hostname, MAX_HOSTNAME_LEN) != 0) {
printf("\ngethostname failed. "

"Restart with -h parameter.\n\n"); /* @L1A*/
exit(1); /* @L1A*/

}
else { /* gethostname worked @L1A*/

hostname_p = hostname; /* @L1A*/
} /* @L1A*/

} /* -h not specified @L1A*/

/* first init value2_p, our dpiSimpleString (DisplayString)
*/

/* since we treat it as display string keep terminating NULL
*/

value2_p = (char *) malloc(strlen("Initial String")+1);
if (value2_p) {

memcpy(value2_p,"Initial String",strlen("Initial String")+1);
value2_len = strlen("Initial String")+1;

} /* endif */

do_connect_and_open(hostname_p,
community_p); /* connect and DPI-OPEN

*/

do_register(); /* register our subtree
*/

do_trap(); /* issue a trap as sample
*/

while (rc == 0) { /* do forever
*/

rc = DPIawait_packet_from_agent(/* wait for a DPI packet
*/

handle, /* on this connection
*/

-1, /* wait forever
*/

&packet_p, /* receives ptr to packet
*/

&length); /* receives packet length
*/

if (rc != DPI_RC_OK) exit(1); /* If it failed, exit
*/

hdr_p = pDPIpacket(packet_p); /* parse DPI packet
*/

if (hdr_p == snmp_dpi_hdr_NULL_p)/* If we fail to parse it
*/

exit(1); /* then exit

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 99

*/

switch(hdr_p->packet_type) { /* handle by DPI type
*/

case SNMP_DPI_GET:
rc = do_get(hdr_p,

hdr_p->data_u.get_p);
break;

case SNMP_DPI_GETNEXT:
rc = do_next(hdr_p,

hdr_p->data_u.next_p);
break;

case SNMP_DPI_SET:
case SNMP_DPI_COMMIT:
case SNMP_DPI_UNDO:

rc = do_set(hdr_p,
hdr_p->data_u.set_p);

break;
case SNMP_DPI_CLOSE:

rc = do_close(hdr_p,
hdr_p->data_u.close_p);

break;
case SNMP_DPI_UNREGISTER:

rc = do_unreg(hdr_p,
hdr_p->data_u.ureg_p);

break;
default:

printf("Unexpected DPI packet type %d\n",
hdr_p->packet_type);

rc = -1;
} /* endswitch */
if (rc) exit(1);

} /* endwhile */

return(0);
} /* end of main() */

SNMP DPI: Processing a GET request
When the DPI packet is parsed, the snmp_dpi_hdr structure will show in the
packet_type that this is an SNMP_DPI_GET packet. In that case, the packet_body
contains a pointer to a GET-varBind, which is represented in an
snmp_dpi_get_packet structure:
struct dpi_get_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_get_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_get_packet snmp_dpi_get_packet;
#define snmp_dpi_get_packet_NULL_p ((snmp_dpi_get_packet *)0)

Assuming you have registered subtree 1.3.6.1.4.1.2.2.1.5 and a GET request comes
in for one variable (1.3.6.1.4.1.2.2.1.5.1.0) that is object 1 instance 0 in the subtree,
the fields in the snmp_dpi_get_packet would have pointers to:

object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a GET request, each one is represented in an
snmp_dpi_get_packet structure and all the snmp_dpi_get_packet structures are

100 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

chained using the next pointer. If the next pointer is not the
snmp_dpi_get_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you prepare a SET-varBind, which is represented in an snmp_dpi_set_packet
structure:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:
v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must

be added to an existing chain of varBinds. If this is the first or the only varBind
in the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the subtree that you registered.
v A pointer to the rest of the OID; in other words, the piece that follows the

subtree.
v The value type of the value to be bound to the variable name. This must be one

of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.
v The length of the value. For integer type values, this must be a length of 4. Work

with 32-bit signed or unsigned integers except for the Counter64 type. For the
Counter64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied. So
upon return you can dispose of our own pointers and allocated memory as you
please. If the call is successful, a pointer is returned as follows:
v To a new snmp_dpi_set_packet if it is the first or only varBind.
v To the existing snmp_dpi_set_packet that you passed on the call. In this case, the

new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

When you have prepared the SET-varBind data, you can create a DPI RESPONSE
packet using the mkDPIresponse() function that expects these parameters:
v A pointer to an snmp_dpi_hdr. You should use the header of the parsed

incoming packet. It is used to copy the packet_id from the request into the
response, such that the agent can correlate the response to a request.

v A return code which is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.
A request for a nonexisting object or instance is not considered an error. Instead,
you must pass a value type of SNMP_TYPE_noSuchObject or

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 101

SNMP_TYPE_noSuchInstance respectively. These two value types have an
implicit value of NULL, so you can pass a 0 length and a NULL pointer for the
value in this case.

v The index of the varBind in error starts counting at 1. Pass 0 if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

v A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GET request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. You assume that there are no
errors in the request, but proper code should do the checking for that. For instance,
you return a noSuchInstance if the instance is not exactly what you expect and a
noSuchObject if the object instance_ID is greater than 3. However, there might be
no instance_ID at all and you should check for that, too.
static int do_get(snmp_dpi_hdr *hdr_p, snmp_dpi_get_packet *pack_p)
{

unsigned char *packet_p;
int rc;
snmp_dpi_set_packet *varBind_p;
char *i_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
if (pack_p->instance_p) {

printf("unexpected INSTANCE ptr \n");
return(-1);

}
i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);

} else {
i_p = pack_p->instance_p;

}

if (i_p && (strcmp(i_p,"1.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

} else if (i_p && (strcmp(i_p,"2.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

} else if (i_p && (strcmp(i_p,"3.0") == 0)) {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
} else if (i_p && (strcmp(i_p,"4.0") == 0)) {

varBind_p = mkDPIset(/* Make DPI set packet */

102 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value *Apr23*/

} else if (i_p && (strcmp(i_p,"4") > 0)) {
#else

} else if (i_p && (strcmp(i_p,"3") > 0)) {
#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchObject, /* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} else {
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_noSuchInstance,/* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} /* endif */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_get() */

SNMP DPI: Processing a GETNEXT request
Put your short description here; used for first paragraph and abstract.

When a DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_GETNEXT packet, and so the packet_body
contains a pointer to a GETNEXT-varBind, which is represented in an
snmp_dpi_next_packet structure:
struct dpi_next_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
struct dpi_next_packet *next_p; /* ptr to next in chain*/

};
typedef struct dpi_next_packet snmp_dpi_next_packet;
#define snmp_dpi_next_packet_NULL_p ((snmp_dpi_next_packet *)0)

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 103

Assuming you have registered subtree dpiSimpleMIB and a GETNEXT arrives for
one variable (dpiSimpleInteger.0) that is object 1 instance 0 in the subtree, the fields
in the snmp_dpi_get_packet structure would have pointers to:
object_p -> "1.3.6.1.4.1.2.2.1.5.1.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "1.0"
next_p -> snmp_dpi_next_packet_NULL_p

If there are multiple varBinds in a GETNEXT request, each one is represented in an
snmp_dpi_next_packet structure and all the snmp_dpi_next_packet structures are
chained by the next pointer. If the next pointer is not the
snmp_dpi_next_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
You must find out which OID is the one that lexicographically follows the one in
the request. It is that OID with its value that you must return as a response.
Therefore, you must now also set the proper OID in the response. When you are
ready to make a response that contains the new OID and the value of that variable,
you must prepare a SET-varBind which is represented in an snmp_dpi_set_packet:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:
v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must

be added to an existing chain of varBinds. If this is the first or only varBind in
the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the desired subtree.
v A pointer to the rest of the OID, in other words the piece that follows the

subtree.
v The value type of the value to be bound to the variable name. This must be one

of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.
v The length of the value. For integer type values, this must be a length of 4. Work

with 32-bit signed or unsigned integers except for the Counter64 type. For
Counter 64 type, point to an snmp_dpi_u64 structure and pass the length of that
structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied.
Upon return, you can dispose of your own pointers and allocated memory as you
please. If the call is successful, a pointer is returned as follows:
v A new snmp_dpi_set_packet if it is the first or only varBind.
v The existing snmp_dpi_set_packet that you passed on the call. In this case, the

new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

104 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

When you have prepared the SET-varBind data, create a DPI RESPONSE packet
using the mkDPIresponse() function, which expects these parameters:
v A pointer to an snmp_dpi_hdr. Use the header of the parsed incoming packet. It

is used to copy the packet_id from the request into the response, such that the
agent can correlate the response to a request.

v A return code that is an SNMP error code. If successful, this should be
SNMP_ERROR_noError (value 0). If failure, it must be one of the
SNMP_ERROR_xxxx values as defined in the snmp_dpi.h include file.
A request for a nonexisting object or instance is not considered an error. Instead,
pass the OID and value of the first OID that lexicographically follows the
nonexisting object or instance.
Reaching the end of the subtree is not considered an error. For example, if there
is no NEXT OID, this is not an error. In this situation, return the original OID as
received in the request and a value_type of SNMP_TYPE_endOfMibView. This
value_type has an implicit value of NULL, so you can pass a 0 length and a
NULL pointer for the value.

v The index of the first varBind in error starts counting at 1. Pass 0 if no error
occurred, or pass the proper index of the first varBind for which an error was
detected.

v A pointer to a chain of snmp_dpi_set_packets (varBinds) to be returned as
response to the GETNEXT request. If an error was detected, an
snmp_dpi_set_packet_NULL_p pointer may be passed.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. Proper
checking is done for lexicographic next object, but no checking is done for
ULONG_MAX, or making sure that the instance ID is indeed valid (digits and
periods). If the code gets to the end of our dpiSimpleMIB, an endOfMibView is
returned as defined by the SNMP Version 2 rules.
static int do_next(snmp_dpi_hdr *hdr_p, snmp_dpi_next_packet *pack_p)
{

unsigned char *packet_p;
int rc;
unsigned long subid; /* subid is unsigned */
unsigned long instance; /* same with instance */
char *cp;
snmp_dpi_set_packet *varBind_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

/* If we have done instance level registration, then we should */
/* never get a getNext. Anyway, if we do, then we skip this and */
/* return an endOfMibView. */
if (instance_level) {

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_endOfMibView, /* value type */
0L, /* length of value */
(unsigned char *)0); /* ptr to value */

} else {

if (pack_p->instance_p) { /* we have an instance ID */
cp = pack_p->instance_p; /* pick up ptr */
subid = strtoul(cp, cp, 10); /* convert subid (object) */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 105

if (*cp == ’.’) { /* followed by a dot ? */
cp++; /* point after it if yes */
instance=strtoul(cp,cp,10); /* convert real instance */

/* not that we need it, we */
subid++; /* only have instance 0, */

/* so NEXT is next object */
instance = 0; /* and always instance 0 */

} else { /* no real instance passed */
instance = 0; /* so we can use 0 */
if (subid == 0) subid++; /* if object 0, start at 1 */

} /* endif */
} else { /* no instance ID passed */

subid = 1; /* so do first object */
instance = 0; /* instance 0 (all we have)*/

} /* endif */

/* we have set subid and instance such that we can basically */
/* process the request as a GET now. Actually, we don’t even */
/* need instance, because all out object instances are zero. */

if (instance != 0) printf("Strange instance: %lu\n",instance);

switch (subid) {
case 1:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

break;
case 2:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

break;
case 3:

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

break;
#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT

case 4: /* *Apr23*/
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value */

break; /* *Apr23*/
#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

default:
varBind_p = mkDPIset(/* Make DPI set packet */

varBind_p, /* ptr to varBind chain */
pack_p->group_p, /* ptr to subtree */
pack_p->instance_p, /* ptr to rest of OID */
SNMP_TYPE_endOfMibView, /* value type */

106 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

0L, /* length of value */
(unsigned char *)0); /* ptr to value */

break;
} /* endswitch */

} /* endif */

if (!varBind_p) return(-1); /* If it failed, return */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
SNMP_ERROR_noError, /* all is OK, no error */
0L, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_next() */

SNMP DPI: Processing a SET/COMMIT/UNDO request
These three requests can come in one of these sequences:
v SET, COMMIT
v SET, UNDO
v SET, COMMIT, UNDO

The normal sequence is SET and then COMMIT. When a SET request is received,
preparations must be made to accept the new value. For example, check that
request is for an existing object and instance, check the value type and contents to
be valid, and allocate memory, but do not yet make the change.

If there are no SET errors, the next received request will be a COMMIT request. It
is then that the change must be made, but keep enough information such that you
can UNDO the change later if you get a subsequent UNDO request. The latter may
happen if the agent discovers any errors with other subagents while processing
requests that belong to the same original SNMP SET packet. All the varBinds in
the same SNMP request PDU must be processed as if atomic.

When the DPI packet is parsed, the snmp_dpi_hdr structure shows in the
packet_type that this is an SNMP_DPI_SET, SNMP_DPI_COMMIT, or
SNMP_DPI_UNDO packet. In that case, the packet_body contains a pointer to a
SET-varBind, represented in an snmp_dpi_set_packet structure. COMMIT and
UNDO have same varBind data as SET upon which they follow:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 107

Assuming we have a registered subtree dpiSimpleMIB and a SET request comes in
for one variable (dpiSimpleString.0) that is object 1 instance 0 in the subtree, and
also assuming that the agent knows about our compiled dpiSimpleMIB so that it
knows this is a DisplayString (as opposed to just an arbitrary OCTET_STRING),
the pointers in the snmp_dpi_set_packet structure would have pointers and values,
such as:
object_p -> "1.3.6.1.4.1.2.2.1.5.2.0"
group_p -> "1.3.6.1.4.1.2.2.1.5."
instance_p -> "2.0"
value_type -> SNMP_TYPE_DisplayString
value_len -> 8
value_p -> pointer to the value to be set
next_p -> snmp_dpi_get_packet_NULL_p

If there are multiple varBinds in a SET request, each one is represented in an
snmp_dpi_set_packet structure and all the snmp_dpi_set_packet structures are
chained by the next pointer. If the next pointer is not the
snmp_dpi_set_packet_NULL_p pointer, there are more varBinds in the list.

Now you can analyze the varBind structure for whatever checking you want to do.
When you are ready to make a response that contains the value of the variable,
you can prepare a new SET-varBind. However, by definition, the response to a
successful SET is exactly the same as the SET request. So there is no need to return
any varBinds. A response with SNMP_ERROR_noError and an index of zero will
do. If there is an error, a response with the SNMP_ERROR_xxxx error code and an
index pointing to the varBind in error (counting starts at 1) will do.

The following code example returns a response. It is assumed that there are no
errors in the request, but proper code should do the checking for that. The code
also does not check if the varBind in the COMMIT or UNDO is the same as that in
the SET request. A proper agent would make sure that that is the case, but a
proper subagent may want to verify that for itself. Only one check is done that this
is dpiSimpleString.0, and if it is not, a noCreation is returned.
static int do_set(snmp_dpi_hdr *hdr_p, snmp_dpi_set_packet *pack_p)
{

unsigned char *packet_p;
int rc;
int index = 0;
int error = SNMP_ERROR_noError;
snmp_dpi_set_packet *varBind_p;
char *i_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

if (instance_level) {
i_p = pack_p->group_p + strlen(DPI_SIMPLE_MIB);

} else {
i_p = pack_p->instance_p;

}

if (!i_p ││ (strcmp(i_p,"2.0") != 0))
{

if (i_p &&
(strncmp(i_p,"1.",2) == 0))

{
error = SNMP_ERROR_notWritable;

} else if (i_p &&
(strncmp(i_p,"2.",2) == 0))

{

108 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

error = SNMP_ERROR_noCreation;
} else if (i_p &&

(strncmp(i_p,"3.",2) == 0))
{

error = SNMP_ERROR_notWritable;
} else {

error = SNMP_ERROR_noCreation;
} /* endif */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */
1, /* index is 1, 1st varBind */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
}

switch (hdr_p->packet_type) {
case SNMP_DPI_SET:

if ((pack_p->value_type != SNMP_TYPE_DisplayString) &&
(pack_p->value_type != SNMP_TYPE_OCTET_STRING))

{ /* check octet string in case agent has no compiled MIB */
error = SNMP_ERROR_wrongType;
break; /* from switch */

} /* endif */
if (new_val_p) free(new_val_p); /* free these memory areas */
if (old_val_p) free(old_val_p); /* if we allocated any */
new_val_p = (char *)0;
old_val_p = (char *)0;
new_val_len = 0;
old_val_len = 0;

new_val_p = /* allocate memory for */
malloc(pack_p->value_len); /* new value to set */

if (new_val_p) { /* If success, then also */
memcpy(new_val_p, /* copy new value to our */

pack_p->value_p, /* own and newly allocated */
pack_p->value_len); /* memory area. */

new_val_len = pack_p->value_len;
} else { /* Else failed to malloc, */

error = SNMP_ERROR_genErr; /* so that is a genErr */
index = 1; /* at first varBind */

} /* endif */
break;

case SNMP_DPI_COMMIT:
old_val_p = cur_val_p; /* save old value for undo */
cur_val_p = new_val_p; /* make new value current */
new_val_p = (char *)0; /* keep only 1 ptr around */
old_val_len = cur_val_len; /* and keep lengths correct*/
cur_val_len = new_val_len;
new_val_len = 0;
/* may need to convert from ASCII to native if OCTET_STRING */
break;

case SNMP_DPI_UNDO:
if (new_val_p) { /* free allocated memory */

free(new_val_p);
new_val_p = (char *)0;
new_val_len = 0;

} /* endif */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 109

if (old_val_p) {
if (cur_val_p) free(cur_val_p);
cur_val_p = old_val_p; /* reset to old value */
cur_val_len = old_val_len;
old_val_p = (char *)0;
old_val_len = 0;

} /* endif */
break;

} /* endswitch */

packet_p = mkDPIresponse(/* Make DPIresponse packet */
hdr_p, /* ptr parsed request */
error, /* all is OK, no error */
index, /* index is zero, no error */
varBind_p); /* varBind response data */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send RESPONSE packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_set() */

SNMP DPI: Processing an UNREGISTER request
An agent can send an UNREGISTER packet if some other subagent does a register
for the same subtree at a higher priority. An agent can also send an UNREGISTER
if, for example, an SNMP manager tells the agent to make the subagent connection
or the registered subtree not valid.

Here is an example of how to handle such a packet.
static int do_unreg(snmp_dpi_hdr *hdr_p, snmp_dpi_ureg_packet *pack_p)
{

printf("DPI UNREGISTER received from agent, reason=%d\n",
pack_p->reason_code);

printf(" subtree=%s\n",pack_p->group_p);
if (pack_p->reason_code ==

SNMP_UNREGISTER_higherPriorityRegistered)
{

return(0); /* keep waiting, we may regain subtree later */
} /* endif */

DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_unreg() */

SNMP DPI: Processing a CLOSE request
An agent can send a CLOSE packet if it encounters an error or for some other
reason. It can also do so if an SNMP MANAGER tells it to make the subagent
connection not valid.

Here is an example of how to handle such a packet.
static int do_close(snmp_dpi_hdr *hdr_p, snmp_dpi_close_packet *pack_p)
{

printf("DPI CLOSE received from agent, reason=%d\n",
pack_p->reason_code);

110 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DPIdisconnect_from_agent(handle);
return(-1); /* causes exit in main loop */

} /* end of do_close() */

SNMP DPI: Generating a TRAP
Issue a trap any time after a DPI OPEN was successful. To do so, you must create
a trap packet and send it to the agent. With the TRAP, you can pass different kinds
of varBinds, if you want. In this example, three varBinds are passed; one with
integer data, one with an octet string, and one with a counter. You can also pass an
Enterprise ID, but with DPI 2.0, the agent will use your subagent ID as the
enterprise ID if you do not pass one with the trap. In most cases, that will
probably not cause problems.

You must first prepare a varBind list chain that contains the three variables that
you want to pass along with the trap. To do so, prepare a chain of three
snmp_dpi_set_packet structures, which looks like:
struct dpi_set_packet {

char *object_p; /* ptr to OIDstring */
char *group_p; /* ptr to sub-tree */
char *instance_p; /* ptr to rest of OID */
unsigned char value_type; /* SNMP_TYPE_xxxx */
unsigned short value_len; /* value length */
char *value_p; /* ptr to value itself */
struct dpi_set_packet *next_p; /* ptr to next in chain */

};
typedef struct dpi_set_packet snmp_dpi_set_packet;
#define snmp_dpi_set_packet_NULL_p ((snmp_dpi_set_packet *)0)

You can use the mkDPIset() function to prepare such a structure. This function
expects the following parameters:
v A pointer to an existing snmp_dpi_set_packet structure if the new varBind must

be added to an existing chain of varBinds. If this is the first or the only varBind
in the chain, pass the snmp_dpi_set_packet_NULL_p pointer to indicate this.

v A pointer to the desired subtree.
v A pointer to the rest of the OID, in other words, the piece that follows the

subtree.
v The value type of the value to be bound to the variable name. This must be one

of the SNMP_TYPE_xxxx values as defined in the snmp_dpi.h include file.
v The length of the value. For integer type values, this must be a length of 4.

Always work with 32-bit signed or unsigned integers except for the Counter64
type. For the Counter64 type, point to an snmp_dpi_u64 structure and pass the
length of that structure.

v A pointer to the value.

Memory for the varBind is dynamically allocated and the data itself is copied.
Upon return, you can dispose of your own pointers and allocated memory as you
please. If the call is successful, a pointer is returned as follows:
v To a new snmp_dpi_set_packet if it is the first or only varBind.
v To the existing snmp_dpi_set_packet that you passed on the call. In this case, the

new packet has been chained to the end of the varBind list.

If the mkDPIset() call fails, a NULL pointer is returned.

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 111

When you have prepared the SET-varBind data, create a DPI TRAP packet. To do
so, use the mkDPItrap() function, which expects these parameters:
v The generic trap code. Use 6 for enterprise specific trap type.
v The specific trap type. This is a type that is defined by the MIB that you are

implementing. In our example you just use a 1.
v A pointer to a chain of varBinds or the NULL pointer if no varBinds need to be

passed with the trap.
v A pointer to the enterprise OID if you want to use a different enterprise ID than

the OID you used to identify yourself as a subagent at DPI-OPEN time.

The following code creates an enterprise-specific trap with specific type 1 and
passes 3 varBinds. The first varBind with object 1, instance 0, Integer32 value; the
second varBind with object 2, instance 0, Octet String; the third with Counter32.
You pass no enterprise ID.
static int do_trap(void)
{

unsigned char *packet_p;
int rc;
snmp_dpi_set_packet *varBind_p, *set_p;

varBind_p = /* init the varBind chain */
snmp_dpi_set_packet_NULL_p; /* to a NULL pointer */

varBind_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_INTEGER, /* ptr to rest of OID */
SNMP_TYPE_Integer32, /* value type Integer 32 */
sizeof(value1), /* length of value */
value1); /* ptr to value */

if (!varBind_p) return(-1); /* If it failed, return */

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_STRING, /* ptr to rest of OID */
SNMP_TYPE_DisplayString,/* value type */
value2_len, /* length of value */
value2_p); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */
DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER32, /* ptr to rest of OID */
SNMP_TYPE_Counter32, /* value type */
sizeof(value3), /* length of value */
value3); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

#ifndef EXCLUDE_SNMP_SMIv2_SUPPORT
/* *Apr23*/

set_p = mkDPIset(/* Make DPI set packet */
varBind_p, /* ptr to varBind chain */

112 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DPI_SIMPLE_MIB, /* ptr to subtree */
DPI_SIMPLE_COUNTER64, /* ptr to rest of OID */
SNMP_TYPE_Counter64, /* value type */
sizeof(value4), /* length of value */
value4); /* ptr to value */

if (!set_p) { /* if we failed... then */
fDPIset(varBind_p); /* free earlier varBinds */
return(-1); /* If it failed, return */

}

#endif /* ndef EXCLUDE_SNMP_SMIv2_SUPPORT */

packet_p = mkDPItrap(/* Make DPItrap packet */
6, /* enterpriseSpecific */
1, /* specific type = 1 */
varBind_p, /* varBind data, and use */
(char *)0); /* default enterpriseID */

if (!packet_p) return(-1); /* If it failed, return */

rc = DPIsend_packet_to_agent(/* send TRAP packet */
handle, /* on this connection */
packet_p, /* this is the packet */
DPI_PACKET_LEN(packet_p));/* and this is its length */

return(rc); /* return retcode */
} /* end of do_trap() */

Chapter 3. SNMP agent Distributed Protocol Interface version 2.0 113

114 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 4. Running the sample SNMP DPI client program for
version 2.0

This topic explains how to run the sample SNMP DPI client program,
dpi_mvs_sample.c, installed in /usr/lpp/tcpip/samples. It can be run using the
SNMP agents that support the SNMP-DPI interface as described in RFC 1592. (See
Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs.)

The sample implements a set of variables described by the DPISimple-MIB, a set of
objects in the IBM Research tree (under the 1.3.6.1.4.1.2.2.1.5 object ID prefix). See
“DPISimple-MIB descriptions” on page 116 for the object ID and type of each
object.

Using the sample SNMP DPI client program
The dpi_mvs_sample.c program accepts the following arguments:

? Explains the usage

-d n Sets the debug at level n. For levels that cause DPI API debug messages to
be created, the messages are written to the syslog daemon under the
daemon facility.

The range is 0 (for no messages) to 2 (for the most verbose). The default
value is 1 if you specify -d with no value.

0 No debug messages

1 Informational processing debug messages are written to stdout;
DPI packet creation debug messages are written to the syslog
daemon by the DPI API.

2 Informational processing debug messages are written to stdout;
DPI packet creation debug messages and traces of packets sent and
received are written to the syslog daemon by the DPI API.

-h hostname
Specifies the host name or IP address where an SNMP DPI-capable agent is
running; the default is the local host.

-c community_name
Specifies the community name for the SNMP agent that is required to get
the dpiPort; the default is public.

-ireg Specifies that the subagent should do instance-level registration of MIB
objects.

-unix Specifies that the subagent should connect to the SNMP agent using a
UNIX stream socket instead of a TCP socket. You must also define
INCLUDE_UNIX_DOMAIN_FOR_DPI when compiling the subagent.

Compiling and linking the dpi_mvs_sample.c source code
The dpi_mvs_sample.c program is located in /usr/lpp/tcpip/samples.

You can specify the following compile-time flags:

© Copyright IBM Corp. 2000, 2015 115

INCLUDE_UNIX_DOMAIN_FOR_DPI
Indicates that the sample subagent should be compiled to connect to the
agent using a UNIX Stream socket instead of a TCP connection.

MVS Indicates that compilation is for MVS, and uses MVS-specific includes.
Some MVS/VM-specific code is compiled.

DPISimple-MIB descriptions
The following example shows the MIB descriptions for DPISimple-MIB
implemented by the sample subagent.
dpi_mvs_sample.c supports these variables as an SNMP DPI
sample sub-agent
it also generates enterprise specific traps via DPI with these objects
Name OID Type Value
------------------ ----------------------- --------- --------
dpiSimpleInteger 1.3.6.1.4.1.2.2.1.5.1.0 integer 5
dpiSimpleString 1.3.6.1.4.1.2.2.1.5.2.0 string "Initial String"
dpiSimpleCounter32 1.3.6.1.4.1.2.2.1.5.3.0 counter32 1
dpiSimpleCounter64 1.3.6.1.4.1.2.2.1.5.4.0 counter64
X’8000000000000001’

Of the above, only dpiSimpleString can be changed with an SNMP SET request.

116 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 5. SNMP manager API

z/OS Communications Server provides the SNMP manager application
programming interface (API) for writing SNMP managers. Application developers
can use this API to build SNMP management applications that can be used to
retrieve SNMP management data.

SNMP protocol
SNMP is a set of Internet Engineering Task Force (IETF) standards for network
management, including a protocol, a database structure specification, a set of data
objects, and controls for using the protocol. The SNMP protocol is based on the
TCP/IP protocol. SNMP has evolved over many years, which has resulted in three
major versions of the protocol: SNMPv1, SNMPv2c, and SNMPv3.

Elements of an SNMP model for a managed network are as follows:

Agent This entity implements the SNMP protocol stack (sometimes called the
engine). The agent's role is to receive and respond to requests using the
SNMP protocol. It routes requests from managers to the appropriate
subagents. It communicates with managers using the SNMP protocol. For
z/OS Communications Server, the agent is the osnmpd daemon.

SubAgents
These entities are sometimes called the monitoring agents. Subagents
provide the data that represents the managed objects. They communicate
with the agents. An example in z/OS Communications Server is the
TCP/IP subagent.

Manager
The role of the manager is to generate requests to retrieve and modify
management information. The manager uses the SNMP protocol stack to
receive responses from these requests and can also receive notifications,
which are unsolicited events. The manager uses the SNMP protocol to
communicate with the agent.

Management Information Base (MIB)
The MIB defines a set of managed objects. Each managed object has a
unique identifier, which is sometimes referred to as an object identifier
(OID).

SNMP Messages
Messages are exchanged between the manager and agent entities over the
UDP transport of TCP/IP. This facilitates the exchange of SNMP
operations. The messages, called PDUs, have formats that are defined by
the SNMPv1, SNMPv2c, and SNMPv3 protocols; the types are not
interoperable. The messages that are sent and received depend on the role
of the entity.

© Copyright IBM Corp. 2000, 2015 117

The SNMP manager API overview
The SNMP manager API simplifies management application development by
hiding SNMP protocol stack complexities, which enables an application to focus on
management.

The SNMP manager API provides the following:
v A set of C functions and a header file that your application can use to build an

SNMP manager. These functions are 31-bit DLLs and a 64-bit DLL. See “Steps
for compiling and linking SNMP manager API applications” on page 145 for
more information about compiling and linking the SNMP manager API.

v The ability to build, send, and receive messages for SNMPv1, SNMPv2c, and
SNMPv3 using the functions provided by the API.

v Helper functions to perform operations on the decoded PDU response.

The SNMP notification API overview
The SNMP notification API is an extension of the SNMP manager API. It leverages
the SNMP manager API's functionality to send notifications to SNMP agents, the
SNMP notification receivers, or both. Available notifications include informs and
both Version 1 and 2 traps.

The SNMP notification API provides the following:
v A set of C functions and header files that your application can use to build an

SNMP notification originator. These functions are included within the SNMP
manager API libraries.

v The ability to build and send notifications for SNMPv1, SNMPv2c, and SNMPv3
using the functions provided by the API.

SNMP manager API functions
Several functions, data structures, and constants are defined in the snmpmgr.h file
in the /usr/include directory. To build, send, and receive an SNMP message, your
SNMP manager needs to call certain functions. After each call to one of these
functions, your SNMP manager should verify that a successful return code,
SNMP_MGR_RC_OK, was passed back. If an error occurs during the function call,
an invalid return code is passed back. In addition to the error code, your SNMP
manager API log file contains helpful information about the specific cause of the
error. See “Debugging the SNMP manager API” on page 146 for information about
using the debugging features.

By calling the following functions from your SNMP manager, you build the data
structures necessary to send an SNMP message to an SNMP agent or subagent.
The packet your SNMP manager receives as a response from the target agent can
then be decoded and parsed with the defined set of helper functions. These helper
functions provide your SNMP manager the ability to extract those same data
structures that were used to create the outgoing packet.

Configuration entry considerations
Configuration entries represent either SNMP agents to which requests are to be
sent, or notification receivers. The snmpInitialize() function, which is the first
function your SNMP manager must invoke, can create configuration entries if you
specify a configuration file to be processed by this function. The function returns
the configuration entries as a linked-list of SnmpConfigEntry structures, which are

118 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

built from the information in the configuration file. If you do not specify a
configuration file, your SNMP manager application must manually create the
configuration entries by using the SnmpConfigEntry structure. This structure is
required by other SNMP manager API functions. It is defined in the SNMP
manager API header file, <snmpmgr.h>, which is available in the /usr/include
directory. This structure supports both community-based and SNMPv3 user-based
security.

Requirement: If your SNMP manager application manually creates the
SnmpConfigEntry structures and the application sets the functionsRequested input
parameter to the snmpInitialize() function to request the functional support of the
current release, then the application must perform the following tasks:
v Ensure that reserved fields in the structure are set to binary zeros.
v Set the cfgVersion field in the structure to the SNMP_CONFIGENTRY_VER

constant.
v Set the cfgLen field in the structure to the SNMP_CONFIGENTRY_LEN

constant.

A sample manager implementation, snmpSMgr.c, is found in the
usr/lpp/tcpip/samples directory.

Note: The functions snmpValueCreateBits, snmpValueCreateUnsignedInteger32,
and snmpValueCreateNSApAddr have been removed. If these functions are used,
SNMP_MGR_RC_DEPRECATED is returned.

snmpAddVarBind – Adds a VarBind to the SnmpVarBinds
structure

#include <snmpmgr.h>
int snmpAddVarBind(SnmpVarBinds **varbinds, const char *oid, const smiValue *value)

snmpAddVarBind description
This function adds a VarBind structure (OID and value) to the input
SnmpVarBinds structure. If space is available in the SnmpVarBinds structure, that
space is used; if space is not available in the SnmpVarBinds structure, storage
space is reallocated and the SnmpVarbinds structure is updated.

snmpAddVarBind parameters
varbinds

This input and output parameter is a pointer to the address of the
SnmpVarBinds structure into which the new VarBind structure needs to be
created. If there is sufficient storage for this new VarBind structure in the
array of VarBind structures pointed to from this SnmpVarBinds structure,
then the output SnmpVarBinds parameter is not changed. Otherwise,
storage is reallocated for this new VarBind structure and the new pointer
to the beginning of the VarBind array is stored in this output parameter.
This parameter is required.

oid This input parameter is the string representation of the OID of the VarBind
structure that is to be created. This parameter is required.

value This input parameter is the address of the smiValue structure of the
VarBind structure that is to be created. If this address is NULL, the created
VarBind structure will contain an empty smiValue structure.

Chapter 5. SNMP manager API 119

snmpAddVarBind result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if either the varbinds parameter or the oid

parameter is NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if sufficient storage could not be allocated

for the new VarBind, the OID container, or the value container
v SNMP_MGR_RC_INVALID_OID if an OID container cannot be created using

this function's oid parameter
v SNMP_MGR_RC_INVALID_VALUE if a value container cannot be created using

this function's value parameter

Rule: You must call the snmpCreateVarBinds() function before you call this
function, because the varbinds parameter that is used on this function is returned
from the snmpCreateVarBinds() function.

snmpBuildPDU – Builds an SNMP PDU
#include <snmpmgr.h>
int snmpBuildPDU(SnmpPDU **pdu, const SnmpSession *snmpSession , const int pduType,

const SnmpVarBinds *varbinds,
const smiUINT32 non_repeaters, const smiUINT32 max_repetitions,
smiUINT32 *req_id)

snmpBuildPDU description
This function creates and initializes an SNMP PDU. The PDU is built using the
input parameters. The security-related information stored in the PDU is obtained
from the session parameter. This function encodes the PDU using Basic Encoding
Rules (BER), which are used by SNMP.

snmpBuildPDU parameters
pdu

This output parameter is a pointer to the variable where the address of the
SnmpPDU structure that is created is stored. This parameter is required.

snmpSession
This input parameter is the address of the SNMP session for which the
SNMP PDU needs to be built. This parameter is the output parameter of
the snmpBuildSession() function and is required.

pduType
This input parameter specifies the type of the PDU. This parameter is
required. The valid values are:

SNMP_PDU_NULL
If used, the RFC-defined default PDU type SNMP_PDU_GETNEXT
is built and returned

SNMP_PDU_GET

SNMP_PDU_GETNEXT

SNMP_PDU_SET

SNMP_PDU_GETBULK

varbinds
This input parameter is a pointer to the array of VarBind structures built
using the snmpCreateVarBinds() and snmpAddVarBind() functions. This
parameter is required.

120 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

non_repeaters
This input parameter is the number of non-repeaters for an
SNMP_PDU_GETBULK request. This parameter is required, but is ignored
if the pduType value is not SNMP_PDU_GETBULK.

max_repetitions
This input parameter specifies the maximum number of repetitions for an
SNMP_PDU_GETBULK request. This parameter is required, but is ignored
if the pduType value is not SNMP_PDU_GETBULK

req_id This input parameter is a pointer to the request ID to be stored in the
SnmpPDU field. If the value of this parameter is greater than or equal to 0,
then this value is used. Otherwise, a random request ID is generated and
stored in the SnmpPDU field.

snmpBuildPDU result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's pdu, snmpSession, or varbinds

parameter is NULL
v SNMP_MGR_RC_INVALID_PDU_TYPE if this function's pduType parameter is

not valid.
v SNMP_MGR_RC_INVALID_PARAMETERS if this function's non_repeaters or

max_repetitions parameter is not valid, or if this function's req_id parameter value
is less than 0

v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for either
the SnmpPDU structure or the encoded PDU string

v SNMP_MGR_RC_ENCODE_ERROR if an error was encountered while encoding
the PDU

v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal
function. See your SNMP manager API's log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error.

Rule: You must call the snmpBuildSession() and snmpCreateVarBinds() functions
before you call this function because the outputs from these functions are required
as input for the snmpBuildPDU function. After you are finished using the Snmp
PDU created by this function, you must free the storage allocated by calling the
snmpFreePDU() function.

snmpBuildSession – Creates a session
#include <snmpmgr.h>
int snmpBuildSession(const SnmpConfigEntry *configEntry, SnmpSession **snmpSession ,

const snmpSockAddr *localAddr)

snmpBuildSession description
This function creates an SNMP session for a particular configuration entry, which
represents a session with a target agent. Sessions are supported for communication
using SNMPv1, SNMPv2c, and SNMPv3. This function opens a socket and returns
the handle to the session, which is used as input to the snmpBuildPDU(),
snmpBuildV1TrapPDU(), snmpBuildV2TrapOrInformPDU() and
snmpSendRequest() functions.

snmpBuildSession parameters
configEntry

This input parameter specifies the configuration information that is to be

Chapter 5. SNMP manager API 121

used to create this session. The format of the SnmpConfigEntry structure is
specified in the snmpmgr.h file. This parameter is typically obtained from
the snmpInitialize() call, but alternatively you can manually create an
SnmpConfigEntry structure. This parameter is required.

snmpSession
This output parameter is a pointer to the variable where the address of the
SnmpSession parameter is stored. This parameter is required.

localAddr
This input parameter specifies the local address and port that are to be
used for sending the SNMP message. If this parameter is set to NULL, the
TCP/IP stack selects the source address and port.

snmpBuildSession result
v SNMP_MGR_RC_OK if successful.
v SNMP_MGR_RC_NULL_PTR if the configEntry or snmpSession parameter of this

function is NULL.
v SNMP_MGR_RC_SOCK_ERROR if there was an error encountered when

opening the socket, setting the socket to be non-blocking, or attempting to bind
the socket to a local address or port.

v SNMP_MGR_RC_OUT_OF_MEMORY if storage for the session could not be
allocated.

v SNMP_MGR_RC_INVALID PARAMETERS if the cfgLen or cfgVersion field of
the configEntry parameter does not match the required value, as defined in the
SNMP Manager API header file, <snmpmgr.h>.

v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal
function. See your SNMP manager API log file for more information about the
error and the internal return code value. Your IBM service representative uses
this internal return code to help solve your error.

Rule: Typically, you should call the snmpInitialize() function before you call this
function, because the SnmpConfigEntry input parameter is returned from the
snmpInitialize() function. However, alternatively you can manually create an
SnmpConfigEntry structure. After you are finished with the SNMP session
returned by this function, you must close the socket and free the storage that was
allocated by calling the snmpTerminateSession() function.

snmpCreateVarBinds – Creates a VarBind structure
#include <snmpmgr.h>
int snmpCreateVarBinds(SnmpVarBinds **varbinds, const int numVarbinds,

const char *oid, const smiValue *value)

snmpCreateVarBinds description
This function creates an SnmpVarBinds structure, which is used as input to the
snmpBuildPDU() function. Optionally, the number of VarBind structures that are
added to this VarBinds structure can be specified along with the first OID, value
pair.

snmpCreateVarBinds parameters
varbinds

This output parameter is a pointer to the address of the SnmpVarBinds
structure that is created and returned. This parameter is required.

numVarbinds
This input parameter specifies the number of variable bindings that will be

122 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

part of the created SnmpVarBinds structure. This value must be greater
than or equal to 0. If this value is 0, the oid and value parameters are
ignored.

oid This input parameter specifies the OID value for the first VarBind
structure. If this parameter set to NULL, no VarBind structure is created
within the SnmpVarBinds structure.

value This input parameter is the address of the smiValue value of the VarBind
structure that is to be created. This parameter is valid only if the oid
parameter is specified. If an oid value is specified and the smiValue
address is NULL, the created VarBind structure will contain an empty
smiValue.

snmpCreateVarBinds result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's varbinds parameter is NULL
v SNMP_MGR_RC_INVALID_PARAMETERS if this function's numVarBinds

parameter is less than 0 or if the oid parameter is NULL but the value parameter
is not NULL

v SNMP_MGR_RC_OUT_OF_MEMORY if storage cannot be allocated for the
SnmpVarBinds structure

Tip: Use the snmpAddVarBind() function to add more VarBind structures to the
SnmpVarBinds structure.

Rule: After you are finished using the SnmpVarBinds structure and the array of
VarBind structures it contains, you must free the storage that was allocated for
these structures by calling the snmpFreeVarBinds() function.

snmpFreeDecodedPDU - Free the decoded PDU
#include <snmpmgr.h>
int snmpFreeDecodedPDU(SnmpDecodedPDU *decodedPDU)

snmpFreeDecodedPDU description
This function frees the storage that was allocated for the decoded PDU by the
snmpSendRequest() function.

snmpFreeDecodedPDU parameters
decodedPDU

This input parameter is a pointer to the decoded PDU that is returned by
the snmpSendRequest() function. This parameter is required.

snmpFreeDecodedPDU result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's decodedPDU parameter is NULL

snmpFreeOID - Free an OID string
#include <snmpmgr.h>
int snmpFreeOID(char *oidString)

snmpFreeOID description
This function frees the storage that was allocated for the OID string by the
snmpGetOID() function.

Chapter 5. SNMP manager API 123

snmpFreeOID parameters
oidString

This input parameter is a pointer to the OID string that is returned by the
snmpGetOID() function. This parameter is required.

snmpFreeOID result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's oidString parameter is NULL

snmpFreePDU – Frees the resources of a PDU
#include <snmpmgr.h>
int snmpFreePDU(SnmpPDU *pdu)

snmpFreePDU description
Frees the storage for the SNMP PDU, which was allocated by the snmpBuildPDU()
function.

snmpFreePDU parameters
pdu This input parameter is the address of the PDU that is to be freed. This

parameter is required.

snmpFreePDU result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's pdu parameter is NULL

snmpFreeVarBinds – Frees the VarBinds structure
#include <snmpmgr.h>
int snmpFreeVarBinds(SnmpVarBinds *varbinds)

snmpFreeVarBinds description
This function frees the storage for the SnmpVarBinds structure and its array of
VarBind structures that was created by the snmpCreateVarBinds() and
snmpAddVarBind() functions.

snmpFreeVarBinds parameters
varbinds

This input parameter specifies the address of the SnmpVarBinds structure
that is to be freed. This parameter is required.

snmpFreeVarBinds result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's varbinds parameter is NULL

snmpGetErrorInfo - Get the error information from the PDU
response

#include <snmpmgr.h>
int snmpGetErrorInfo(const SnmpDecodedPDU *decodedPDU, int *error_index,

int *error_status)

snmpGetErrorInfo description
This function is used to retrieve the error_index and error_status values from a
decoded response PDU.

124 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

snmpGetErrorInfo parameters
decodedPDU

This input parameter is a pointer to the decoded PDU that the error
information is retrieved from. This parameter is required and is returned
from a call to the snmpSendRequest() function.

error_index
This output parameter is a pointer to an integer where the error index
from the PDU is stored. This parameter is required.

error_status
This output parameter is a pointer to an integer where the error status
from the PDU is stored. This parameter is required.

snmpGetErrorInfo result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's pdu, error_index, or error_status

parameter is NULL

Rule: You must call the snnmpSendRequest() function before you call this function
because the decodedPDU value used as an input parameter with this function is
returned from the snmpSendRequest() function.

snmpGetNumberOfVarBinds – Get the number of VarBinds
attached to the PDU

#include <snmpmgr.h>
int snmpGetNumberOfVarBinds(const SnmpDecodedPDU *decodedPDU,

int *numVarbinds)

snmpGetNumberOfVarBinds description
This function retrieves the number of VarBind structures that are attached to the
decoded PDU that is returned from the snmpSendRequest() function. Your SNMP
manager can use this number to loop through the array of VarBind structures in
the PDU, retrieving each of them by calling the snmpGetVarBind() function.

snmpGetNumberOfVarBinds parameters
decodedPDU

This input parameter is a pointer to the decoded PDU from which the
number of VarBind structures is retrieved. This parameter is required and
is returned from a call to the snmpSendRequest() function.

numVarbinds
This output parameter is a pointer to an integer where the number of
VarBind structures is stored. This parameter is required.

snmpGetNumberOfVarBinds result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's decodedPDU or numVarbinds

parameter is NULL

Rule: You must call the snmpSendRequest() function before you call this function,
because the decodedPDU input parameter used by this function is returned from the
snmpSendRequest() function.

Chapter 5. SNMP manager API 125

snmpGetOID – Get the OID from the VarBind structure
#include <snmpmgr.h>
int snmpGetOid(const VarBind *varbind, char **oidString)

snmpGetOID description
This function retrieves the OID value from a VarBind structure and returns the
OID value as a string.

snmpGetOID parameters
arbind This input parameter is a pointer to the VarBind structure from which the

OID value is retrieved. This parameter is required and is returned from a
call to the snmpGetVarBind() function.

oidString
This output parameter is a pointer to the address of the OID value, in
string format, that is to be returned. This parameter is required.

snmpGetOID result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's varbind or oidString parameter is

NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for the

OID string

Rule: Your SNMP manager must call the snmpGetVarBind() function before calling
this function, because the required varbind input parameter is returned from a call
to the snmpGetVarBind() function. After you finish using the oidString value that is
returned from this function, you must free the storage that was allocated for this
string by calling the snmpFreeOID() function.

snmpGetRequestId – Get the PDU’s requestId value
#include <snmpmgr.h>
int snmpGetRequestId(const SnmpDecodedPDU *decodedPDU, int *req_id)

snmpGetRequestId description
This function is used to retrieve the requestId field from a decoded response PDU.

snmpGetRequestId parameters
decodedPDU

This input parameter is a pointer to the decoded PDU that the requestId
value will be retrieved from. This parameter is required and is returned
from a call to the snmpSendRequest() function.

req_id This output parameter is the address where the retrieved requestId value is
stored.

snmpGetRequestId result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's decodedPDU or req_id parameter is

NULL

Rule: You must call the snmpSendRequest() function before you call this function
because the required decodedPDU input parameter is returned from the
snmpSendRequest() function.

126 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

snmpGetSockFd – Get the socket’s file descriptor
#include <snmpmgr.h>
int snmpGetSockFd(const SnmpSession *snmpSession)

snmpGetSockFd description
This function retrieves the socket’s file descriptor, which is stored in the session.

snmpGetSockFd parameters
snmpSession

This input parameter is a pointer to the session that the socket's file
descriptor is retrieved from . This parameter is required and is returned
from a call to the snmpBuildSession() function.

snmpGetSockFd result
Return the integer value of the socket’s file descriptor.
v SNMP_MGR_RC_NULL_PTR if the parameter is NULL

Rule: You must call the snnmpBuildSession() function before you call this function
because the required snmpSession input parameter is returned by the
snmpBuildSession() function.

snmpGetValue – Get the value from the VarBind structure
#include <snmpmgr.h>
int snmpGetValue(const VarBind *varbind, smiValue *value)

snmpGetValue description
This function retrieves the value from a VarBind structure and returns the value in
an smiValue structure.

snmpGetValue parameters
varbind

This input parameter is a pointer to the VarBind structure that the value is
to be retrieved from. This parameter is required and is returned from a call
to the snmpGetVarBind() function.

value This output parameter is a pointer to the completed smiValue structure.

snmpGetValue result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's varbind or value parameter is

NULL
v SNMP_MGR_RC_INVALID_VALUE if the smi_type value of the varbind

parameter is not valid

Rule: Your SNMP manager must call the snmpGetVarBind() function before calling
this function because the required varbind input parameter is returned by a call to
the snmpGetVarBind() function.

snmpGetVarbind – Get a VarBind attached to the PDU
#include <snmpmgr.h>
int snmpGetVarBind(const SnmpDecodedPDU *decodedPDU, const int varbindNum,

VarBind *varbind)

Chapter 5. SNMP manager API 127

snmpGetVarbind description
Given an index into a PDU's array of VarBind structures, this function completes
the contents of the input VarBind structure.

snmpGetVarbind parameters
decodedPDU

This input parameter is a pointer to the decoded PDU that the VarBind
structure is retrieved from. This parameter is required and is returned by a
call to the snmpSendRequest() function.

varbindNum
This input parameter is an index into the array of VarBind structures in the
decoded response PDU.

varbind
This output parameter is a pointer to the VarBind structure that is to be
completed.

snmpGetVarbind result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_INVALID_PARAMETERS if the varbindNum value is less than

0
v SNMP_MGR_RC_NULL_PTR if this function's pdu or varbind parameter is NULL

Rule: You must call the snmpSendRequest() function before you call this function
because the required decodedPDU input parameter is returned by the
snmpSendRequest() function.

snmpInitialize – Initialize the manager environment
#include <snmpmgr.h>
int snmpInitialize(const int functionsRequested,

const char *configFileName,
SnmpConfigEntry **configList)

snmpInitialize description
This function initializes the SNMP manager API. Optionally, your SNMP manager
can pass a configuration file to this call. The format and syntax of this
configuration file is described in “SNMP manager API configuration file” on page
142. Your SNMP manager passes a single SnmpConfigEntry structure as input to
the snmpBuildSession() function.

snmpInitialize parameters
functionsRequested

This input parameter specifies the functional support requested from the
SNMP manager API. The following values can be specified:
v SNMP_INIT_FUNCREQ_BASE - Basic functional support as of z/OS

V1R11
v SNMP_INIT_FUNCREQ_V1R12 - All functional support from current

release

configFileName
This input parameter is the name of the configuration file that contains the
configuration entries. A configuration entry is used on the
snmpBuildSession() call. The file name can be a z/OS UNIX file name or
an MVS data set name. If this parameter is set to NULL, no configuration

128 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

file processing is performed. You must manually create the
SnmpConfigEntry structures that are required by the other SNMP manager
API functions.

configList
This output parameter is a pointer that is used to return the configuration
list that has been read from the configuration file during the initialization
process. This list is a linked list of SnmpConfigEntry structures, as defined
in the snmpmgr.h file. Each SnmpConfigEntry value represents a target
agent defined in the configuration file. This parameter is used only if the
configFileName parameter is provided. Otherwise, the value NULL should
be specified.

snmpInitialize result
v SNMP_MGR_RC_OK if successful.
v SNMP_MGR_RC_CONFIG_ERROR if there was an error in the configuration

file.
v SNMP_MGR_RC_FILE_ERROR if the configuration file could not be opened.
v SNMP_MGR_RC_NULL_PTR if this function's configList parameter is NULL and

the configFileName parameter is not NULL.
v SNMP_MGR_RC_INVALID PARAMETERS if the functionsRequested parameter

is not SNMP_INIT_FUNCREQ_BASE (0) or SNMP_INIT_FUNCREQ_V1R12 (1).
v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal

function. See your SNMP manager API log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error.

Rules:

v Because an SnmpConfigEntry structure is required to create an SNMP session,
your SNMP manager must call this function before calling the
snmpBuildSession() function. After you are finished using the list of
SnmpConfigEntry structures, you must free their storage by calling the
snmpTerminate() function.

v If your functionsRequested parameter is 1, each of the SNMPv3 entries in your
configuration file must contain a value for the authEngineID field.

snmpSendRequest – Send the snmpPDU request to an agent
#include <snmpmgr.h>
int snmpSendRequest(const SnmpSession *snmpSession, const SnmpPDU *pdu,

const int waitInterval, SnmpDecodedPDU **decodedResponse,
const int receiveOnly)

snmpSendRequest description
This function sends the request PDU to the agent and waits for a response PDU.
This function is a blocking function and after the function sends the request, it
waits for the length of time specified by the waitInterval value, until it receives a
response from the agent.

snmpSendRequest parameters
snmpSession

This input parameter is a pointer to the SNMP session that was created by
the snmpBuildSession() function. This parameter is required.

pdu This input parameter is a pointer to the BER-encoded PDU value that is to
be sent to the agent. This parameter is required.

Chapter 5. SNMP manager API 129

waitInterval
This input parameter specifies the number of seconds that this call waits to
receive a return. If the response does not return within this specified time,
this function returns an error code that specifies the timeout period. If this
parameter's value is 0, this call waits until a response is received. This
parameter's value must be non-negative.

decodedResponse
This output parameter is a pointer to the address of the decoded response
PDU that is returned from the agent. The value might be NULL if the PDU
is not received before the waitInterval period expires. This decoded PDU is
used as input to several of the helper functions. This parameter is required.

receiveOnly
This input parameter specifies whether or not to try to retry receive the
response PDU again if the first attempt timed out. The assumption is that
the request has been successfully sent but that there is no response from
the SNMP agent. This parameter can be set to 0 if your SNMP manager is
sending a PDU, or it can be set to 1 if you want to try to receive a
response again. If you specify a value of 1, a PDU is not sent to the target
agent.

snmpSendRequest result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's snmpSession, pdu, or

decodedResponse parameter value is NULL
v SNMP_MGR_RC_TIMEOUT if there is a timeout while waiting for a response

from the target agent
v SNMP_MGR_RC_IO_ERROR if there is an error while waiting for a response

from the target agent that is not the result of a timeout
v SNMP_MGR_RC_INVALID_PARAMETERS if the waitInterval parameter value is

less than 0 or if the receiveOnly parameter value is not 0 or 1
v SNMP_MGR_RC_ENCODE_ERROR if an error was encountered while encoding

a PDU. If your SNMP manager sends an SNMPv3 request to a target agent
without the agent's engineID value, this function handles the receipt of the
agent's report PDU. In doing so, a new request PDU is built and is sent to the
target agent, using the agent's engineID value.

v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal
function. See your SNMP manager API log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error.

v SNMP_MGR_RC_USM_UNKNOWN_USERNAME if the target agent responded
with a report PDU, indicating that a user name that was not valid was sent in
your request

v SNMP_MGR_RC_USM_UNSUPPORTED_SECLEVEL if the target agent
responded with a report PDU, indicating that a security level that was not valid
was sent in your request

v SNMP_MGR_RC_USM_WRONG_DIGEST if the target agent responded with a
report PDU, indicating that the message digest (created with the authentication
key you defined) is not valid

v SNMP_MGR_RC_USM_NOT_IN_WINDOW if the target agent responded with a
report PDU, indicating that your request did not fall within the target agent's
accepted time range

130 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v SNMP_MGR_RC_USM_DECRYPTION_ERROR if the target agent responded
with a report PDU, indicating that the target agent could not successfully
decrypt your encrypted request

Rule: Because this function requires an SNMP session and an SNMP PDU as input
parameters, your SNMP manager must call the snmpBuildSession() and
snmpBuildPDU() functions before calling this function. Your SNMP manager is
responsible for allocating storage for the response PDU. After you are finished
using this PDU, ensure that you free its storage.

snmpSetLogFunction – Set the logging level
#include <snmpmgr.h>
int snmpSetLogFunction(SnmpLogFunc funcName)

snmpSetLogFunction description
Use this function to define an external function to be used for logging SNMP
manager API messages. You should define such a function if you want the SNMP
manager API log messages to be logged to the same location as other applications
on your system. Your logging function must have only two parameters: an integer
to define the level of the log message, and a string to define the log message itself.
After you have called the snmpSetLogFunction() function from your SNMP
manager, all of the SNMP manager API log messages are sent to your defined
logging function. An example definition for your logging function is as follows:
void myLogger(int logLevel, char *logMsg);

Based on that example, you would then need to set the parameter for this function
to point to your logging function as follows:
SnmpLogFunc funcName = myLogger;
rc = snmpSetLogFunc(funcName);

If you choose not to define your own logging function, you can log messages to a
file defined by the SNMP_MGR_LOG_FILE environment variable, or have
messages logged to syslog (the default). For more information about your logging
options, see “Debugging the SNMP manager API” on page 146.

snmpSetLogFunction parameters
funcName

This input parameter specifies the SNMP manager's preferred logging
function.

snmpSetLogFunction result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if the funcName parameter is NULL

snmpSetLogLevel – Set the logging level
#include <snmpmgr.h>
int snmpSetLogLevel(const int logLevel)

snmpSetLogLevel description
This function sets the log level for messages. See “Debugging the SNMP manager
API” on page 146 for more information about logging.

Chapter 5. SNMP manager API 131

snmpSetLogLevel parameters
logLevel

This input parameter specifies the preferred message logging level. Valid
values for the logLevel parameter, as defined in snmpmgr.h, are defined as
follows:
v SNMP_LOG_NONE (0)
v SNMP_LOG_ERROR (1)
v SNMP_LOG_TRACE (2)
v SNMP_LOG_DUMP (4)
v SNMP_LOG_ALL (7)
v SNMP_LOG_INTERNAL (8)

snmpSetLogLevel result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_INVALID_PARAMETERS if the logLevel parameter is not valid

Guideline: Because the SNMP_MGR_LOG_LEVEL environment variable is not
read until the snmpInitialize() function is called, you should call this function prior
to calling the snmpInitialize() function, to make sure that all possible messages are
successfully logged.

Note: The value of the SNMP_MGR_LOG_LEVEL environment variable, when set,
cannot be changed by calling this function with a new log level. You must unset
the environment variable for this function to operate correctly.

snmpSetRequestId – Set the PDU’s requestId value
#include <snmpmgr.h>
int snmpSetRequestId(const SnmpSession *snmpSession,

SnmpPDU *pdu, const int req_id)

snmpSetRequestId description
Use this function to set the requestId field in an SNMP PDU. This function rebuilds
the encoded PDU that is returned by the snmpBuildPDU() function.

snmpSetRequestId parameters
snmpSession

This input parameter is a pointer to the SNMP session information
required to reconstruct a PDU with the new request ID. This input is
required and is returned by the snmpBuildSession() function.

pdu This input parameter is a pointer to the encoded PDU where the request
ID is to be set. This parameter is required and is returned by the
snmpBuildPDU() function.

req_id This input parameter specifies the integer requestId value to set in the
PDU. The value of this parameter must be greater than or equal to 0.

snmpSetRequestId result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if either the snmpSession or pdu pointer is NUL.L
v SNMP_MGR_RC_INVALID_PARAMETERS if the req_id parameter is less than 0
v SNMP_MGR_RC_ENCODE_ERROR if an error was encountered while encoding

the new PDU

132 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal
function. See your SNMP manager API log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error.

Rules:

v Because this function requires an SNMP session and an SnmpPDU value as
input, your SNMP manager must call the snmpBuildSession() and
snmpBuildPDU() functions before calling this function.

v SNMPv1 traps do not use a request ID. Therefore, your SNMP manager must
not call this function for a PDU type SNMP_PDU_TRAPV1

snmpTerminate – Release the resources
#include <snmpmgr.h>
int snmpTerminate(SnmpConfigEntry *headEntry)

snmpTerminate description
This function releases the resources that were allocated by the snmpInitialize()
function.

snmpTerminate parameters
headEntry

This input parameter points to the first entry in the linked list of
SnmpConfigEntry objects returned by the snmpInitialize() function.

snmpTerminate result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's headEntry parameter is NULL

snmpTerminateSession – Terminate a session
#include <snmpmgr.h>
int snmpTerminateSession(SnmpSession *snmpSession)

snmpTerminateSession description
This function terminates an SNMP session and releases all of the resources held by
that session.

snmpTerminateSession parameters
snmpSession

This input parameter is the address of the session that was created by the
snmpBuildSession() call.

snmpTerminateSession result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's snmpSession parameter is NULL
v SNMP_MGR_RC_SOCK_ERROR if the socket that was created by the

snmpBuildSession() function cannot be closed

Tip: After a session is terminated, it cannot be used again.

Chapter 5. SNMP manager API 133

snmpValueCreateCounter32 – Create an smiValue of type
Counter32

#include <snmpmgr.h>
int snmpValueCreateCounter32(smiValue *value, smiUINT32 inInt)

snmpValueCreateCounter32 description
This function completes an smiValue structure of type SNMP_SYNTAX_CNTR32,
based on the input integer. This smiValue structure can then be used as input to
the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateCounter32 parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inInt This input parameter is the unsigned integer to be stored in the smiValue
structure. This parameter is required.

snmpValueCreateCounter32 result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

snmpValueCreateCounter64 – Create an smiValue of type
Counter64

#include <snmpmgr.h>
int snmpValueCreateCounter64(smiValue *value, smiUINT32 hiPart, smiUINT32 loPart)

snmpValueCreateCounter64 description
This function completes an smiValue structure of type SNMP_SYNTAX_CNTR64,
based on the input integers. This smiValue structure can then be used as input to
the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateCounter64 parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

hiPart This input parameter is the high-order 32 bits to be stored in the smiValue
structure. This parameter is required.

loPart This input parameter is the low-order 32 bits to be stored in the smiValue
structure. This parameter is required.

snmpValueCreateCounter64 result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

snmpValueCreateGauge32 – Create an smiValue of type
Gauge32

#include <snmpmgr.h>
int snmpValueCreateGauge32(smiValue *value, smiUINT32 inInt)

snmpValueCreateGauge32 description
This function completes an smiValue structure of type SNMP_SYNTAX_Gauge32,
based on the input integer. This smiValue structure can then be used as input to
the snmpCreateVarBinds() or snmpAddVarBind() function.

134 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

snmpValueCreateGauge32 parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inInt This input parameter is the unsigned integer to be stored in the smiValue
structure. This parameter is required.

snmpValueCreateGauge32 result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

snmpValueCreateInteger – Create an smiValue of type Integer
#include <snmpmgr.h>
int snmpValueCreateInteger(smiValue *value, smiINT32 inInt)

snmpValueCreateInteger description
This function completes an smiValue structure of type SNMP_SYNTAX_INT, based
on the input integer. This smiValue structure can then be used as input to the
snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateInteger parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inInt This input parameter is the integer to be stored in the smiValue structure.
This parameter is required.

snmpValueCreateInteger result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL
v SNMP_MGR_RC_INVALID_PARAMETERS if this function's inInt parameter

value is less than 0

snmpValueCreateInteger32 – Create an smiValue of type
Integer32

#include <snmpmgr.h>
int snmpValueCreateInteger32(smiValue *value, smiINT32 inInt)

snmpValueCreateInteger32 description
This function completes an smiValue structure of type SNMP_SYNTAX_INT32,
based on the input integer. This smiValue structure can then be used as input to
the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateInteger32 parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inInt This input parameter is the integer to be stored in the smiValue structure.
This parameter is required.

snmpValueCreateInteger32 result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

Chapter 5. SNMP manager API 135

v SNMP_MGR_RC_INVALID_PARAMETERS if this function's inInt parameter is
less than 0

snmpValueCreateIPAddr – Create an smiValue of type IPAddr
#include <snmpmgr.h>
int snmpValueCreateIPAddr(smiValue *value, char *inAddr, smiUINT32 inLen)

snmpValueCreateIPAddr description
This function completes an smiValue structure of type SNMP_SYNTAX_IPADDR,
based on the input parameters. This smiValue structure can then be used as input
to the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateIPAddr parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inAddr This input parameter is a pointer to the value to be stored in the smiValue
structure. This parameter is required.

inLen This input parameter is the length, in bytes, of the inAddr parameter value.
This parameter is required.

snmpValueCreateIPAddr result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter or inAddr

parameter is NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for the

string representation of the value in the smiValue structure

snmpValueCreateNull – Create an smiValue of type Null
#include <snmpmgr.h>
int snmpValueCreateNull(smiValue *value)

snmpValueCreateNull description
This function completes an smiValue structure of type SNMP_SYNTAX_NULL,
based on the input parameters. This smiValue structure can then be used as input
to the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateNull parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

snmpValueCreateNull result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

snmpValueCreateOctet – Create an smiValue of type Octet
#include <snmpmgr.h>
int snmpValueCreateOctet(smiValue *value, char *inOctet, smiUINT32 inLen)

snmpValueCreateOctet description
This function completes an smiValue structure of type SNMP_SYNTAX_OCTET,
based on the input parameters. This smiValue structure can then be used as input
to the snmpCreateVarBinds() or snmpAddVarBind() function.

136 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

snmpValueCreateOctet parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inOctet
This input parameter is a pointer to the value to be stored in the smiValue
structure. This parameter is required.

inLen This input parameter is the length, in bytes, of the inOctet parameter value.
This parameter is required.

snmpValueCreateOctet result
v SNMP_MGR_RC_OK if successful
v SNMP_bMGR_RC_NULL_PTR if this function's value parameter or inOctet

parameter is NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for the

string representation of the value in the smiValue structure

snmpValueCreateOID – Create an smiValue of type OID
#include <snmpmgr.h>
int snmpValueCreateOID(smiValue *value, char *inOID, smiUINT32 inLen)

snmpValueCreateOID description
This function completes an smiValue structure of type SNMP_SYNTAX_OID, based
on the input parameters. This smiValue structure can then be used as input to the
snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateOID parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inOID This input parameter is a pointer to the value to be stored in the smiValue
structure. This parameter is required.

inLen This input parameter is the length, in bytes, of the inOID parameter value.
This parameter is required.

snmpValueCreateOID result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter or inOID

parameter is NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for the

string representation of the value in the smiValue structure

snmpValueCreateOpaque – Create an smiValue of type
Opaque

#include <snmpmgr.h>
int snmpValueCreateOpaque(smiValue *value, char *inOpaque, smiUINT32 inLen)

snmpValueCreateOpaque description
This function completes an smiValue structure of type SNMP_SYNTAX_OPAQUE,
based on the input parameters. This smiValue structure can then be used as input
to the snmpCreateVarBinds() or snmpAddVarBind() function.

Chapter 5. SNMP manager API 137

snmpValueCreateOpaque parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inOpaque
This input parameter is a pointer to the value to be stored in the smiValue
structure. This parameter is required.

inLen This input parameter is the length, in bytes, of the inOpaque parameter
value. This parameter is required.

snmpValueCreateOpaque result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter or inOpaque

parameter is NULL
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated in the

smiValue structure for the string representation of the value

snmpValueCreateTimerTicks – Create an smiValue of type
TimerTicks

#include <snmpmgr.h>
int snmpValueCreateTimerTicks(smiValue *value, smiUINT32 inInt)

snmpValueCreateTimerTicks description
This function completes an smiValue structure of type
SNMP_SYNTAX_TIMETICKS, based on the input integer. This smiValue structure
can then be used as input to the snmpCreateVarBinds() or snmpAddVarBind()
function.

snmpValueCreateTimerTicks parameters
value This output parameter is the address of the smiValue structure to be

completed. This parameter is required.

inInt This input parameter is the unsigned integer to be stored in the smiValue
structure. This parameter is required.

snmpValueCreateTimerTicks result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's value parameter is NULL

snmpValueCreateUnsigned32 – Create an smiValue of type
Unsigned32

#include <snmpmgr.h>
int snmpValueCreateUnsigned32(smiValue *value, smiUINT32 inInt)

snmpValueCreateUnsigned32 description
This function fills in an smiValue structure of type SNMP_SYNTAX_UNSIGNED32,
based on the input integer. This smiValue structure can then be used as input to
the snmpCreateVarBinds() or snmpAddVarBind() function.

snmpValueCreateUnsigned32 parameters
value This output parameter is the address of the smiValue structure to be filled

in. This parameter is required.

138 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

inInt This input parameter is the unsigned integer to be stored in the value. This
parameter is required.

snmpValueCreateUnsigned32 result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if the value parameter of this function is NULL

SNMP notification API functions
The SNMP manager API can also be used to send notifications. When sending a
notification, you can build the PDU using either the snmpBuildV1TrapPDU() or
snmpBuildV2TrapOrInformPDU() function, which is defined in the snmpntfy.h file.
Use the following SNMP manager API functions to use the SNMP notification API.
See “SNMP manager API functions” on page 118 for descriptions of these
functions.
v snmpAddVarBind
v snmpBuildSession
v snmpCreateVarBinds
v snmpFreePDU
v snmpFreeVarBinds
v snmpInitialize
v snmpSendRequest
v snmpSetLogFunction
v snmpSetLogLevel
v snmpSetRequestId
v snmpTerminate
v snmpTerminateSession

After each call to one of these functions, your SNMP manager should verify that a
successful return code, SNMP_MGR_RC_OK, was returned. If an error occurred
during the function call, an invalid return code is returned. In addition to the error
code, your SNMP manager API log file contains information about the specific
cause of the error. See “Debugging the SNMP manager API” on page 146 for more
information about how to use the debugging features.

By calling the following functions from your SNMP manager, you build the data
structures necessary to send an SNMP notification to an SNMP agent or subagent.

snmpBuildV1TrapPDU – Builds an SNMP V1 trap PDU
#include <snmpntfy.h>
int snmpBuildV1TrapPDU(SnmpPDU **pdu, const SnmpSession *snmpSession,

const SnmpVarBinds *varbinds, char *ent_p,
char *local_ip, int generic, int specific,
unsigned int timestamp);)

Rule: The snmpBuildSession() and snmpCreateVarBinds() functions must have
been successfully called before calling this function, because output from those
functions is required as input for this function. After you are finished using the
SnmpPDU structure created by this function, you must free the storage that was
allocated by calling the snmpFreePDU() function.

Chapter 5. SNMP manager API 139

snmpBuildV1TrapPDU description
This function creates and initializes an SNMP PDU of type SNMP_PDU_TRAPV1.
The PDU is built using the input parameters. The security-related information
stored in the PDU is obtained from the session parameter. This function encodes the
PDU using Basic Encoding Rules (BER), which are used by SNMP.

snmpBuildV1TrapPDU parameters
pdu This output parameter is a pointer to the variable into which to store the

address of the SnmpPDU structure that is created. This parameter is
required.

snmpSession
This input parameter is the address of the SNMP session for which the
SNMP PDU needs to be built. This parameter is the output parameter of
the snmpBuildSession() function and is required.

varbinds
This input parameter is a pointer to the array of VarBind structures that
was built using the snmpCreateVarBinds() and snmpAddVarBind()
functions. This parameter is required.

ent_p This input parameter is a pointer to the enterprise OID that generates the
trap. This parameter is required.

local_ip
This input parameter is the address of the system that generates the trap (a
character string). This parameter is required.

generic This input parameter indicates the generic trap type. This parameter is
required.

specific This input parameter indicates the specific trap type. This parameter is
required.

timestamp
This input parameter specifies the amount of time that has elapsed
between the last network re-initialization and generation of the trap. This
parameter is required.

snmpBuildV1TrapPDU result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's pdu, snmpSession, varbinds, ent_p,

or local_ip parameter is NULL
v SNMP_MGR_RC_INVALID_PARAMETERS if one of the following is true for

this function:
– The generic parameter value is not in the range 0 - 6
– The generic parameter value is in the range 0 - 5 and the specific parameter

value is not 0
– The specific parameter value is less than 0

v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for either
the SnmpPDU structure or the encoded PDU string

v SNMP_MGR_RC_ENCODE_ERROR if an error was encountered while encoding
the PDU

v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal
function. See your SNMP manager API log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error

140 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

snmpBuildV2TrapOrInformPDU – Builds an SNMP V2 trap or
inform PDU

#include <snmpntfy.h>
int snmpBuildPDU(SnmpPDU **pdu, const SnmpSession *snmpSession ,

const int pduType, const SnmpVarBinds *varbinds,
smiUINT32 *req_id)

Rules:

v The snmpBuildSession() and snmpCreateVarBinds() functions must have been
successfully called before calling this function, because the output from the
snmpBuildSession() and snmpCreateVarBinds() functions is required as input for
this function. After you are finished using the SnmpPDU structure created by
this function, you must free the storage allocated by calling the snmpFreePDU()
function.

v SNMPv2 traps and informs require the following two VarBind structures in the
VarBind array:
– sysUpTime
– snmpTrapOid

Your SNMP manager must call the snmpCreateVarBinds() and
snmpAddVarBind() functions to create these VarBind structures, in this order,
before calling this function

snmpBuildV2TrapOrInformPDU description
This function creates and initializes either a v2 trap or an inform SNMP PDU. The
PDU is built using the input parameters. The security-related information stored in
the PDU is obtained from the session parameter. This function encodes the PDU
using Basic Encoding Rules (BER), which are used by SNMP.

snmpBuildV2TrapOrInformPDU parameters
pdu This output parameter is a pointer to the variable into which to store the

address of the SnmpPDU structure that is created. This parameter is
required.

snmpSession
This input parameter is the address of the SNMP session for which the
SNMP PDU needs to be built. This parameter is the output parameter of
the snmpBuildSession() function and is required.

pduType
This input parameter specifies the type of the PDU. This parameter is
required. The valid values are:
v SNMP_PDU_TRAPV2
v SNMP_PDU_INFORM

varbinds
This input parameter is a pointer to the array of VarBind structures built
using the snmpCreateVarBinds() and snmpAddVarBind() functions. This
parameter is required.

req_id This input parameter is a pointer to the request ID to be stored in the
SnmpPDU structure. If the value of this parameter is greater than or equal
to 0, this value is used. Otherwise, a random request ID is generated and
stored in the SnmpPDU structure.

Chapter 5. SNMP manager API 141

snmpBuildV2TrapOrInformPDU result
v SNMP_MGR_RC_OK if successful
v SNMP_MGR_RC_NULL_PTR if this function's pdu, snmpSession, or varbinds

parameter is NULL
v SNMP_MGR_RC_INVALID_PDU_TYPE if this function's pduType parameter is

not valid
v SNMP_MGR_RC_OUT_OF_MEMORY if storage could not be allocated for either

the SnmpPDU structure or for the encoded PDU string
v SNMP_MGR_RC_ENCODE_ERROR if an error was encountered while encoding

the PDU
v SNMP_MGR_RC_INTERNAL_ERROR if an error occurred in an internal

function. See your SNMP manager API log file for more information about the
error, including the internal return code value. Your IBM service representative
uses this internal return code to help solve your error.

SNMP manager API configuration file
You can create a configuration information file for use with the snmpInitialize()
function of the SNMP manager API. The configuration statements can be defined
and stored in a z/OS UNIX file or an MVS data set. See “snmpInitialize – Initialize
the manager environment” on page 128 for more information about using this file.
Following is a sample configuration file.

#--
Format of entries (SNMPv1 and SNMPv2c):
#
targetAddr targetPort version communityName
#
#--
Community-based security (SNMPv1 and SNMPv2c)
#--
9.1.1.1 161 snmpv1 -
9.1.1.2 - snmpv2c public

#--
Format of entries (SNMPv3):
#
targetAddr targetPort version userName password secLevel authProto authKey privProto privKey authEngineID
#
#--
User-based security (SNMPv3)
#--
9.8.0.1 162 snmpv3 userid - AuthPriv HMAC-SHA f40b19aa7c2d3b685655ba74d7771522faa3571c DES
f40b19aa7c2d3b685655ba74d7771522faa3571 8000000205092a67b63698ec
9.8.0.2 - snmpv3 userid - AuthPriv HMAC-SHA f40b19aa7c2d3b685655ba74d7771522faa3571c AESCFB128
f40b19aa7c2d3b685655ba74d7771522faa3571 -

SNMP manager API statement syntax
This section describes the configuration entry parameters. The term target is a
target SNMP agent or to an application that receives a trap or inform sent by an
SNMP manager application.

targetAddr
IP address (IPv4 dotted decimal format or IPv6 colon hexadecimal format)
of the node of the target agent (maximum 19 characters). There is no
default value.

targetPort
Port number of the target agent, in the range 1-65535. Use a dash (-) to
indicate the default value (161).

142 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

version
Specifies the administrative model that is supported by the target agent.
The following values are valid:

snmpv1
Community-based SNMPV1 security

snmpv2c
Community-based SNMPV2 security

snmpv3
SNMPV3 user-based security (USM)

There is no default value.

communityName
Specifies the community name for community-based security (SNMPV1 or
SNMPV2c). A dash (-) can be used to indicate the default value (public).

userName
Specifies the security name of the principal using this configuration file
entry. For USM security, this is the user name. The user must be defined at
the target agent. This field is ignored unless SNMPv3 is specified for the
version keyword. A valid value is a user name that is 1 - 32 characters in
length. There is no default value.

password
Specifies the password that is to be used in generating the authentication
and privacy keys for this user. If a password is specified, it is used to
automatically generate any needed keys and the authKey and privKey
fields are ignored. This field is ignored unless SNMPv3 is specified for the
version keyword. If you do not want to specify a password, set the field to
a single dash (-). (The minimum number of characters that you can specify
is eight, and the maximum number is 64 characters.)

Rule: If you define a password in your configuration entry, the authKey
and privKey fields must be set to a dash (-), which specifies no key.

Guideline: You should not use the password instead of keys in this
configuration file, because using keys is more secure than storing
passwords in this file.

Tip: To use a different password for authentication and privacy, you can
overwrite the authPassword or privPassword field in the SnmpConfigEntry
structure. By default, both of these password fields contain the value
defined in the configuration file.

secLevel
Specifies the security level to be used when communicating with the target
SNMP agent when this entry is used. This field is ignored unless SNMPv3
is specified for the version keyword. The following values are valid:
v noAuthNoPriv or none to indicate that no authentication or privacy is

requested
v AuthNoPriv or auth to indicate that authentication is requested but

privacy is not requested
v AuthPriv or priv to indicate that both authentication and privacy are

requested
v Dash (-) to indicate the default value (noAuthNoPriv)

Chapter 5. SNMP manager API 143

authProto
SNMP authentication protocol to be used when communicating with the
target SNMP agent when this entry is used. This field is ignored unless
SNMPv3 is specified for the version keyword. The following values are
valid:
v HMAC-MD5
v HMAC-SHA
v A single dash (-) for no authentication

authKey
Specifies the SNMP authentication key to be used when communicating
with the target SNMP agent when this entry is used. This key must be the
non-localized key. This field is ignored if the password keyword is used.
This field is ignored unless SNMPv3 is specified for the version keyword
and a non-default value is specified for the authProto parameter. The
following values are valid:
v 16 bytes (32 hexadecimal digits) when the authProto value is

HMAC-MD5
v 20 bytes (40 hexadecimal digits) when the authProto value is

HMAC-SHA
v A dash (-) indicates the default value, which is no key

privProto
Specifies the SNMP privacy protocol to be used when communicating with
the target SNMP agent when this entry is used. This field is ignored unless
SNMPv3 is specified for the version keyword. The following values are
valid:
v DES for CBC-DES.
v AESCFB128 for AES 128-bit CFB mode.

Requirement: For the AES privacy protocol, z/OS Integrated
Cryptographic Service Facility (ICSF) must be active. For detailed
information about configuring ICSF, see z/OS Cryptographic Services
ICSF Administrator's Guide.

v A dash (-) to indicate the default value, which is no privacy.

privKey
Specifies the SNMP privacy key to be used when communicating with the
target SNMP agent when this entry is used. This key must be the
non-localized key. This field is ignored if the password keyword is used.
The privacy and authentication keys are assumed to have been generated
using the same authentication protocol (for example, both with
HMAC-MD5 or both with HMAC-SHA). This field is ignored unless the
value snmpv3 is specified for the admin keyword and a non-default value
is specified for the privProto parameter. The following values are valid:
v 16 bytes (32 hexadecimal digits) when the authProto value is

HMAC-MD5
v 20 bytes (40 hexadecimal digits) when the authProto value is

HMAC-SHA
v A dash (-) to indicate the default value (no key)

authEngineID
This parameter is valid only for SNMPv2 traps with USM security and is
required only when the functionsRequested parameter on the
snmpInitialize() call is not 0. If you specify this parameter, it represents the

144 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

authoritative engine ID to be used to send a trap. A valid authEngineID is
a string of 10-64 (must be an even number) hexadecimal digits. By default,
the engine identifier is created by using a vendor-specific formula and
incorporates the IP address of the manager. However, a customer can
choose to use any engine identifier that is consistent with the
snmpEngineID definition in RFC 3411 and that is also unique within the
administrative domain. A dash (-) indicates the generated default value.
See Appendix J, “Related protocol specifications,” on page 1075 for
information about accessing RFCs.

SNMP manager API general rules
v All parameters for an entry must be contained on one line in the configuration

file.
v A dash (-) indicates the default value for a keyword.
v Comments begin with a number sign character (#) in column 1.
v The userName and password parameters are case-sensitive.
v IP addresses are checked for validity. Enumerated values, for example authProto,

are checked for validity. All other character strings are checked only to ensure
that they are not too long.

Steps for compiling and linking SNMP manager API
applications

This topic describes the steps of using the SNMP manager API applications.

Procedure

To use the SNMP manager API or SNMP notification API, perform the following
steps:
1. Write your SNMP manager source application.

To enable the use of MVS-specific data structures, you must define the MVS
constant using either a compilation option (-DMVS) or a compiler directive
(#define MVS) in your application.
Make sure to include the <snmpmgr.h> header file, which is available in the
/usr/include directory. If your SNMP manager will be sending notifications,
make sure to include the SNMP notification header, <snmpntfy.h>, which is
also available in the /usr/include directory.

2. Compile your application using the DLL compiler option. See z/OS XL C/C++
User's Guide for more information about how to specify compiler options.

3. Include the SNMP manager API definition side deck (/usr/lib/EZBSNMPA.x,
/usr/lib/EZBSNMPX.x, or /usr/lib/EZBSNMP6.x) when prelinking or binding
the application.

Running your SNMP manager API application
The SNMP API provides the following DLLs for running your application:
v 31-bit DLL EZBSNMPA
v 31-bit DLL EZBSNMPX for applications compiled with XPLINK
v 64-bit DLL EZBSNMP6 for applications compiled with XPLINK

These DLLs are included in the SYS1.SIEALNKE data set and in z/OS UNIX, in
the /usr/lib directory. Ensure that the SYS1.SIEALNKE file is in your LNKLST
statement before running your application

Chapter 5. SNMP manager API 145

Debugging the SNMP manager API
You can debug problems with the SNMP manager API in two ways.

For manager applications, call the snmpSetLogLevel() routine using the following
debug levels:

Table 3. SNMP manager API debug levels

Debug level Description

SNMP_LOG_NONE (0) No logging

SNMP_LOG_ERROR (1) Log only errors

SNMP_LOG_TRACE (2) Trace function upon entry and exit

SNMP_LOG_DUMP(4) Dump the session object

SNMP_LOG_ALL (7) Log all levels except SNMP_LOG_INTERNAL

SNMP_LOG_INTERNAL
(8)

Log all traces for packet processing

When calling the snmpSetLogLevel() routine, you can use multiple trace levels by
specifying either the numerical value of each desired item, or the logical name. For
example, for both SNMP_LOG_ERROR (1) and SNMP_LOG_TRACE (2), you can
issue one of the following:
v snmpSetLogLevel(SNMP_LOG_ERROR + SNMP_LOG_TRACE)
v snmpSetLogLevel(3)

Set the SNMP_MGR_LOG_LEVEL debuglevel environment variable to turn on
debugging. This environment variable is read when the snmpInitialize() function is
called. You can set multiple trace levels by adding the levels that you want to
trace.

The SNMP manager API attempts to read the SNMP_MGR_LOG_LEVEL
environment variable in the snmpInitialize() function. If your SNMP manager calls
the snmpSetLogLevel() function before calling the snmpInitialize() function, all
API-generated trace messages in the snmpInitialize() function are logged. If not,
logging begins inside the snmpInitialize() function after the environment variable
is validated. After the environment variable has been read in the snmpInitialize()
function, the value of the environment variable SNMP_MGR_LOG_LEVEL (if set)
is used as the log level for your SNMP manager application. After this point, calls
to the snmpSetLogLevel() function do not change the log level. You must unset the
environment variable for this function to operate correctly.

The SNMP manager API, by default, uses the SYSLOG daemon, and uses the
current SYSLOG configuration for the output location. However, by declaring the
SNMP_MGR_LOG_FILE environment variable, the SNMP manager can also send
the output stream to an individual file (in addition to SYSLOG or another logging
function). Use the SNMP_MGR_LOG_FILE environment variable to test your
application. If the environment variable is declared, the log messages generated by
the SNMP manager API are sent to both the file specified by the environment
variable and either SYSLOG or your own logging function.

You can use your own logging function, rather than the SYSLOG default. Using
your own logging function has the benefit of providing the log messages from the
SNMP manager API, and your application logging. Your logging function
overrides the default, SYSLOG logging function, which means that after you have
enabled your logging function in the SNMP manager API, log messages are no
longer sent to SYSLOG. If you have declared the SNMP_MGR_LOG_FILE

146 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

environment variable, log messages are sent to both your logging function and to
the file specified by the environment variable.

To use your own logging function, your SNMP manager needs to pass the name of
the function as a parameter to the SNMP manager API's snmpSetLogFunction()
routine. Every message produced by the SNMP manager API is then sent to your
logging function, along with the integer that specifies the level of the log message
(for example, SNMP_LOG_TRACE). Your function definition must be defined as
follows so that the SNMP manager API calls it correctly:
void myLogger(int logLevel, char *logMsg);

Sample SNMP manager API source code
You can find a sample SNMP manager implementation, snmpSMgr.c, in the
usr/lpp/tcpip/samples directory.

Chapter 5. SNMP manager API 147

148 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 6. Resource Reservation Setup Protocol API (RAPI)

The z/OS UNIX RSVP agent includes an application programming interface (API)
for the Resource ReSerVation Protocol (RSVP), known as RAPI.

The RAPI interface is one realization of the generic API contained in the RSVP
functional specification (see RFC 2205; see Appendix J, “Related protocol
specifications,” on page 1075 for information about accessing RFCs). RSVP
describes a resource reservation setup protocol designed for an integrated services
internet. RSVP provides receiver-initiated setup of resource reservations for
multicast or unicast data flows. See the RSVP applicability statement in reference
RFC 2210 for more information.

The RAPI interface is a set of C language bindings whose calls are defined in this
topic. Applications use RAPI to request enhanced Quality of Service (QoS). The
RSVP agent then uses the RSVP protocol to propagate the QoS request through the
routers along the paths for the data flow. Each router can accept or deny the
request, depending upon the availability of resources. In the case of failure, the
RSVP agent returns the decision to the requesting application by way of RAPI.

RSVP is a receiver-oriented signaling protocol that enables applications to request
Quality of Service on an IP network. The types of Quality of Service requested by
those applications are defined by Integrated Services. RSVP signaling applies to
simplex unicast or multicast data flows. Although RSVP distinguishes senders from
receivers, the same application can act in both roles.

RSVP assigns QoS to specific IP data flows that can be either multipoint-to-
multipoint or point-to-point data flows, known as sessions. A session is defined by
a particular transport protocol, IP destination address, and destination port. To
receive data packets for a particular multicast session, an application must join the
corresponding IP multicast group.

A data source, or sender, is defined by an IP source address and a source port. A
given session can have multiple senders (S1, S2, ... Sn), and if the destination is a
multicast address, multiple receivers (R1, R2, ... Rn).

Under RSVP, QoS requests are made by the data receivers. A QoS request contains
a flowspec, together with a filter spec. The flowspec includes an Rspec, which
defines the desired QoS and is used to control the packet scheduling mechanism in
the router or host, and also a Tspec, which defines the traffic expected by the
receiver. The filter spec controls packet classification to determine which sender
data packets receive the corresponding QoS.

The detailed manner in which reservations from different receivers are shared in
the internet is controlled by a reservation parameter known as the reservation
style. The RSVP Functional Specification (see RFC 2205; see Appendix J, “Related
protocol specifications,” on page 1075 for information about accessing RFCs)
contains a definition and explanation of the different reservation styles. Also see
z/OS Communications Server: IP Configuration Guide and z/OS Communications
Server: IP Diagnosis Guide for more information about the RSVP agent.

© Copyright IBM Corp. 2000, 2015 149

API outline
Using the RAPI interface, an application uses the rapi_session() call to define an
API session for sending a single simplex data flow or receiving such a data flow.
The rapi_sender() call can then be used to register as a data sender, and the
rapi_reserve() call can be used to make a QoS reservation as a data receiver.

The rapi_sender() or rapi_reserve() calls can be repeated with different parameters
to dynamically modify the state at any time or they can be issued in null forms
that retract the corresponding registration. The application can call rapi_release() to
close the session and delete all of its resource reservations.

A single API session, defined by a single rapi_session() call, can define only one
sender at a time. More than one API session can be established for the same RSVP
session. For example, if an application sends multiple UDP data flows that are
distinguished by source port, it will call rapi_session() and rapi_sender() separately
for each of these flows.

The rapi_session() call allows the application to specify an upcall (or callback)
routine that is invoked to signal RSVP state change and error events. There are five
types of events:
v RAPI_PATH_EVENT signals the arrival or change of path state.
v RAPI_RESV_EVENT signals the arrival or change of reservation state.
v RAPI_PATH_ERROR signals the corresponding path error.
v RAPI_RESV_CONFIRM signals the arrival of a CONFIRM message.
v RAPI_RESV_ERROR signals the corresponding reservation error.

A synchronous error in a RAPI routine returns an appropriate error code.
Asynchronous RSVP errors are delivered to the application by way of the RAPI
upcall routine.

Compiling and linking RAPI applications
This topic describes the steps of using the RAPI applications.

Procedure

To use the RAPI interface, an application must perform the following steps:
1. Include the <rapi.h> header file, which is available in the /usr/include

directory.
2. Compile the application with the DLL compiler option. See z/OS XL C/C++

User's Guide for more information about how to specify compiler options.
3. Include the RAPI definition side deck (rapi.x), which is available in the

/usr/lib directory, when prelinking or binding the application.
4. If the Binder is used instead of the C Prelinker, specify the Binder

DYNAM=DLL option. See z/OS MVS Program Management: User's Guide and
Reference for information about specifying Binder options.

150 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Running RAPI applications
At execution time, the RAPI application must have access to the RAPI DLL
(rapi.dll), which is available in the /usr/lib directory. Ensure that the LIBPATH
environment variable includes this directory when running the application. The
RAPI application must run with superuser authority to use RAPI.

Event upcall
An upcall is invoked by the asynchronous event mechanism. It executes the
function whose address was specified in the event_rtn parameter in the
rapi_session()call.

The event upcall function template is defined as follows:

rapi_event_rtn_t - Event upcall
#include <rapi.h>

typedef int rapi_event_rtn_t(
rapi_sid_t Sid, /* Session ID */
rapi_eventinfo_t EventType, /* Event type */
rapi_styleid_t Style, /* Reservation style */
int ErrorCode, /* Error event: code */
int ErrorValue, /* Error event: value */
rapi_addr_t *ErrorNode, /* Node detecting error */
unsigned int ErrorFlags, /* Error flags */
int FilterspecNo, /* number of filterspecs*/
rapi_filter_t *Filterspec_list,
int FlowspecNo, /* number of flowspecs */
rapi_flowspec_t *Flowspec_list,
int AdspecNo, /* number of adspecs */
rapi_adspec_t *Adspec_list,
void *Event_arg /* application argument */

);

rapi_event_rtn_t description
This is the template for the function address that is supplied on the rapi_session
call. The event upcall function is invoked from the asynchronous event mechanism
when an event occurs.

rapi_event_rtn_t parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

EventType
This parameter contains the upcall event type. See the description of this
parameter in “rapi_event_rtn_t result” on page 152.

Style This parameter contains the style of the reservation; it is nonzero only for a
RAPI_RESV_EVENT or RAPI_RESV_ERROR event.

ErrorCode, ErrorValue
These values encode the error cause, and they are set only for a
RAPI_PATH_ERROR or RAPI_RESV_ERROR event. See “RAPI error
handling” on page 165 for interpretation of these values.

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 151

ErrorNode
This is the IP address of the node that detected the error, and it is set only
for a RAPI_PATH_ERROR or RAPI_RESV_ERROR event.

ErrorFlags
These error flags are set only for a RAPI_PATH_ERROR or
RAPI_RESV_ERROR event.

RAPI_ERRF_InPlace
The reservation failed, but another (presumably smaller)
reservation is still in place on the same interface.

RAPI_ERRF_NotGuilty
The reservation failed, but the request from this client was merged
with a larger reservation upstream, so this client reservation might
not have caused the failure.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area that contains a
sequential vector of RAPI filter spec or sender template objects. The number
of objects in this vector is specified in FilterSpecNo. If the FilterSpecNo value
is 0, the FilterSpec_list parameter value is NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area that contains a
sequential vector of RAPI flowspec or Tspec objects. The number of objects
in this vector is specified in FlowspecNo. If the FlowspecNo value is 0, the
Flowspec_list parameter value is NULL.

Adspec_list, AdspecNo
The Adspec_list parameter is a pointer to an area the contains a sequential
vector of RAPI adspec objects. The number of objects in this vector is
specified in AdspecNo. If the AdspecNo value is 0, the Adspec_list parameter
value is NULL.

Event_arg
This is the value that is supplied in the rapi_session() call.

rapi_event_rtn_t result
When the application upcall function returns, any areas pointed to by Flowspec_list,
FilterSpec_list, or Adspec_list become not valid for further reference. The upcall
function must copy any values it wants to save.

The specific parameters depend upon EventType, which can have one of the
following values:

RAPI_PATH_EVENT
A path event indicates that RSVP sender (Path) state from a remote node
has arrived or changed at the local node. A RAPI_PATH_EVENT event
containing the complete current list of senders (or possibly no senders,
after a path teardown) in the path state for the specified session is
triggered whenever the path state changes.

FilterSpec_list, Flowspec_list, and Adspec_list are of equal length, and
corresponding entries contain sender templates, sender Tspecs, and Adspecs,
respectively, for all senders known at this node. A missing object is
generally indicated by an empty RAPI object.

RAPI_PATH_EVENT events are enabled by the initial rapi_session() call.

RAPI_RESV_EVENT
A reservation event indicates that reservation state has arrived or changed

152 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

at the node, implying (but not assuring) that reservations have been
established or deleted along the entire data path to one or more receivers.
RAPI_RESV_EVENT upcalls containing the current reservation state for the
API session are triggered whenever the reservation state changes.

Flowspec_list will either contain one flowspec object or be empty (if the state
has been torn down), and FilterSpec_list contain zero or more
corresponding filter spec objects. Adspec_list is empty.

RAPI_RESV_EVENT upcalls are enabled by a rapi_sender() call; the sender
template from the latter call matches the filter spec returned in the upcall
triggered by a reservation event.

RAPI_PATH_ERROR
A path error event indicates that an asynchronous error has been found in
the sender information specified in a rapi_sender() call.

The ErrorCode and ErrorValue parameters specify the error. FilterSpec_list
and Flowspec_list each contain one object, the sender template and
corresponding sender Tspec (if any) in error, while Adspec_list is empty. If
there is no sender Tspec, the object in Flowspec_list is an empty RAPI object.
The Adspec_list is empty.

RAPI_PATH_ERROR events are enabled by a rapi_sender() call, and the
sender Tspec in that call matches the sender Tspec returned in a subsequent
upcall triggered by a RAPI_PATH_ERROR event.

RAPI_RESV_ERROR
A reservation error upcall indicates that an asynchronous reservation error
has occurred.

The ErrorCode and ErrorValue parameters specify the error. Flowspec_list
contains one flowspec, while FilterSpec_list can contain zero or more
corresponding filter specs. Adspec_list is empty.

RAPI_RESV_ERROR events are enabled by a rapi_reserve() call.

RAPI_RESV_CONFIRM
A RAPI_RESV_CONFIRM event indicates that a reservation has been made
at least up to an intermediate merge point, and probably (but not
necessarily) all the way to at least one sender.

The parameters of a RAPI_RESV_CONFIRM event are the same as those
for a RAPI_RESV_EVENT event upcall.

The accompanying table summarizes the upcalls. n is a nonnegative integer.

Upcall Enabled by FilterSpecNo FlowspecNo AdspecNo

RAPI_PATH_EVENT rapi_session n n n

RAPI_PATH_ERROR rapi_sender 1 1 0

RAPI_RESV_EVENT rapi_sender n 1 or 0 0

RAPI_RESV_ERROR rapi_reserve n 1 0

RAPI_RESV_CONFIRM rapi_reserve 1 1 0

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 153

Client library services
The RSVP API provides the following client library calls:
v rapi_release()
v rapi_reserve()
v rapi_sender()
v rapi_session()
v rapi_version()

To use these calls, the application must include the file <rapi.h>. See “RAPI header
files” on page 168 for more information on header files.

rapi_release - Remove a session
#include <rapi.h>

int rapi_release (rapi_sid_t Sid)

rapi_release description
The rapi_release() call removes the reservation, if any, and the state corresponding
to a given session handle. This call will be made implicitly if the application
terminates without closing its RSVP sessions.

rapi_release parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

rapi_release result
If the session handle is not valid, the call returns a corresponding RAPI error code;
otherwise, it returns 0.

rapi_reserve - Make, modify, or delete a reservation
#include <rapi.h>

int rapi_reserve(
rapi_sid_t Sid, /* Session ID */
int Flags, /* Flags */
rapi_addr_t *RHost, /* Receive host addr */
rapi_styleid_t StyleId, /* Style ID */
rapi_stylex_t *Style_Ext, /* Style extension */
rapi_policy_t *Rcvr_Policy, /* Receiver policy */
int FilterSpecNo, /* Number of filter specs */
rapi_filter_t *FilterSpec_list, /* List of filter specs */
int FlowspecNo, /* Number of flowspecs */
rapi_flowspec_t *Flowspec_list /* List of flowspecs */

)

rapi_reserve description
The rapi_reserve() function is called to make, modify, or delete a resource
reservation for a session. The call can be repeated with different parameters,
allowing the application to modify or remove the reservation; the latest call will
take precedence.

154 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

rapi_reserve parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

Flags No flags are currently defined for this call.

RHost This parameter is used to define the interface address on which data will
be received for multicast flows. It is useful for a multihomed host. If it is
NULL or the host address is INADDR_ANY, the default interface will be
chosen.

StyleId This parameter specifies the reservation style ID (see Flowspec_list,
FlowspecNo).

Style_Ext
This parameter must be NULL.

Rcvr_Policy
This parameter must be NULL.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a sequential
vector of RAPI filter spec objects. The number of objects in this vector is
specified in FilterSpecNo. If FilterSpecNo is 0, the FilterSpec_list parameter is
ignored and can be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a sequential
vector of RAPI flow spec objects. The number of objects in this vector is
specified in FlowspecNo. If FlowspecNo is 0, the Flowspec_list parameter is
ignored and can be NULL.

If FlowspecNo is 0, the call will remove the current reservations for the
specified session, and FilterSpec_list and Flowspec_list will be ignored.
Otherwise, the parameters depend upon the style, as follows:

Wildcard Filter (WF)
Use StyleId = RAPI_RSTYLE_WILDCARD. The Flowspec_list
parameter can be NULL (to delete the reservation) or else point to
a single flowspec. The FilterSpec_list parameter should be empty.

Fixed Filter (FF)
Use StyleId = RAPI_RSTYLE_FIXED. FilterSpecNo must equal
FlowspecNo. Entries in Flowspec_list and FilterSpec_list parameters
will correspond in pairs.

Shared Explicit (SE)
Use StyleId = RAPI_RSTYLE_SE. The Flowspec_list parameter
should point to a single flowspec. The FilterSpec_list parameter can
point to a list of any length.

rapi_reserve result
Depending upon the parameters, each call might or might not result in new
admission control calls, which could fail asynchronously.

If there is a synchronous error in this call, rapi_reserve() returns a RAPI error code;
otherwise, it returns 0.

Applications measure success in the form of errors returned when making QoS
requests. No final acknowledgment will occur.

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 155

An admission control failure (for example, refusal of the QoS request) is reported
asynchronously by an upcall of type RAPI_RESV_ERROR. A RSVP_Err_NO_PATH
error code indicates that RSVP state from one or more of the senders specified in
FilterSpec_list has not (yet) propagated all the way to the receiver; it might also
indicate that one or more of the specified senders has closed its API session and
that its RSVP state has been deleted from the routers.

rapi_sender - Specify sender parameters
#include <rapi.h>

int rapi_sender(
rapi_sid_t Sid, /* Session ID */
int Flags, /* Flags */
rapi_addr_t *LHost, /* Local Host */
rapi_filter_t *SenderTemplate, /* Sender template */
rapi_tspec_t *SenderTspec, /* Sender Tspec */
rapi_adspec_t *SenderAdspec, /* Sender Adspec */
rapi_policy_t *SenderPolicy, /* Sender policy data */
int TTL /* Multicast data TTL */

)

rapi_sender description
An application must issue a rapi_sender() call if it intends to send a flow of data
for which receivers can make reservations. This call defines, redefines, or deletes
the parameters of that flow. A rapi_sender() call can be issued more than once for
the same API session; the most recent one takes precedence.

After a successful rapi_sender() call has been made, the application can receive
upcalls of type RAPI_RESV_EVENT or RAPI_PATH_ERROR.

rapi_sender parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

Flags No flags are currently defined for this call.

LHost This parameter can point to a rapi_addr_t structure specifying the IP
source address and, if applicable, the source port from which data is sent,
or it can be NULL.

If the IP source address is INADDR_ANY, the API uses the default IP
address of the local host. This is sufficient unless the host is multihomed.
The port number can be zero if the protocol for the session does not have
ports.

A NULL LHost parameter indicates that the application wishes to
withdraw its registration as a sender. In this case, the following parameters
will all be ignored.

SenderTemplate
This parameter can be a pointer to a RAPI filter specification structure
specifying the format of data packets to be sent, or it can be NULL.

If this parameter is NULL, a sender template will be created internally
from the Dest and LHost parameters. The Dest parameter was supplied in
an earlier rapi_session() call. If a SenderTemplate parameter is present, the
(non-NULL) LHost parameter is ignored.

156 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

SenderTspec
This parameter is a pointer to a Tspec that defines the traffic that this
sender will create and must not be NULL.

SenderAdspec
This parameter must be NULL or unpredictable results can occur.

SenderPolicy
This parameter must be NULL.

TTL This parameter specifies the IP TTL (Time-to-Live) value with which
multicast data will be sent. It allows RSVP to send its control messages
with the same TTL scope as the data packets.

rapi_sender result
If there is a synchronous error, rapi_sender() returns a RAPI error code; otherwise,
it returns 0.

rapi_session - Create a session
#include <rapi.h>

rapi_sid_t rapi_session(
rapi_addr_t *Dest, /* Session: (Dst addr, port) */
int Protid, /* Protocol Id */
int Flags, /* Flags */
rapi_event_rtn_t Event_rtn, /* Address of upcall routine */
void *Event_arg, /* App argument to upcall */
int *Errnop /* Place to return error code*/

)

rapi_session description
The rapi_session() call creates an API session.

After a successful rapi_session() call has been made, the application can receive
upcalls of type RAPI_PATH_EVENT for the API session.

rapi_session parameters
The parameters are as follows:

Dest This parameter points to a rapi_addr_t structure defining the destination IP
address and a port number to which data will be sent. The Dest and Protid
parameters define an RSVP session. If the Protid specifies UDP or TCP
transport, the port corresponds to the appropriate transport port number.

Protid The IP protocol ID for the session. If it is omitted (that is, zero), 17 (UDP)
is assumed.

Flags The valid values for Flags are as follows:

RAPI_USE_INTSERV
If set, IntServ formats are used in upcalls; otherwise, the Simplified
format is used.

Event_rtn
This parameter is a function typedef for an upcall function that will be
invoked to notify the application of RSVP errors and state change events.
Pending events cause the invocation of the upcall function. The application
must supply an upcall routine for event processing.

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 157

Event_arg
This parameter is an argument that will be passed to any invocation of the
upcall routine.

Errnop The address of an integer into which a RAPI error code will be returned. If
Errnop is NULL, no error code is returned.

rapi_session result
If the call succeeds, the rapi_session() call returns a nonzero session handle for use
in subsequent calls related to this API session.

If the call fails synchronously, it returns zero (RAPI_NULL_SID) and stores a RAPI
error code into an integer variable pointed to by the Errnop parameter.

rapi_session extended description
An application can have multiple API sessions registered for the same or different
RSVP sessions at the same time. There can be at most one sender associated with
each API session; however, an application can announce multiple senders for a
given RSVP session by announcing each sender in a separate API session.

Two API sessions for the same RSVP session, if they are receiving data, are
assumed to have joined the same multicast group and will receive the same data
packets.

rapi_version - RAPI version
#include <rapi.h>

int rapi_version(void)

rapi_version description
This call obtains the version of the interface. It can be used by an application to
adapt to different versions.

rapi_version result
This call returns a single integer that defines the version of the interface. The
returned value is composed of a major number and a minor number, encoded as
100 * major + minor

The API described in this topic has major version number 6.

RAPI formatting routines
For convenience of applications, RAPI includes standard routines for displaying
the contents of RAPI objects.

These standard formatting routines are:
v rapi_fmt_adspec()
v rapi_fmt_filtspec()
v rapi_fmt_flowspec()
v rapi_fmt_tspec()

158 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

rapi_fmt_adspec - Format an adspec
#include <rapi.h>

void rapi_fmt_adspec(
rapi_adspec_t *adspecp, /* Addr of RAPI adspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

rapi_fmt_adspec description
The rapi_fmt_adspec() call formats a given RAPI adspec into a buffer of given
address and length. The output is truncated if the length is too small. If it is
NULL, this function returns without performing any formatting.

rapi_fmt_adspec parameters
adspecp

This parameter is a pointer to the adspec to be formatted. If it is NULL,
this function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted
output will be placed. If the buffer is too small to contain the output, then
the formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

rapi_fmt_adspec result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible adspec output:
[GEN AS[brk=y hop=0 BW=0 lat=0 mtu=0]]

The output reflects the following code:

GEN Generic adspec

rapi_fmt_filtspec - Format a filtspec
#include <rapi.h>

void rapi_fmt_filtspec(
rapi_filtspec_t *filtp, /* Addr of RAPI Filtspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

rapi_fmt_filtspec description
The rapi_fmt_filtspec() call formats a given RAPI filter spec into a buffer of given
address and length. The output is truncated if the length is too small. If it is
NULL, this function returns without performing any formatting.

rapi_fmt_filtspec parameters
filtp This parameter is a pointer to the Filtspec to be formatted. If it is NULL,

this function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 159

output will be placed. If the buffer is too small to contain the output, then
the formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

rapi_fmt_filtspec result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible filtspec output:
9.67.200.2/8000

showing the IP address and port.

rapi_fmt_flowspec - Format a flowspec
#include <rapi.h>

void rapi_fmt_flowspec(
rapi_flowspec_t *specp, /* Addr of RAPI flowspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

rapi_fmt_flowspec description
The rapi_fmt_flowspec() call formats a given RAPI flowspec into a buffer of given
address and length. The output is truncated if the length is too small.

rapi_fmt_flowspec parameters
specp This parameter is a pointer to the flowspec to be formatted. If it is NULL,

this function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted
output will be placed. If the buffer is too small to contain the output, then
the formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

rapi_fmt_flowspec result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows the formatted output for a Controlled Load
flowspec.
[CL TS[r=90000 b=6000 p=5.5e+06 m=1024 M=2048]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as that
shown for the Tspec p value.

The output reflects the following codes:

CL Controlled load

TS Tspec, listing the Tspec values

160 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The following example shows the formatted output for a guaranteed flowspec.
[GUAR TS[r=90000 b=6000 p=5.5e+06 m=1024 M=2048] RS[R=90000 S=1]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as that
shown for the Tspec p value.
The output reflects the following codes:

GUAR
Guaranteed

TS Tspec, listing the Tspec values

RS Rspec, listing the Rspec values

rapi_fmt_tspec - Format a tspec
#include <rapi.h>

void rapi_fmt_tspec(
rapi_tspec_t *tspecp, /* Addr of RAPI Tspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

rapi_fmt_tspec description
The rapi_fmt_tspec() call formats a given RAPI Tspec into a buffer of given address
and length. The output is truncated if the length is too small.

rapi_fmt_tspec parameters
tspecp This parameter is a pointer to the Tspec to be formatted. If it is NULL, this

function returns without performing any formatting.

buffer This is a pointer to the user-supplied buffer into which the formatted
output will be placed. If the buffer is too small to contain the output, then
the formatted output is truncated. If this parameter is NULL, this function
returns without performing any formatting.

length This is the length of the buffer pointed to with the buffer parameter. If this
parameter is 0, this function returns without performing any formatting.

rapi_fmt_tspec result
If possible, the input object is formatted into the user-supplied buffer. There is no
return value.

The following example shows possible Tspec output:
[GEN TS[r=55000 b=6000 p=5.5e+06 m=1024 M=2048]]

Note: Many of the RAPI object values are floating point numbers. The formatting
functions display large floating point values in a user-friendly way, such as that
shown for the Tspec p value.
The output reflects the following codes:

GEN Generic Tspec

TS Tspec, listing the Tspec values

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 161

RAPI objects
Flowspecs, filter specs, sender templates, and sender Tspecs are encoded as
variable-length RAPI objects.

Every RAPI object begins with a header of type rapi_hdr_t, which contains:
v The total length of the object in bytes
v The type

An empty object consists only of a header, with type 0 and length sizeof
(rapi_hdr_t).

Integrated services data structures are defined in RFC 2210, which describes the
use of the RSVP with the Controlled-Load and Guaranteed services. (See
Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs.) RSVP defines several data objects which carry resource
reservation information but are opaque to RSVP itself. The usage and data format
of those objects is given in RFC 2210.

RAPI objects - Flowspecs
There are two formats for RAPI flowspecs. For further details, see “The <rapi.h>
header” on page 168.

RAPI_FLOWSTYPE_Simplified
This is a simplified format. It consists of a simple list of parameters needed for
either Guaranteed or Controlled Load service, using the service type
QOS_GUARANTEED or QOS_CNTR_LOAD, respectively.

The RAPI client library routines map this format to or from an appropriate
Integrated Services data structure.

RAPI_FLOWSTYPE_Intserv
This flowspec must be a fully formatted Integrated Services flowspec data structure.

RAPI_FLOWSTYPE_Intserv upcalls
In an upcall, a flowspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format
is used in upcalls.

RAPI objects - Sender tspecs
There are two formats for RAPI Sender Tspecs. For further details, see “The <rapi.h>
header” on page 168.

RAPI_TSPECTYPE_Simplified
This is a simplified format consisting of a simple list of parameters with the service
type QOS_TSPEC. The RAPI client library routines map this format to or from an
appropriate Integrated Services data structure.

RAPI_TSPECTYPE_Intserv
This Tspec must be a fully formatted Integrated Services Tspec data structure.

RAPI_TSPECTYPE_Intserv upcalls
In an upcall, a sender Tspec is by default delivered in simplified format. However, if
the RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ
format is used in upcalls.

162 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RAPI objects - Adspecs
There are two formats for RAPI adspecs. For further details, see “The <rapi.h>
header” on page 168.

RAPI_ADSTYPE_Simplified
This is a simplified format, consisting of a list of adspec parameters for all possible
services. The RAPI client library routines map this format to an appropriate
Integrated Services data structure.

RAPI_ADSTYPE_Intserv
This adspec must be a fully formatted Integrated Services Adspec data structure.

RAPI_ADSTYPE_Intserv upcalls
In an upcall, an adspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format
is used in upcalls.

RAPI objects - Filter specs and sender templates
These objects have the following format:

RAPI_FILTERFORM_BASE
This object consists of a socket address structure defining the IP address
and port.

RAPI asynchronous event handling
The RAPI interface provides an asynchronous upcall mechanism using the select()
function. The upcall mechanism is a cooperative effort between RAPI and the
using application. The following shows the steps that must be taken by a RAPI
application to receive asynchronous upcalls:
1. The upcall function pointer must be specified on the rapi_session() call that

initiates the RAPI session. If the upcall function requires an argument, that also
must be specified on rapi_session(). The argument is defined as a pointer to
void.

2. The application must provide a means to be notified of asynchronous events.
The best way to do this is to create a thread using pthread_create().

3. The thread created above must issue the rapi_getfd() call to learn the file
descriptor of the socket used by RAPI for asynchronous communication.

4. The thread should then enter an endless loop to detect asynchronous events
using the select() call with the file descriptor learned using rapi_getfd(). When
an event is detected, the thread should call rapi_dispatch(), which then in turn
calls the upcall function synchronously.

The following example illustrates these steps. This example is for illustration
purposes only. It is not a complete program.
/***/
/* Issue a rapi_session() call to initialize RAPI. */
/***/
rapi_sid = rapi_session(&destination,

protocol,
0,
rapi_async, /* upcall function pointer */
0, /* no upcall argument */
&rc);

...
/***/

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 163

/* Create a pthread to handle RAPI upcalls. */
/***/
pthread_create(&thread_d,

NULL,
&rapi_th,
NULL);

...
/***/
/* Function: rapi_th() */
/***/
void *rapi_th(void *arg)
{

fd_set fds;
int fd;
struct timeval tv;

int rc = SUCCESSFUL;

/***/
/* This is the pthread created to handle RAPI upcalls. First, get */
/* the rapi socket descriptor to use on select(). */
/***/
pthread_mutex_lock(&rapi_lock);
fd = rapi_getfd(rapi_sid);
pthread_mutex_unlock(&rapi_lock);

if (fd > 0) {
/***/
/* Loop as long as all is well, waiting via select() for an */
/* asynchronous RAPI packet to arrive. */
/***/
while (rc == SUCCESSFUL) {

tv.tv_sec = 1;
tv.tv_usec = 0;

FD_ZERO(&fds);
FD_SET(fd, &fds);
switch(select(FD_SETSIZE, &fds, (fd_set *) NULL,

(fd_set *) NULL, &tv)) {
/***/
/* Bad return from select(). Get out. */
/***/
case -1:

rc = UNSUCCESSFUL;
break;

/***/
/* Time out on select(). Ignore. */
/***/
case 0:

break;

/***/
/* Dispatch data have arrived. Call the upcall function via */
/* rapi_dispatch(). */
/***/
default:

pthread_mutex_lock(&rapi_lock);
rc = rapi_dispatch();
pthread_mutex_unlock(&rapi_lock);
break;

}
}

}

/***/
/* Error on rapi_getfd(). */
/***/

164 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

else {
rc = UNSUCCESSFUL;

}

pthread_exit(NULL);
}

rapi_dispatch - Dispatch API event
#include <rapi.h>

int rapi_dispatch(void)

rapi_dispatch description
The application should call this routine whenever a read event is signaled on a file
descriptor returned by rapi_getfd(). The rapi_dispatch() routine can be called at
any time, but it will generally have no effect unless there is a pending event.

rapi_dispatch parameters
There are no parameters to this call.

rapi_dispatch result
Calling this routine can result in one or more upcalls to the application from any
of the open API sessions known to this instance of the library.

If this call encounters an error, rapi_dispatch() returns a RAPI error code;
otherwise, it returns 0. See “RAPI error codes” on page 166 for a list of error codes.

rapi_getfd - Get file descriptor
#include <rapi.h>

int rapi_getfd (rapi_sid_t Sid)

rapi_getfd description
After a rapi_session() call has completed successfully and before rapi_release() has
been called, the application can call rapi_getfd() to obtain the file descriptor
associated with that session. When a read event is signaled on this file descriptor,
the application should call rapi_dispatch().

rapi_getfd parameters
Sid This parameter is the session ID for the session initiated by a successful

rapi_session() call.

rapi_getfd result
If Sid is illegal or undefined, this call returns -1; otherwise, it returns the file
descriptor.

RAPI error handling
Errors can be detected synchronously or asynchronously.

When an error is detected synchronously, a RAPI error code is returned in the
Errnop argument of rapi_session(), or as the function return value of rapi_sender(),
rapi_reserve(), rapi_release(), or rapi_dispatch().

When an error is detected asynchronously, it is indicated by a RAPI_PATH_ERROR
or RAPI_RESV_ERROR event. An RSVP error code and error value are then

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 165

contained in the ErrorCode and ErrorValue arguments of the event_upcall() function.
In case of an API error (RSVP error code 20), a RAPI error code is contained in the
ErrorValue argument.

A description of RSVP error codes and values can be found in RFC 2205. See
Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs.

RAPI error codes
[RAPI_ERR_OK]

No error

[RAPI_ERR_INVAL]
Parameter not valid

[RAPI_ERR_MAXSESS]
Too many sessions

[RAPI_ERR_BADSID]
Session identity out of legal range

[RAPI_ERR_N_FFS]
Wrong filter number or flow number for style

[RAPI_ERR_BADSTYLE]
Illegal reservation style

[RAPI_ERR_SYSCALL]
A system error has occurred; its nature can be indicated by errno.

[RAPI_ERR_OVERFLOW]
Parameter list overflow

[RAPI_ERR_MEMFULL]
Not enough memory

[RAPI_ERR_NORSVP]
The RSVP agent is not active or is unable to respond.

[RAPI_ERR_OBJTYPE]
Object type not valid

[RAPI_ERR_OBJLEN]
Object length not valid

[RAPI_ERR_NOTSPEC]
No sender Tspec

[RAPI_ERR_INTSERV]
Integrated Services parameter format not valid

[RAPI_ERR_GPI_CONFLICT]
IPSEC: Conflicting C-type

[RAPI_ERR_BADPROTO]
IPSEC: Protocol not AH or ESP

[RAPI_ERR_BADVDPORT]
IPSEC: vDstPort is 0.

[RAPI_ERR_GPISESS]
IPSEC: Parameters for GPI_SESSION flag not valid, or other parameter
error

166 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

[RAPI_ERR_BADSEND]
Sender address not my interface

[RAPI_ERR_BADRECV]
Receiver address not my interface

[RAPI_ERR_BADSPORT]
Source port not valid: the source port is nonzero when the destination port
is 0.

[RAPI_ERR_UNSUPPORTED]
Unsupported feature

[RAPI_ERR_UNKNOWN]
Unknown error

[RAPI_ERR_BADSEND], [RAPI_ERR_BADRECV] and [RAPI_ERR_BADSPORT]
occur only asynchronously, as the ErrorValue when the ErrorCode is 20 (API error).

RSVP error codes

Value Symbol Meaning

0 RSVP_Err_NONE No error (confirmation)

1 RSVP_Err_ADMISSION Admission control failure

2 RSVP_Err_POLICY Policy control failure

3 RSVP_Err_NO_PATH No path information

4 RSVP_Err_NO_SENDER No sender information

5 RSVP_Err_BAD_STYLE Conflicting style

6 RSVP_Err_UNKNOWN_STYLE Unknown style

7 RSVP_Err_BAD_DSTPORT Conflicting destination port in
session

8 RSVP_Err_BAD_SNDPORT Conflicting source port

9 Reserved

10 Reserved

11 Reserved

12 RSVP_Err_PREEMPTED Service preempted

13 RSVP_Err_UNKN_OBJ_CLASS Unknown object class

14 RSVP_Err_UNKNOWN_CTYPE Unknown object C-Type

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 Reserved

20 RSVP_Err_API_ERROR API error

21 RSVP_Err_TC_ERROR Traffic control error

22 RSVP_Err_TC_SYS_ERROR Traffic control system error

23 RSVP_Err_RSVP_SYS_ERROR RSVP system error

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 167

RAPI header files
The following topics apply to RAPI header files.

RAPI header files: Integer and floating point types
Types u_int8_t, u_int16_t and u_int32_t, which appear in the <rapi.h> header file,
are unsigned integer types of length 8, 16, and 32 bits, respectively.

Type float32_t is a floating-point type of length 32 bits. It is defined by including
the <rapi.h> header file.

The <rapi.h> header
This header file contains the definitions of the RSVP API (RAPI) library calls.

Inclusion of this header can make available other symbols in addition to those
specified in this topic.

<rapi.h> header general definitions
The following general definitions apply to the <rapi.h> header:
v Macro RAPI_VERSION is defined with value 100 * major + minor, where major is

the major version number and minor is the minor version number. The value of
RAPI_VERSION is returned by rapi_version().

v Type rapi_addr_t is defined for protocol addresses. It is defined to be struct
sockaddr.

v Enumeration qos_service_t is defined by typedef and has at least the following
members:

Member Meaning

QOS_CNTR_LOAD Controlled-load service

QOS_GUARANTEED Guaranteed service

QOS_TSPEC Generic Tspec

v Enumeration rapi_format_t is defined by typedef and has at least the following
members:

Member Meaning

RAPI_ADSTYPE_Intserv Int-Serv format adspec

RAPI_ADSTYPE_Simplified Simplified format adspec

RAPI_EMPTY_OTYPE Empty object

RAPI_FILTERFORM_BASE Simple V4: Only sockaddr

RAPI_FLOWSTYPE_Intserv Int-Serv format flowspec

RAPI_FLOWSTYPE_Simplified Simplified format flowspec

RAPI_TSPECTYPE_Intserv Int-Serv format (sndr)Tspec

RAPI_TSPECTYPE_Simplified Simplified format (sndr)Tspec

v Type rapi_hdr_t is defined by typedef as a structure to represent a generic RAPI
object header. It has the following members, followed by type-specific contents:

Member Type Usage

form int Format

168 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Member Type Usage

len unsigned int Actual length in bytes

<rapi.h> header tspec definitions
The following Tspec definitions apply to the <rapi.h> header:
v Type qos_Tspec_body is defined by typedef as a structure with at least the

following members:

Member Type Usage

spec_Tspec_r float32_t Token bucket average rate in
bytes per second

spec_Tspec_b float32_t Token bucket depth in bytes

spec_Tspec_m u_int32_t Minimum policed unit in
bytes

spec_Tspec_M u_int32_t Maximum packet size in
bytes

spec_Tspec_p float32_t Peak data rate in bytes per
second

v Type qos_tspecx_t is defined by typedef as a structure that contains the generic
Tspec parameters, and has at least the following members:

Member Type Usage

spec_type qos_service_t QoS_service_type

xtspec_Tspec qos_Tspec_body Tspec

v The following macros are defined with the values given below:

Macro Value

xtspec_r xtspec_Tspec.spec_Tspec_r

xtspec_b xtspec_Tspec.spec_Tspec_b

xtspec_m xtspec_Tspec.spec_Tspec_m

xtspec_M xtspec_Tspec.spec_Tspec_M

xtspec_p xtspec_Tspec.spec_Tspec_p

v Type rapi_tspec_t is defined by typedef as a structure to represent a Tspec
descriptor, and has at least the following members:

Member Type Usage

form rapi_format_t Tspec format

ISt IS_tspbody_t Int-serv format Tspec

len unsigned int Actual length in bytes

qosxt qos_tspecx_t Simplified format Tspec

tspecbody_u union

v The following macros are defined with the values given below:

Macro Value

tspecbody_qosx tspecbody_u.qosxt

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 169

Macro Value

tspecbody_IS tspecbody_u.ISt

<rapi.h> header flowspec definitions
The following flowspec definitions apply to the <rapi.h> header:
v Type qos_flowspecx_t is defined by typedef as a structure that contains the union

of the parameters for controlled-load service and guaranteed service models, and has
at least the following members:

Member Type Usage

spec_type qos_service_t QoS_service_type

xspec_R float32_t Rate in bytes per second

xspec_S u_int32_t Slack term in microseconds

xspec_Tspec qos_Tspec_body Tspec

v The following macros are defined with the values given below:

Macro Value

xspec_r xspec_Tspec.spec_Tspec_r

xspec_b xspec_Tspec.spec_Tspec_b

xspec_m xspec_Tspec.spec_Tspec_m

xspec_M xspec_Tspec.spec_Tspec_M

xspec_p xspec_Tspec.spec_Tspec_p

v Type rapi_flowspec_t is defined by typedef as a structure to represent a flowspec
descriptor, and has at least the following members:

Member Type Usage

len unsigned int Actual length in bytes

form rapi_format_t Flowspec format

IS IS_specbody_t Int-serv format flowspec

specbody_u union

qosx qos_flowspecx_t Simplified format flowspec

v The following macros are defined with the values given below:

Macro Value

specbody_qosx specbody_u.qosx

specbody_IS specbody_u.IS

<rapi.h> header adspec definitions
The following adspec definitions apply to the <rapi.h> header:
v Type qos_adspecx_t is defined by typedef as a structure that contains the union of

all adspec parameters for controlled-load service and guaranteed service models, and
has at least the following members:

Member Type Usage

General path characterization parameters

170 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Member Type Usage

xaspec_flags u_int8_t Flags(1)

xaspec_hopcnt u_int16_t

xaspec_path_bw float32_t

xaspec_min_latency u_int32_t

xaspec_composed_MTU u_int32_t

Controlled-load service adspec parameters

xClaspec_flags u_int8_t Flags

xClaspec_override u_int8_t See note (2)

xClaspec_hopcnt u_int16_t

xClaspec_path_bw float32_t

xClaspec_min_latency u_int32_t

xClaspec_composed_MTU u_int32_t

Guaranteed service adspec parameters

xGaspec_flags u_int8_t Flags

xGaspec_Ctot u_int32_t

xGaspec_Dtot u_int32_t

xGaspec_Csum u_int32_t

xGaspec_Dsum u_int32_t

xGaspec_override u_int8_t See note (2)

xGaspec_hopcnt u_int16_t

xGaspec_path_bw float32_t

xGaspec_min_latency u_int32_t

xGaspec_composed_MTU u_int32_t

Notes:

(1) FLG_IGN is not allowed; FLG_PARM is assumed.

(2) A value of 1 means “override all generic parameters.”

v The following macros are defined with bitwise-distinct integral values for use in
the xaspec_flags xClaspec_flags and xGaspec_flags fields:

Macro Meaning

XASPEC_FLG_BRK Break bit: service unsupported in some
node.

XASPEC_FLG_IGN Ignore flag: Do not include this service.

XASPEC_FLG_PARM Parms-present flag: Include service
parameters.

v Type rapi_adspec_t is defined by typedef as a structure to represent an adspec
descriptor, and has at least the following members:

Member Type Usage

adsbody_u union

adsx qos_adspecx_t Simplified format adspec

form rapi_format_t adspec format

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 171

Member Type Usage

ISa IS_adsbody_t Int-serv format adspec

len unsigned int Actual length in bytes

v The following macros are defined with the values given below:

Macro Value

adspecbody_IS adsbody_u.ISa

adspecbody_qosx adsbody_u.adsx

<rapi.h> header filter spec definitions
The following filter spec definitions apply to the <rapi.h> header:
v Type rapi_filter_base_t is defined by typedef as a structure that contains at least

the following member:

Member Type

sender struct sockaddr_in

v Type rapi_filter_t is defined by typedef as a structure that contains at least the
following members:

Member Type Usage

base rapi_filter_base_t

filt_u union

form rapi_format_t Filterspec format

len u_int32_t actual length in bytes

v The following macros are defined with the values given below:

Macro Value

rapi_filt4 filt_u.base.sender

rapi_filtbase4_addr rapi_filt4.sin_addr

rapi_filtbase4_port rapi_filt4.sin_port

<rapi.h> header policy definitions
The following policy definitions apply to the <rapi.h> header:

Member Type

form rapi_format_t

len u_int32_t

pol_u union

<rapi.h> header reservation style definitions
The following reservation style definitions apply to the <rapi.h> header:
v Enumeration rapi_styleid_t is defined by typedef for reservation style identifiers,

and has at least the following members:

172 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Member Meaning

RAPI_RSTYLE_WILDCARD Reservation will be shared among a
wildcard selection of senders.

RAPI_RSTYLE_FIXED Reservation will not be shared and will be
dedicated to a particular sender.

RAPI_RSTYLE_SE Reservation will be shared among an
explicit list of senders.

v Type rapi_stylex_t is defined by typedef as void.

<rapi.h> header function interface definitions
The following function interface definitions apply to the <rapi.h> header:
v Type rapi_sid_t is defined by typedef as unsigned int for RAPI client handles.
v Macro NULL_SID is defined for error returns from rapi_session().
v The following macro is defined and evaluated to a bitwise-distinct integral

value:

Constant Meaning

RAPI_USE_INTSERV Use Int-Serv fmt in upcalls

Enumeration rapi_eventinfo_t is defined by typedef for RAPI event types, and has
at least the following members:

Member

RAPI_PATH_ERROR

RAPI_PATH_EVENT

RAPI_RESV_CONFIRM

RAPI_RESV_ERROR

RAPI_RESV_EVENT

v The following macros are defined and evaluate to distinct integral values:

Constant Meaning

RAPI_ERRF_InPlace Left reservation in place

RAPI_ERRF_NotGuilty This receiver not guilty

v Type rapi_event_rtn_t is defined by typedef as a function that conforms to the
prototype defined in the definition for event upcall.

v The following macros are defined and evaluate to distinct integral values for use
as RAPI error codes. Macro RAPI_ERR_OK (which indicates that there is no
error) evaluates to 0.

Error code

RAPI_ERR_BADPROTO

RAPI_ERR_BADRECV

RAPI_ERR_BADSEND

RAPI_ERR_BADSID

RAPI_ERR_BADSPORT

RAPI_ERR_BADSTYLE

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 173

Error code

RAPI_ERR_BADVDPORT

RAPI_ERR_GPI_CONFLICT

RAPI_ERR_GPISESS

RAPI_ERR_INTSERV

RAPI_ERR_INVAL

RAPI_ERR_MAXSESS

RAPI_ERR_MEMFULL

RAPI_ERR_N_FFS

RAPI_ERR_NORSVP

RAPI_ERR_NOTSPEC

RAPI_ERR_OBJLEN

RAPI_ERR_OBJTYPE

RAPI_ERR_OK

RAPI_ERR_OVERFLOW

RAPI_ERR_SYSCALL

RAPI_ERR_UNKNOWN

RAPI_ERR_UNSUPPORTED

v The following macros are defined and evaluate to the RSVP error code values as
defined in “RSVP error codes” on page 167:

Error code

RSVP_Err_ADMISSION

RSVP_Err_API_ERROR

RSVP_Err_BAD_DSTPORT

RSVP_Err_BAD_SNDPORT

RSVP_Err_BAD_STYLE

RSVP_Err_NONE

RSVP_Err_NO_PATH

RSVP_Err_NO_SENDER

RSVP_Err_POLICY

RSVP_Err_PREEMPTED

RSVP_Err_RSVP_SYS_ERROR

RSVP_Err_TC_ERROR

RSVP_Err_TC_SYS_ERROR

RSVP_Err_UNKN_OBJ_CLASS

RSVP_Err_UNKNOWN_STYLE

RSVP_Err_UNKNOWN_CTYPE

Integrated services data structures and macros
The following defines the integrated services (see RFC 2210) data formats. (See
Appendix J, “Related protocol specifications,” on page 1075 for information about

174 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

accessing RFCs.) The RAPI interface was designed to allow an application to
specify either the int-serv format of a flowspec, Tspec, or adspec, or a simplified
version of each.

The simplified versions allow almost any int-serv version to be generated, but there
can be circumstances in which this is not adequate. For example, more general
forms of flowspec, containing more than one service, might be defined in the
future (so that in case the Resv message reaches a node that does not implement
service A, it can drop back to service B). Allowing an application to specify the
body of an arbitrary int-serv data object allows for such contingencies.

Future versions of this specification might change the definitions in this topic.
Application writers are advised not to use these definitions except when absolutely
necessary.

Notes:

1. The values in the data structures defined in this topic are in host byte order.
2. Inclusion of this header can make available other symbols in addition to those

specified in this topic.

Integrated services data structures and macros general
definitions
The following general definitions apply to the integrated services data structures
and macros:
v The following macro is defined with the value given below:

Macro Value Usage

wordsof(x) (((x)+3)/4) number of 32-bit words

v The following macros are defined with the following integer values for service
numbers:

Note: The values are protocol values defined in RFC 2211, RFC 2212, and RFC
2215. See Appendix J, “Related protocol specifications,” on page 1075 for
information about accessing RFCs.

Macro Value

GENERAL_INFO 1

GUARANTEED_SERV 2

CONTROLLED_LOAD_SERV 5

v Enumeration int_serv_wkp is defined for well-known parameter identities and
has at least the following members with the following integer values:

Note: The values are protocol values defined in RFC 2215. See Appendix J,
“Related protocol specifications,” on page 1075 for information about accessing
RFCs.

Member Value Meaning

IS_WKP_HOP_CNT 4 Number of network nodes
supporting Integrated
Services along the flow path

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 175

Member Value Meaning

IS_WKP_PATH_BW 6 Available bandwidth in bytes
per second throughout the
flow path

IS_WKP_MIN_LATENCY 8 Minimum end-to-end latency
in microseconds

IS_WKP_COMPOSED_MTU 10 Maximum transmission unit
without causing IP
fragmentation along the flow
path

IS_WKP_TB_TSPEC 127 Token-bucket TSPEC
parameter

v The following macros are defined with the values given below:

Macro Value

INTSERV_VERS_MASK 0xf0

INTSERV_VERSION0 0

Intserv_Version(x) (((x)&ismh_version &INTSERV_VERS_MASK)>>4)

Intserv_Version_OK(x) (((x)->ismh_version &INTSERV_VERS_MASK)==
\INTSERV_VERSION0)

v Type IS_main_hdr_t is defined by typedef as a structure to represent an
Integrated Services main header, and has at least the following members:

Member Type Usage

ismh_len32b u_int16_t Number of 32-bit words
excluding this header

ismh_unused u_int8_t

ismh_version u_int8_t Version

v Type IS_serv_hdr_t is defined by typedef as a structure to represent an Integrated
Services service element header, and has at least the following members:

Member Type Usage

issh_flags u_int8_t Flag byte

issh_len32b u_int16_t Number of 32-bit words
excluding this header

issh_service u_int8_t Service number

v The following macro is defined with the value given below to indicate the break
bit in the IS_serv_hdr_t flag byte:

Macro Value

ISSH_BREAK_BIT 0x80

v Type IS_parm_hdr_t is defined by typedef as a structure to represent an
Integrated Services parameter element header, and has at least the following
members:

176 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Member Type Usage

isph_flags u_int8_t Flags

isph_len32b u_int16_t Number of 32-bit words
excluding this header

isph_parm_num u_int8_t Parameter number

v The following macro is defined with the value given below to indicate the not
valid bit in the IS_parm_hdr_t flag byte:

Macro Value

ISPH_FLG_INV 0x80

v The following macros are defined with the values given below:

Macro Value

Next_Main_Hdr(p) (IS_main_hdr_t *)((u_int32_t
*)(p)+1+(p)->ismh_len32b)

Next_Parm_Hdr(p) (IS_parm_hdr_t *)((u_int32_t
*)(p)+1+(p)->isph_len32b)

Next_Serv_Hdr(p) (IS_serv_hdr_t *)((u_int32_t
*)(p)+1+(p)->issh_len32b)

Non_Is_Hop ((IS_serv_hdr_t *)p)->issh_flags &
ISSH_BREAK_BIT

Set_Break_Bit(p) ((IS_serv_hdr_t *)p)-
>issh_flags|=ISSH_BREAK_BIT

Set_Main_Hdr(p, len) {(p)->ismh_version = INTSERV_VERSION0;
\ (p)->ismh_unused = 0; \ (p)->ismh_len32b
= wordsof(len); }

Set_Parm_Hdr(p, id, len) {(p)->isph_parm_num = (id); \
(p)->isph_flags = 0; \ (p)->isph_len32b =
wordsof(len); }

Set_Serv_Hdr(p, s, len) {(p)->issh_service = (s); \ (p)->issh_flags = 0;
\ (p)->issh_len32b = wordsof(len); }

Integrated services data structures and macros generic tspec
format
The following generic tspec formats apply to the integrated services data structures
and macros:
v The following macros define constraints on the token bucket parameters for both

the controlled-load and guaranteed service. These constraints are imposed by the
respective service specifications and are not an indication of what minimum or
maximum values a RAPI implementation will accept.
The following macros are defined with values of type float32_t:

Macro Usage Value

TB_MIN_RATE Minimum token
bucket rate

1 byte per second

TB_MAX_RATE Maximum token
bucket rate

40 terabytes per second

TB_MIN_DEPTH Minimum token
bucket depth

1 byte

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 177

Macro Usage Value

TB_MAX_DEPTH Maximum token
bucket depth

250 gigabytes

TB_MAX_PEAK Maximum peak rate Positive infinity, defined as an IEEE
single-precision floating-point number with
an exponent of all ones (255) and a sign
and mantissa of all zeros (see RFC 1832; see
Appendix J, “Related protocol
specifications,” on page 1075 for
information about accessing RFCs)

v Type TB_Tsp_parms_t is defined by typedef as a structure to represent generic
Tspec parameters, and has at least the following members:

Member Type Usage

TB_Tspec_b float32_t Token bucket depth in bytes

TB_Tspec_m u_int32_t Minimum policed unit in
bytes

TB_Tspec_M u_int32_t Maximum packet size in
bytes

TB_Tspec_p float32_t Peak data rate in bytes per
second

TB_Tspec_r float32_t Token bucket rate in bytes
per second

v Type gen_Tspec_t is defined by typedef as a structure to represent a generic
Tspec, and has at least the following members:

Member Type Usage

gen_Tspec_parms TB_Tsp_parms_t

gen_Tspec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC,)

gen_Tspec_serv_hdr IS_serv_hdr_t (GENERAL_INFO, length)

v The following macros are defined with the values given below:

Macro Value

gtspec_b gen_Tspec_parms.TB_Tspec_b

gtspec_flags gen_Tspec_parm_hdr.isph_flags

gtspec_len (sizeof(gen_Tspec_t) - sizeof(IS_serv_hdr_t))

gtspec_len32b gen_Tspec_parm_hdr.isph_len32b

gtspec_m gen_Tspec_parms.TB_Tspec_m

gtspec_M gen_Tspec_parms.TB_Tspec_M

gtspec_p gen_Tspec_parms.TB_Tspec_p

gtspec_parmno gen_Tspec_parm_hdr.isph_parm_num

gtspec_r gen_Tspec_parms.TB_Tspec_r

Integrated services data structures and macros formats for
controlled-load service
The following formats for controlled-load service apply to the integrated services
data structures and macros:

178 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Type CL_flowspec_t is defined by typedef as a structure to represent a
controlled-load flowspec, and has at least the following members:

Member Type Usage

CL_spec_parms TB_Tsp_parms_t

CL_spec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC)

CL_spec_serv_hdr IS_serv_hdr_t (CONTROLLED_LOAD_SERV,
0,len)

v The following macros are defined with the values given below:

Macro Value

CLspec_b CL_spec_parms.TB_Tspec_b

CLspec_flags CL_spec_parm_hdr.isph_flags

CLspec_len (sizeof(CL_flowspec_t) -
sizeof(IS_serv_hdr_t))

CLspec_len32b CL_spec_parm_hdr.isph_len32b

CLspec_m CL_spec_parms.TB_Tspec_m

CLspec_M CL_spec_parms.TB_Tspec_M

CLspec_p CL_spec_parms.TB_Tspec_p

CLspec_parmno CL_spec_parm_hdr.isph_parm_num

CLspec_r CL_spec_parms.TB_Tspec_r

Integrated services data structures and macros formats for
guaranteed service
The following formats for guaranteed service apply to the integrated services data
structures and macros:
v The following enumeration is defined for service-specific parameter identifiers

and has at least the following members with the following values:

Member Value

IS_GUAR_RSPEC 130

GUAR_ADSPARM_C 131

GUAR_ADSPARM_D 132

GUAR_ADSPARM_Ctot 133

GUAR_ADSPARM_Dtot 134

GUAR_ADSPARM_Csum 135

GUAR_ADSPARM_Dsum 136

v Type guar_Rspec_t is defined by typedef as a structure for guaranteed Rspec
parameters, and has at least the following members:

Member Type Usage

Guar_R float32_t Guaranteed rate in bytes per
second

Guar_S u_int32_t Slack term in microseconds

v Type Guar_flowspec_t is defined by typedef as a structure to represent a
guaranteed flowspec, and has at least the following members:

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 179

Member Type Usage

Guar_Rspec guar_Rspec_t Guaranteed rate in Bytes per
second

Guar_Rspec_hdr IS_parm_hdr_t (IS_GUAR_RSPEC)

Guar_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, 0,
length)

Guar_Tspec_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC)

Guar_Tspec_parms TB_Tsp_parms_t GENERIC Tspec parameters

v The following macros are defined with the values given below:

Macro Value

Gspec_b Guar_Tspec_parms.TB_Tspec_b

Gspec_len (sizeof(Guar_flowspec_t) -
sizeof(IS_serv_hdr_t))

Gspec_m Guar_Tspec_parms.TB_Tspec_m

Gspec_M Guar_Tspec_parms.TB_Tspec_M

Gspec_p Guar_Tspec_parms.TB_Tspec_p

Gspec_r Guar_Tspec_parms.TB_Tspec_r

Gspec_R Guar_Rspec.Guar_R

Gspec_R_flags Guar_Rspec_hdr.isph_flags

Gspec_R_len32b Guar_Rspec_hdr.isph_len32b

Gspec_R_parmno Guar_Rspec_hdr.isph_parm_num

Gspec_S Guar_Rspec.Guar_S

Gspec_T_flags Guar_Tspec_hdr.isph_flags

Gspec_T_len32b Guar_Tspec_hdr.isph_len32b

Gspec_T_parmno Guar_Tspec_hdr.isph_parm_num

v Type Gads_parms_t is defined by typedef as a structure for guaranteed adspec
parameters, and has the following members, which can be followed by override
general parameter values:

Member Type Usage

Gads_Csum u_int32_t

Gads_Csum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Csum)

Gads_Ctot u_int32_t

Gads_Ctot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Ctot)

Gads_Dsum u_int32_t

Gads_Dsum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dsum)

Gads_Dtot u_int32_t

Gads_Dtot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dtot)

Gads_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, x,
len)

180 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Integrated services data structures and macros basic adspec
pieces
The following basic adspec pieces apply to the integrated services data structures
and macros:
v Type genparm_parms_t is defined by typedef as a structure for general path

characterization parameters, and has at least the following members:

Member Type Usage

gen_parm_compmtu_hdr IS_parm_hdr_t (IS_WKP_COMPOSED_MTU)

gen_parm_composed_MTU u_int32_t

gen_parm_hdr IS_serv_hdr_t (GENERAL_INFO, len)

gen_parm_hopcnt u_int32_t

gen_parm_hopcnt_hdr IS_parm_hdr_t (IS_WKP_HOP_CNT)

gen_parm_min_latency u_int32_t

gen_parm_minlat_hdr IS_parm_hdr_t (IS_WKP_MIN_LATENCY)

gen_parm_path_bw float32_t

gen_parm_pathbw_hdr IS_parm_hdr_t (IS_WKP_PATH_BW)

v Type Min_adspec_t is defined by typedef as a structure to represent a minimal
adspec per-service fragment (an empty service header) and has at least the
following member.

Member Type Usage

mads_hdr IS_serv_hdr_t (<service>, 1, len=0)

Integrated services flowspec
The following integrated services flowspecs apply to the integrated services data
structures and macros:
v Type IS_specbody_t is defined by typedef as a structure to represent an integrated

services flowspec, and has at least the following members:

Member Type Usage

CL_spec CL_flowspec_t Controlled-load service

G_spec Guar_flowspec_t Guaranteed service

spec_mh IS_main_hdr_t

spec_u union

v The following macros are defined with the values given below:

Macro Value

ISmh_len32b spec_mh.ismh_len32b

ISmh_unused spec_mh.ismh_unused

ISmh_version spec_mh.ismh_version

Integrated services tspec
The following integrated services tspecs apply to the integrated services data
structures and macros:

Chapter 6. Resource Reservation Setup Protocol API (RAPI) 181

v Type IS_tspbody_t is defined by typedef as a structure to represent an Integrated
Services Tspec, and has at least the following members:

Member Type Usage

st_mh IS_main_hdr_t

tspec_u union (1)

gen_stspec gen_Tspec_t Generic Tspec

Note:

(1) While service-dependent Tspecs are possible, there are none.

v The following macros are defined with the values given below:

Macro Value

IStmh_len32b st_mh.ismh_len32b

IStmh_unused st_mh.ismh_unused

IStmh_version st_mh.ismh_version

Integrated services adspec
The following integrated services adspecs apply to the integrated services data
structures and macros:

Member Type Usage

adspec_genparms genparm_parms_t General char parameter
fragment

adspec_mh IS_main_hdr_t Main header

182 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 7. X Window System interface in the z/OS
Communications Server environment

This topic describes the X Window System application programming interface
(API). Using the X Window System API, you can write applications in the MVS
environment that can be displayed on X11 servers on a TCP/IP-based network.
The X Window System API also provides the applications with graphics
capabilities as defined by the X Window System protocol.

X11 and Motif libraries are based on the X Window System Version 11 Release 6.6
and Motif Version 2.1.30. Applications are supported in 31-bit and 64-bit mode. For
compatibility with applications written for prior releases, X11 R6.1 and Motif 1.2
libraries and corresponding header files are also provided.

X Window System and Motif
This topic describes the X Window System API. Using the X Window System API,
you can write applications in the z/OS UNIX System Services (z/OS UNIX) MVS
environment.

The X Window System support includes the following APIs from the X Window
System Version 11 Release 6.6:
v X11 Core distribution routines (X11)
v Inter-Client Exchange routines (ICE)
v Session Manager routines (SM)
v X Window System extended routines (Xext) including:

– XC-MISC: Allows clients to get back ID ranges from the server
– Big-Requests: Allows large length value in protocol requests
– Shape: Allows nonrectangular windows
– Sync: Lets clients synchronize through the X Server

v Authentication functions (Xau)
v X10 compatibility routines (oldX)
v X Toolkit (Xt)
v Utility functions used by Xaw (Xmu)
v Athena Widget set (Xaw)
v Header files needed for compiling X clients
v Selection of standard MIT X clients
v Sample X demonstrations
v Sample Motif demonstrations

The X Window System support provided also includes the APIs based on Motif
Release 2.1.30:
v Motif-based widget set (Xm library)
v Motif Resource Manager (Mrm library)
v Motif User Interface language (uil library)
v Motif User Interface Language Compiler
v Header files needed for compiling clients using the Motif-based widget set

© Copyright IBM Corp. 2000, 2015 183

DLL support for the X Window System
The X Window System and Motif functions are provided as a set of archive files
for applications that are statically linked and as a set of DLLs for applications that
are dynamically linked. Dynamic linkage is recommended; it results in application
binaries that are much smaller. All applications linked using these DLLs must be
compiled with the DLL option. The examples shown in “Compiling and linking
Motif and X Window System applications” on page 187 assume that c89 is using
the z/OS C/C ++ Compiler.

Three sets of DLLs are provided. The first set ensures compatibility with
applications compiled with previous releases of the X Window System and Motif.
For this set of DLLs applications must be compiled in 31-bit mode with the DLL
option; applications cannot be compiled with XPLINK. These DLLs are unchanged
from the previous release and are compiled with IBM hexadecimal floating point
support. New or changed applications should be migrated to the new X11R6.6 and
Motif 2.1.30 versions of the libraries.

The following DLLs are provided to support applications that require X11R6.1 and
Motif 1.2 function. These libraries are provided to ensure compatibility of
applications written for previous releases of z/OS.
v X11.dll (contains the contents of libX11.a, libXau.a, liboldX.a, and libXext.a)
v SM.dll (contains the contents of libSM.a)
v ICE.dll (contains the contents of libICE.a)
v PEX5.dll (contains the contents of libPEX5.a)
v Xaw.dll (contains the contents of libXaw.a, libXmu.a, and libXt.a)
v Xm.dll (contains the contents of libXm.a and libXt.a)
v Mrm.dll (contains the contents of libMrm.a)
v Uil.dll (contains the contents of libUil.a)

The second set of DLLs provides X11R6.6 and Motif 2.1 function. To use this set of
DLLs, the application must be compiled in 31-bit mode, with the DLL option and
the XPLINK option. This set of DLLs is compiled with IEEE floating point support.
These DLLs do not support applications compiled with enhanced ASCII support.
The PEX5 library is no longer supported with these DLLs.
v X11_31.dll (contains the contents of libX11.a, libXau.a, liboldX.a, libXext.a, and

libXp.a)
v SM_31.dll (contains the contents of libSM.a)
v ICE_31.dll (contains the contents of libICE.a)
v Xaw_31.dll (contains the contents of libXaw.a, libXmu.a, and libXt.a)
v Xm_31.dll (contains the contents of libXm.a and libXt.a)
v Mrm_31.dll (contains the contents of libMrm.a)
v Uil_31.dll (contains the contents of libUil.a)

The third set of DLLs provides X11R6.6 and Motif 2.1 function in 64-bit addressing
mode. To use this set of DLLs, the application must be compiled in 64-bit mode,
with the DLL option and the XPLINK option.
v X11_64.dll (contains the contents of libX11.a, libXau.a, liboldX.a, libXext.a, and

libXp.a)
v SM_64.dll (contains the contents of libSM.a)
v ICE_64.dll (contains the contents of libICE.a)
v Xaw_64.dll (contains the contents of libXaw.a, libXmu.a, and libXt.a)

184 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Xm_64.dll (contains the contents of libXm.a and libXt.a)
v Mrm_64.dll (contains the contents of libMrm.a)
v Uil_64.dll (contains the contents of libUil.a)

All DLLs, along with their sidedecks (.x), are symbolically linked from /usr/lib.

Rules:

v An application must use only one set of DLLs. You cannot mix 31-bit and 64-bit
DLLs. An application should not attempt to mix old- and new-function DLLs.

v An application should use either the static libraries or the dynamic libraries, not
both.

How the X Window System interface works in the MVS
environment

The X Window System is a network-transparent protocol that supports windowing
and graphics. The protocol is communicated between a client or application and an
X server over a reliable bidirectional byte stream. This byte stream is provided by
the TCP/IP communication protocol. In the MVS environment, X Window System
support consists of a set of application calls that create the X protocol, as requested
by the application. This application programming interface allows an application to
be created, which uses the X Window System protocol to be displayed on an
X server.

In an X Window System environment, the X server is generally located on the
workstation, and distributes user input to and accepts requests from various client
programs located either on the same system or elsewhere on a network. The X
server provides access to the resources that are shared among many X applications,
such as the screen, keyboard, mouse, fonts, and graphics contexts. A single X
server can control more than one physical screen.

The application program that you create is the client part of a client-server
relationship. The communication path from the MVS X Window System
application to the server involves the client code and TCP/IP.

The X client code uses sockets to communicate with the X server. Each client can
interact with multiple servers, and each server can interact with multiple clients.

If your application is written to the Xlib interface, it calls XOpenDisplay() to start
communication with an X server on a workstation. The Xlib code opens a
communication path called a socket to the X server, and sends the appropriate X
protocol to initiate client-server communication.

The X protocol generated by the X Window System client code uses an ISO Latin-1
encoding for character strings, while the MVS encoding for character strings is
EBCDIC. The X Window System client code in the MVS environment
automatically transforms character strings from EBCDIC to ISO Latin-1 or from
ISO Latin-1 to EBCDIC, as needed.

z/OS UNIX application resource file
With the X Window System, you can modify certain characteristics of an
application at run time using application resources. Typically, application resources
are set to tailor the appearance and possibly the behavior of an application. The
application resources can specify information about an application’s window sizes,
placement, coloring, font usage, and other functional details.

Chapter 7. X Window System interface in the z/OS Communications Server environment 185

In the z/OS UNIX environment, this information can be found in the file
/u/user_id/.Xdefaults

where
/u/user_id

is found from the environment variable home.

Identifying the target display in z/OS UNIX
The DISPLAY environment variable is used by the X Window System to identify
the host name of the target display.

The following code is the format of the DISPLAY environment variable:
host_name:target_server.target_screen

Value Description

host_name
Specifies the host name or IP address of the host machine on which the
X Window System server is running.

target_server
Specifies the display number on the host machine. This is usually 0, unless
the host machine is running multiple X servers.

target_screen
Specifies the screen to be used on the target server. This is optional and
defaults to 0.

For more information about resolving a host name to an IP address, see z/OS XL
C/C++ Programming Guide.

X Window System programming considerations
The X Window System toolkit includes files that define two macros for obtaining
the offset of fields in an X Window System Toolkit structure, XtOffset, and
XtOffsetOf. Programs written for, or ported to, z/OS UNIX MVS must use the
XtOffsetOf macro for this purpose.

Porting Motif applications to z/OS UNIX MVS
Some Motif widget and gadget resources have the type KeySym. In an
ASCII-based system the KeySym is the same as the ASCII character value. For
example, the character 'F' has the ASCII hexadecimal value 46 and the KeySym
hexadecimal value 46.

However, on z/OS UNIX MVS, the character value of 'F' is hexadecimal C6, while
the KeySym hexadecimal value is still 46. Remember to use true KeySym values
when specifying resources of type KeySym, whether in a defaults file or in a
function call.

In some cases, an X Window System server may have clients that are not running
on z/OS UNIX MVS. If a z/OS UNIX MVS X Window System application sends
nonstandard properties that contain text strings to the X Window System server,
and these properties might be accessed by clients that are not running on z/OS
UNIX MVS, the strings should be translated. The translation should be to the
server default character set before transmission to the server and to the appropriate
host character set when retrieved from the server. This translation is an application
responsibility.

186 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Compiling and linking Motif and X Window System applications
The z/OS UNIX c89 or make command should be used to compile and link
X Window System and Motif programs. The following example shows how to use
the c89 command to compile an X Window System program, xxx, which uses the
Athena widget set, and create the executable file xxx. All code that uses the
X Window System and Motif libraries must be compiled with the DLL option even
if static linking is used.
c89 -o xxx -Wc,dll,xplink -Wl,xplink xxx.c /usr/lib/Xaw_31.x /usr/lib/SM_31.x
/usr/lib/ICE_31.x /usr/lib/X11_31.x

The following example shows how to compile the program xxx for use with the
64-bit DLLs. LP64 also requires the use of XPLINK.
c89 -o xxx -Wc,dll,xplink,LP64 -Wl,xplink xxx.c /usr/lib/Xaw_64.x /usr/lib/SM_64.x
/usr/lib/ICE_64.x /usr/lib/X11_64.x

The following example shows how to use the c89 command to compile an X
Window System program, yyy, which uses the Motif widget set, and create an
executable file yyy:
c89 -o yyy -Wc,dll,xplink -W1,xplink yyy.c /usr/lib/Xm_31.x /usr/lib/SM_31.x
/usr/lib/ICE_31.x /usr/lib/X11_31.x

The following example shows how to use the c89 command to compile an
X Window System program, yyy, which uses the Motif widget set, and create an
executable file yyy. This example links with the previous function libraries (X 6.1
and Motif 1.2). You must explicitly tell the compiler where to pick up the header
files for the previous function libraries with the -I option.
c89 -o yyy -Wc,dll -W1,xplink yyy.c -I/usr/include/lpp/tcpip/X11R6/include
/usr/lib/Xm.x /usr/lib/SM.x /usr/lib/ICE.x /usr/lib/X11.x

For examples of the input to the make command, see the Makefile in each of these
subdirectories:
/usr/lpp/tcpip/X11R6/Xamples/demos
/usr/lpp/tcpip/X11R6/Xamples/clients
/usr/lpp/tcpip/X11R66/Xamples/demos
/usr/lpp/tcpip/X11R66/Xamples/clients
/usr/lpp/tcpip/X11R66/Xamples/motif

To build the samples for X11 and Motif, set the following environment variables:
v export _C89_CCMODE=1
v export _CC_CCMODE=1

Setting these environment variables causes the c89 and cc commands to relax
requirements on the order of options and operands and makes the porting of
makefiles from other platforms easier.

For more information about the z/OS UNIX c89 and make commands, see z/OS
UNIX System Services Command Reference.

Running an X Window System or Motif DLL-enabled
application

When running an X Window System or Motif DLL-enabled application, ensure
that the LIBPATH environment variable includes /usr/lib.

Chapter 7. X Window System interface in the z/OS Communications Server environment 187

X Window System environment variables
Table 4 provides a list of environment variables that can be set to affect the
behavior of X Window System applications.

Table 4. Environment variables for the X Window System interface

Environment variable Description

DISPLAY Contains the name of the display to be used. There is
no default value. See note 1.

ICEAUTHORITY This variable identifies where the authentication
information is located.

LANG Determines the locale category for native language,
local customs, and coded character set in the absence
of the LC_ALL and other LC_* (LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, LC_TIME) environment variables.
See note 2.

LC_CTYPE Determine the locale category for character handling
functions, such as tolower(), toupper(), and isalpha().
This environment variable determines the
interpretation of sequences of bytes of text data as
characters (for example, single as opposed to
multibyte characters), the classification of characters
(for example, alpha, digit, graph), and the behavior
of character classes.

SESSION_MANAGER If defined, causes a Session Shell widget to connect
to a session manager. There is no default value.

XAPPLRESDIR Specifies the directory to search for files that contain
application defaults.

XAUTHORITY Specifies the name of the authority file on the local
host.

XCMSDB Specifies the name of a color name database file.

XENVIRONMENT Contains the full path name of the file that contains
resource defaults. There is no default value.

XFILESEARCHPATH Used by XtResolvePathname as a default path. There
is no default value.

XKEYSYMDB Specifies the location of the XKEYSYMDB.

XLOCALEDIR Specifies the directory to search for locale files. The
default value is /usr/lib/X11/locale.

XMODIFIERS Can be set to contain additional information
important for the current locale setting. See note 3.

XUSERFILESEARCHPATH Specifies where to find the personal X resources files
used to configure an application.

XWTRACE Controls the generation of socket-level
communications traces between Xlib and the X
Window System server. These traces are as follows:

v XWTRACE undefined or 0: No trace generated

v XWTRACE=1: Error messages

v XWTRACE>=2: API function tracing for TRANS
functions

There is no default value. The output is sent to
stderr.

188 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 4. Environment variables for the X Window System interface (continued)

Environment variable Description

XWTRACELC If defined, causes a trace of locale-sensitive routines.
Possible values are:

v XWTRACELC undefined or 0: No trace generated

v XWTRACELC=1: Error messages

v XWTRACELC>=2: All available trace information

There is no default value. The output is sent to
stderr.

See note 4.

Notes:

1. In the following example, royal.csc.ibm.com is the name of the workstation running the
X Window System server. The display is indicated by :0.0, and is specified this way in
almost all cases.

export DISPLAY=royal.csc.ibm.com:0.0

2. This can be used by applications to determine the language to use for error messages,
instructions, collating sequences, date formats, and so on.

3. Typically set to @im=<input-method> to enable a particular input method.

4. If XWTRACELC is defined, a routine flow trace is generated. If XWTRACELC=2, more
detailed information is provided.

Motif environment variables
Table 5 provides a list of environment variables that can be set to affect the
behavior of Motif applications.

Table 5. Environment variables for Motif

Environment variable Description

DTICONBMSEARCHPATH Contains the search path for icons on monochrome
displays.

DTICONSEARCHPATH Contains the search path for icons on color displays.

KBD_LANG Specifies the value of LANG for applicable
languages.

RESOURCE_NAME Used by XtOpenDisplay as an alternative
specification of an application name. There is no
default value.

UILTRACE Specifies whether UIL trace is on or off.

WMDPATH Specifies the WMD path.

XAPPLRESDIR Specifies the directory to search for files that contain
application defaults.

XMBINDDIR Specifies the location of the xmbind.alias file.

XMICONBMSEARCHPATH Used to locate desktop icons.

XMICONSEARCHPATH Used to locate bitmap (2-color) desktop icons.

XPROPFORMATS Specifies the name of the file from which additional
formats are to be obtained.

Chapter 7. X Window System interface in the z/OS Communications Server environment 189

EBCDIC/ASCII translation in the X Window System
Because the X Window System was designed primarily for an ASCII-based
environment and z/OS UNIX MVS uses EBCDIC, it is necessary to provide
translations between various servers and MVS clients. Translations must also be
provided between locale-based coded character sets in z/OS UNIX MVS and the
coded character sets used on the X Window System server. The following topics
describe how this is accomplished.

EBCDIC/ASCII translation in the X Window System: Locale
independent translation
All arguments for X Window System functions that are specified to be in the Host
Portable Character Set are translated between EBCDIC and ASCII by a translation
between code page IBM-1047 and code page ISO8859-1. All single-byte character
set string arguments to X Window System function calls that are not
locale-dependent (do not have names starting with Xmb or Xwc) are also
translated between EBCDIC and ASCII using code page IBM-1047 and ISO8859-1.
In addition, properties of type STRING passed to XChangeProperty are translated
to ASCII before transmission to the server.

These translations are performed on data being transmitted to the server and on
data received from the server that is being returned to the application.

The arguments to X Window System functions of the type XChar2b are not
translated. This includes such functions as XDraw16, XDrawText16, and
XTextExtents16.

EBCDIC/ASCII translation in the X Window System: Locale
dependent translation
The string arguments to X Window System functions with names starting with
Xmb or Xwc are translated between the current MVS z/OS UNIX locale code set
(the value returned by nl_info(CODESET)) and the current XLocale. The MVS
z/OS UNIX locale is mapped to the XLocale by an entry in /usr/lib/X11/locale/
locale.alias. Properties passed to XChangeProperty with a type of the
locale-encoding name atom are translated from the MVS z/OS UNIX locale-coded
character set to the XLocale coded character set.

XTextProperty with COMPOUND_TEXT encoding
The XTextProperty structure returned by XmbTextListToProperty and
XwcTextListToProperty has its property data translated from the MVS z/OS UNIX
locale coded character set to the XLocale coded character set if the XTextProperty
encoding is COMPOUND_TEXT. Similarly the reverse translation is performed for
XmbTextPropertyToTextList and XwcTextPropertyToTextList if the XTextProperty
has the encoding COMPOUND_TEXT.

Standard clients supplied with MVS z/OS UNIX X Window
System support

The following standard clients are provided in /usr/lpp/tcpip/X11R6/Xamples/
clients:

Client Description

appres Lists application resource database

atobm Bit map conversion utility

bitmap Bit map editor

190 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Client Description

bmtoa Bit map conversion utility

editres Resource editor

iceauth ICE authority file utility

oclock Displays time of day

xauth X authority file utility

xclipboard Clipboard utility

xcutsel Clipboard utility

clock Analog and digital clock for X

xdpyinfo Display information utility for X

xfd X font display utility

xlogo Displays X logo

xlsatoms Lists interned atoms defined on server

xlsclients Lists client applications running on a display

xmag Magnifies part of screen

xlsfonts Lists server fonts

xprop Property displayer for X

xwininfo Window information utility for X

xwd Dumps an image of an X window

xwud Displays dumped image for X

xfindproxy Find an LBX proxy

Use the man command to display information about these clients as shown below:
man -M /usr/lpp/tcpip/X11R6/Xamples/man client

Demonstration programs supplied with MVS z/OS UNIX
X Window System support

The following demonstration programs are supplied in /usr/lpp/tcpip/X11R6/
Xamples/demos:

xsamp1
Uses only Xlib

xsamp2
Uses Athena widget set

xsamp3
Uses Motif widget set

pexsamp
Uses PEX5 library

X Window System and Motif files locations
The following topics provide X Window System and Motif locations.

Previous function X11R6.1 and Motif 1.2
v Previous function X11R6.1 and Motif 1.2 static libraries for 31-bit applications.

Applications that want to link with these libraries must use the -L flag on the cc
or c89 command to specify the library directory.

Chapter 7. X Window System interface in the z/OS Communications Server environment 191

/usr/lpp/tcpip/X11R6/lib/libX11.a
/usr/lpp/tcpip/X11R6/lib/libXext.a
/usr/lpp/tcpip/X11R6/lib/liboldX.a
/usr/lpp/tcpip/X11R6/lib/libICE.a
/usr/lpp/tcpip/X11R6/lib/libSM.a
/usr/lpp/tcpip/X11R6/lib/libXt.a
/usr/lpp/tcpip/X11R6/lib/libXmu.a
/usr/lpp/tcpip/X11R6/lib/libXaw.a
/usr/lpp/tcpip/X11R6/lib/libXau.a
/usr/lpp/tcpip/X11R6/lib/libPEX5.a
/usr/lpp/tcpip/X11R6/lib/libXm.a
/usr/lpp/tcpip/X11R6/lib/libMrm.a
/usr/lpp/tcpip/X11R6/lib/libUil.a

v Previous function X11R6.1 and Motif 1.2 dynamic link libraries (DLLs); 31-bit,
non-XPLINK:
/usr/lib/X11.dll -> symlink to /usr/lpp/tcpip/X11R6/lib/X11.dll
/usr/lib/ICE.dll -> symlink to /usr/lpp/tcpip/X11R6/lib/ICE.dll
/usr/lib/SM.dll -> symlink to /usr/lpp/tcpip/X11R6/lib/SM.dll
/usr/lib/Xaw.dll -> symlink to /usr/lpp/tcpip/X11R6/lib/Xaw.dll

v Header files for previous function X11R6.1 and Motif 1.2:
/usr/lpp/tcpip/X11R6/include/X11
/usr/lpp/tcpip/X11R6/include/X11/ICE
/usr/lpp/tcpip/X11R6/include/X11/PEX5
/usr/lpp/tcpip/X11R6/include/X11/SM
/usr/lpp/tcpip/X11R6/include/X11/Xaw
/usr/lpp/tcpip/X11R6/include/X11/Xmu
/usr/lpp/tcpip/X11R6/include/X11/bitmaps
/usr/lpp/tcpip/X11R6/include/X11/extensions

/usr/lpp/tcpip/X11R6/include/Mrm (motif header files)
/usr/lpp/tcpip/X11R6/include/Xm (motif header files)
/usr/lpp/tcpip/X11R6/include/Uil (Uil header files)

v Other utilities and data files for the previous function X11R6.1 and Motif 1.2:
/usr/lpp/tcpip/bin/X11/uil (uil compiler)

/usr/lpp/tcpip/X11R6/lib/X11/locale (locale data files)
/usr/lpp/tcpip/X11R6/lib/X11/XErrorDB (X Error message database)
/usr/lpp/tcpip/X11R6/lib/X11/XKeysymDB (X keysym Database)
/usr/lpp/tcpip/X11R6/lib/X11/app-defaults/ (application default files)

v Examples included for X11R6.1 and Motif 1.2:
/usr/lpp/tcpip/X11R6/Xamples/man/cat1/ (man pages for Xamples programs)
/usr/lpp/tcpip/X11R6/Xamples/demos/ (demonstration programs)
/usr/lpp/tcpip/X11R6/Xamples/clients/ (selected standard clients)

New function X11R6.6 and Motif 2.1.30
v New function X11R6.6 and Motif 2.1 static libraries for 31-bit and 64-bit

applications (these libraries are all XPLINK):

Notes:

1. PEX is no longer supported in these libraries.
2. Xp is a new library.
/usr/lib/libX11.a -> /usr/lpp/tcpip/X11R66/lib/libX11.a
/usr/lib/libXext.a -> /usr/lpp/tcpip/X11R66/lib/libXext.a
/usr/lib/liboldX.a -> /usr/lpp/tcpip/X11R66/lib/liboldX.a
/usr/lib/libICE.a -> /usr/lpp/tcpip/X11R66/lib/libICE.a
/usr/lib/libSM.a -> /usr/lpp/tcpip/X11R66/lib/libSM.a
/usr/lib/libXt.a -> /usr/lpp/tcpip/X11R66/lib/libXt.a
/usr/lib/libXmu.a -> /usr/lpp/tcpip/X11R66/lib/libXmu.a
/usr/lib/libXaw.a -> /usr/lpp/tcpip/X11R66/lib/libXaw.a
/usr/lib/libXp.a -> /usr/lpp/tcpip/X11R66/lib/libXp.a
/usr/lib/libXau.a -> /usr/lpp/tcpip/X11R66/lib/libXau.a

192 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

/usr/lib/libXm.a -> /usr/lpp/tcpip/X11R66/lib/libXm.a
/usr/lib/libMrm.a -> /usr/lpp/tcpip/X11R66/lib/libMrm.a
/usr/lib/libUil.a -> /usr/lpp/tcpip/X11R66/lib/libUil.a

v New function X11R6.6 and Motif 2.1 31-bit dynamic link libraries (DLLs):
/usr/lib/X11_31.dll -> /usr/lpp/tcpip/X11R66/lib/X11_31.dll
/usr/lib/ICE_31.dll -> /usr/lpp/tcpip/X11R66/lib/ICE_31.dll
/usr/lib/SM_31.dll -> /usr/lpp/tcpip/X11R66/lib/SM_31.dll
/usr/lib/Xaw_31.dll -> /usr/lpp/tcpip/X11R66/lib/Xaw_31.dll
/usr/lib/Mrm_31.dll -> /usr/lpp/tcpip/X11R66/lib/Mrm_31.dll
/usr/lib/Uil_31.dll -> /usr/lpp/tcpip/X11R66/lib/Uil_31.dll
/usr/lib/Xm_31.dll -> /usr/lpp/tcpip/X11R66/lib/Xm_31.dll

v New function X11R6.6 and Motif 2.1 64-bit dynamic link libraries (DLLs):
/usr/lib/X11_64.dll -> /usr/lpp/tcpip/X11R66/lib/X11_64.dll
/usr/lib/ICE_64.dll -> /usr/lpp/tcpip/X11R66/lib/ICE_64.dll
/usr/lib/SM_64.dll -> /usr/lpp/tcpip/X11R66/lib/SM_64.dll
/usr/lib/Xaw_64.dll -> /usr/lpp/tcpip/X11R66/lib/Xaw_64.dll
/usr/lib/Mrm_64.dll -> /usr/lpp/tcpip/X11R66/lib/Mrm_64.dll
/usr/lib/Uil_64.dll -> /usr/lpp/tcpip/X11R66/lib/Uil_64.dll
/usr/lib/Xm_64.dll -> /usr/lpp/tcpip/X11R66/lib/Xm_64.dll

v Header files for X11R6.6 and Motif 2.1:

/usr/include/X11/ -> /usr/lpp/tcpip/X11R66/include/X11 (header files)
/usr/include/X11/ICE -> /usr/lpp/tcpip/X11R66/include/X11/ICE (ICE specific header files)
/usr/include/X11/SM -> /usr/lpp/tcpip/X11R66/include/X11/SM (SM specific header files)
/usr/include/X11/Xaw -> /usr/lpp/tcpip/X11R66/include/X11/Xaw (Xaw specific header files)
/usr/include/X11/Xmu -> /usr/lpp/tcpip/X11R66/include/X11/Xmu (Xmu specific header files)
/usr/include/X11/extensions -> /usr/lpp/tcpip/X11R66/include/X11/extensions (extensions specific header files)
/usr/include/X11/bitmaps -> /usr/lpp/tcpip/X11R66/include/X11/bitmaps (bitmaps for samples)
/usr/include/Mrm -> /usr/lpp/tcpip/X11R66/include/Mrm (motif header files)
/usr/include/Xm -> /usr/lpp/tcpip/X11R66/include/Xm (motif header files)
/usr/include/X11/uil -> /usr/lpp/tcpip/X11R66/include/uil (Uil header files)

v Other utilities and Data files for the new function X11R6.6 and Motif 2.1:

/bin/X11/uil -> /usr/lpp/tcpip/bin/X1166/uil (31-bit uil compiler)
/bin/X11/uil64 -> /usr/lpp/tcpip/bin/X1166/uil64 (64-bit uil compiler)
/usr/lib/X11 -> /usr/lpp/tcpip/X11R66/lib/X11
/usr/lib/X11/locale -> /usr/lpp/tcpip/X11R66/lib/X11/locale (locale data files)
/usr/lib/X11/XErrorDB -> /usr/lpp/tcpip/X11R66/lib/X11/XErrorDB (X Error message database)
/usr/lib/X11/XKeysymDB -> /usr/lpp/tcpip/X11R66/lib/X11/XKeysymDB (X keysym Database)
/usr/lib/X11/app-defaults -> /usr/lpp/tcpip/X11R66/lib/X11/app-defaults/ (application default files)

v Examples included for X11R6.6 and Motif 2.1:
/usr/lpp/tcpip/X11R66/Xamples/man/cat1/ (man pages for Xamples programs)
/usr/lpp/tcpip/X11R66/Xamples/demos/ (demonstration programs)
/usr/lpp/tcpip/X11R66/Xamples/clients/ (selected standard clients)
/usr/lpp/tcpip/X11R66/Xamples/motif (selected Motif examples)

Chapter 7. X Window System interface in the z/OS Communications Server environment 193

194 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 8. Remote procedure calls in the z/OS
Communications Server environment

This topic describes the high-level remote procedure calls (RPCs) implemented in
TCP/IP including the RPC programming interface to the C language and
communication between processes.

With the RPC protocol, you can remote run subroutines across a TCP/IP network.
RPC, together with the eXternal Data Representation (XDR) protocol, defines a
standard for representing data that is independent of internal protocols or
formatting. RPCs can communicate between processes on the same or different
hosts.

For more information about the RPC and XDR protocols, see the following
information:
v Sun Microsystems publication, Networking on the Sun Workstation: Remote

Procedure Call Programming Guide

v RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2, R. Srinivasan, August
1995

v RFC 1832
XDR: External Data Representation Standard, R. Srinivasan, August 1995

See Appendix J, “Related protocol specifications,” on page 1075 for information
about accessing RFCs.

Tips:

v RPC is supported using the C/370™ programming language and the TCP/IP C
socket API. For more information about the C/370 socket API, see z/OS
Communications Server: IP Sockets Application Programming Interface Guide
and Reference.

v For more information about z/OS UNIX System Services sockets, see z/OS XL
C/C++ Runtime Library Reference.

The RPC interface
To use the RPC interface, you must be familiar with programming in the
C language, and you should have a working knowledge of networking concepts.

The RPC interface enables programmers to write distributed applications using
high-level RPCs rather than lower-level calls based on sockets.

When you use RPCs, the client communicates with a server. The client invokes a
procedure to send a call message to the server. When the message arrives, the
server calls a dispatch routine, and performs the requested service. The server
sends back a reply message, after which the original procedure call returns to the
client program with a value derived from the reply message.

See “Sample RPC programs” on page 272, for sample RPC client, server, and raw
data stream programs. Figure 2 on page 196 and Figure 3 on page 197 provide an
overview of the high-level RPC client and server processes from initialization

© Copyright IBM Corp. 2000, 2015 195

through cleanup.

TCP, UDP, or RAW

(Begin)

Initialize

Process
Call

Free
Resources

Final
Cleanup

tcp
udp
raw

clnt _create

get_myaddress
pmap_rmtcall

UDP only

none
unix
unix

success

success success

clnt_call

XDR routines XDR routines

clnt_pcreateerror callrpc

error

error error

clnt_perror
clnt_geterr

auth_destroy
clnt_destroy

(End)

clnt_perrno

clnt_freeres

auth
_create
_create
_create_default

Figure 2. Remote procedure call (client)

196 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Portmapper and rpcbind
Portmapper and rpcbind are the software that supply client programs with
information about server programs. Portmapper returns port numbers of server
programs and rpcbind returns universal addresses. A universal address is a text
string representation of the transport dependent address. A universal address for
rpcbind is defined in RFC 3530 as a text string of the IP address, a dot, then the

Initialize

Receive
Request

Process

Reply

Transaction
Cleanup and
Final
Cleanup

TCP, UDP, or RAW UDP only

tcp
udp
raw

_create registerpcsvc

svc_getrequest

svc_run

svc_getargs

xprt_register
svc_register
pmap_set

XDR encode

error

svcerr_xxx

decode routines

success

svc_sendreply

svc_freeargs

(End)

pmap_unset
xprt_unregister
svc_unregister

svc_destroy

Figure 3. Remote procedure call (server)

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 197

text string of the two octets of the port number. The following are examples of
universal addresses for port 1024 (port 1024 = port 0x400):
v 9.1.1.1.4.0
v ::FFFF:9.1.1.1.1.4.0
v 2001:0DB8::10:1:1:1.4.0

You can communicate between different computer operating systems when
messages are directed to port numbers or universal addresses rather than to
targeted remote programs. Clients contact server programs by sending messages to
the port numbers or universal addresses of remote processes. Because you make
requests to the port number or universal address of a server rather than directly to
a server program, client programs need a way to find this information about the
server programs they are calling. Portmapper and rpcbind standardize the way
clients locate information about the server programs that are supported on a
network.

Portmapper and rpcbind use well-known port 111. See Appendix A, “Well-known
port assignments,” on page 719, for other well-known TCP and UDP port
assignments.

The port-to-program information maintained by portmapper is called the portmap.
Clients ask portmapper or rpcbind about entries for servers on the network.
Servers contact portmapper or rpcbind to add or update entries to the portmap.

Contacting portmapper or rpcbind
To find the port or universal addresses of a remote program, the client sends an
RPC to well-known port 111 of the server’s host. If the server listening on port 111
(rpcbind or portmapper) has an entry for the remote program, it provides the port
number or universal addresses in a return RPC. The client then contacts the remote
program by sending an RPC to the port number or universal addresses provided.

Clients can save information about recently called remote programs to avoid
having to contact portmapper or rpcbind for each request to a server. Some of the
RPC function calls automatically contact portmapper or rpcbind on behalf of the
client. This eliminates the need for the application code to perform this task.

To see all the servers currently registered with RPC binding protocol Version 2
with portmapper or rpcbind, use the RPCINFO command as follows:
RPCINFO -p host_name

For details about rpcbind, see the MODIFY command: RPCBIND information in
z/OS Communications Server: IP System Administrator's Commands. For more
information about rpcinfo and portmapper, see the Rpcinfo information in z/OS
Communications Server: IP System Administrator's Commands.

Portmapper and rpcbind target assistance
Portmapper and rpcbind assist clients in contacting server programs. Either
portmapper or rpcbind can be used on the same host, but not both. If the client
sends an RPC with the target program number, version number, procedure
number, and arguments to the server listening on port 111 (rpcbind or
portmapper), that server locates the target server in its list of registered servers and
passes the client’s message to the target server. When the target server returns
information to portmapper or rpcbind, the information is passed to the client along

198 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

with the port number (or universal address, if rpcbind is being used) of the remote
program. The client can then contact the server directly.

Requirement: The following apply when the rpcbind server runs on a multilevel
secure host.
v The rpcinfo utility issues a target assistance request on behalf of the user who

invoked it when rpcinfo is invoked with the -b parameter. When the SAF profile
BPX.POE is defined on your host and rpcbind is started, the rpcbind user ID
must be granted at least READ access to the profile to enable rpcbind to respond
to rpcinfo -b requests.

v When the SAF profile BPX.POE is defined in class FACILITY and the rpcbind
server is in use, the rpcbind user ID must be granted at least READ access to the
profile to enable the server to support target assistance requests.

Rules:

v The target assistance RPCs: PMAPPROC_CALLIT, RPCBPROC_CALLIT,
RPCBPROC_BCAST, and RPCBPROC_INDIRECT, are defined in RFC 1833:
Binding Protocols for ONC RPC.

v The following RPC library routines issue target assistance requests on behalf of
the calling application: pmap_rmtcall() and clnt_broadcast().

Registering with rpcbind
RPC applications register with rpcbind by sending an RPCBPROC_SET or
PMAPPROC_SET RPC to rpcbind, or by invoking an RPC library routine that
sends one of these RPCs to rpcbind on its behalf.

Requirements:

v Your registration request must originate from an IP address on the host where
rpcbind is running.

v When the SAF profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is defined
in the SERVAUTH class, the user ID that is associated with the RPC server that
registers with rpcbind must be granted at least READ access to the profile. If
your application sends a PMAPPROC_SET or RPCBPROC_SET request to
rpcbind, you must grant the user ID that is associated with your application at
least READ access to the profile when the profile is defined.

v If your server registers an IPv4 IP address, you must register the address as an
IPv4 address rather than an IPv4-mapped IPv6 address.
The following example assumes that your server is listening on IP address
1.2.3.4 and port 1024 and that the server uses stream sockets. In the rpcb
specified with the RPCBPROC_SET procedure, specify the following rcpb field
values:
– r_addr = 1.2.3.4.4.0 instead of ::FFFF:1.2.3.4.4.0
– r_netid = tcp instead of tcp6

v If the following conditions apply to your server, you should register your
application with both the IPv4 address, INADDR_ANY, and the IPv6 unspecified
address (in6addr_any):
– The server is listening on an AF_INET6 socket bound to the IPv6 unspecified

address (in6addr_any)
– The server host has both IPv4 and IPv6 interfaces
– The server will serve both IPv4 and IPv6 clients
This example assumes that your server uses datagram sockets and is listening to
an AF_INET6 socket that is bound to the IPv6 unspecified address (in6addr_any)

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 199

on port 2048. The server host has both IPv4 and IPv6 interfaces and the server
intends to accept requests from both IPv4 and IPv6 clients.
Register your application twice. In the rpcb that is specified by RPCBPROC_SET,
specify the following rpcb field values on the first registration:
r_addr = 0.0.0.0.8.0
r_netid = udp

Specify the following rpcb field values on the second registration:
r_addr = ::0.8.0
r_netid = udp6

v When processing an RPCBPROC_SET request, rpcbind ignores the r_owner field
of the input rpcb.

Deregistering with rpcbind
RPC applications deregister with rpcbind by sending an RPCBPROC_UNSET or
PMAPPROC_UNSET RPC request to rpcbind, or by invoking an RPC library
routine that sends one of these RPCs to rpcbind on its behalf.

Requirements:

v Your deregistration request must originate from an IP address on the local host.
v When the SAF profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is defined

in the SERVAUTH class, the user ID that is associated with the RPC server that
deregisters with rpcbind must be granted at least READ access to the profile. If
your application sends a PMAPPROC_UNSET or RPCBPROC_UNSET request to
rpcbind, you must grant the user ID that is associated with your application at
least READ access to the profile when the profile is defined.

Obtaining address lists from the rpcbind server
RPC binding protocol V4 provides a procedure, RPCBPROC_GETADDRLIST, for
obtaining a list of addresses supported by a service. When a client queries the
z/OS rpcbind server using the UDP protocol over IPV4 or IPV6 transport, the
rpcbind server confines the reply to fit within one UDP IPv4 datagram. To obtain
all addresses supported by the service, the client should use TCP protocol when
invoking the RPCBPROC_GETADDRLIST procedure. For more information on RPC
binding protocol V4 and the RPCBPROC_GETADDRLIST procedure, see RFC 1833.
See Appendix J, “Related protocol specifications,” on page 1075 for information on
accessing RFCs.

Result: Your client might not be able to reach every address returned by the
RPCBPROC_GETADDRLIST procedure and possibly might not be able to reach the
service at all with the information provided by the RPCBPROC_GETADDRLIST
procedure. Following are some examples:
v The service might register a specific address that is not reachable from the client.
v If you use UDP to query the rpcbind server, the addresses returned within the

span of a single datagram might be unreachable by the client.

Restriction: If the service supports private network addresses, rpcbind returns
those addresses in an RPCBPROC_GETADDRLIST reply. If your client is in the
private network with the service, your client can use these addresses to contact the
service. However, if the service and the client are in different private networks,
unpredictable results will occur. See RFC 1918 for more information about private
network addresses. See Appendix J, “Related protocol specifications,” on page 1075
for information on accessing RFCs.

200 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RPC servers in a CINET environment

Tip: This topic applies only if your RPC server application registers with rpcbind.
The portmapper does not recognize new stacks that join a CINET environment, so
RPC servers that register with the portmapper are not affected.

The rpcbind server recognizes stacks that are started after rpcbind itself is started.
If your RPC server does not recognize stacks that are started after your server
establishes its listening socket, your server will not accept calls from the new stack.
This is true of all servers in a CINET environment, not just RPC servers. If an RPC
client reaches the rpcbind server from a newly started stack to obtain the universal
address of your server, it is possible that the client will be unable to contact your
server (because your server is not accepting connections from the new stack).

To avoid this problem, do the following:
v Avoid starting a new stack after your RPC server is started.
v Always stop and start your RPC server after starting a new stack.
v Code your server to do the following:

– Detect a stack starting
– Deregister your application with rpcbind
– Close your listening socket
– Establish a new listening socket and ephemeral port
– Register the new port using rpcbind

For more information about detecting a stack that is starting, see the
setibmsockopt() -- Set IBM Specific Options Associated with a Socket information
in z/OS XL C/C++ Runtime Library Reference.

Using ENF event code 80 to listen for rpcbind events

The rpcbind server uses ENF event code 80 to send signals when rpcbind
completes initialization or when rpcbind is stopping. Authorized RPC applications
can use the ENFREQ LISTEN service to detect rpcbind server events. On the
ENFREQ service, specify the X’80000000’ event qualifier and the listener user exit
routine that is to receive control after the specified event occurs. The specified
listener user exit receives control when the rpcbind server completes initialization
or when the rpcbind server is stopping.

Requirement: The RPC application must be authorized. The listener user exit must
run as an SRB.

To listen for ENF event code 80, specify the qualifying events on the BITQUAL
parameter, which specifies one of the following qualifiers:
v A 32-byte field
v A hexadecimal constant
v A register consisting of the address of a 32-byte field that contains a bit-mapped

qualifier defining the event

The qualifier is mapped by the mapping macro EZAENF80. The BITQUAL value
for the status change event is ENF80_RPC_EVENT in EZAENF80. The EZAENF80
macro is in SYS1.MACLIB. See Appendix F, “EZAENF80 Parameter list for ENF
event code 80 listen exits,” on page 993 for the mapping of ENF80 and
ENF80_RPC control blocks.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 201

When the listener user exit is driven, the ENF80 and ENF80_RPC control blocks
are provided. The exit can use ENF80_RPC_FLAGS to determine whether the
rpcbind server is initializing or stopping. The job name of the rpcbind server is
also provided.
v If ENF80_RPCINIT is on, the rpcbind server is initializing. The RPC application

can register with this new rpcbind server.
v If ENF80_RPCTERM is on, the rpcbind server is stopping. All RPC registrations

are removed. The RPC application issues a message to indicate that RPC services
are no longer available.

If the RPC application does not need to know whether the rpcbbind server is
running, issue the ENFREQ REQUEST=DELETE request to delete the listen
request.

For information about ENFREQ and listener exits, see:
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
v “Listening for system events” in z/OS MVS Programming: Authorized

Assembler Services Guide

RPCGEN command
Purpose

Use the RPCGEN command to generate the code to implement the RPC protocol.

Format

�� RPCGEN infile ��

�� RPCGEN
-c
-h
-l
-m

-o outfile infile
��

�� � RPCGEN -s transport
-o outfile infile

��

Parameters

-c Compiles into XDR routines.

-h Compiles into C data definitions (a header file).

-l Compiles into client-side stubs.

-m Compiles into server-side stubs without generating a main routine. This option
is useful for callback routines and for writing a main routine for initialization.

-o outfile
Specifies the name of the output data set. If none is specified, standard output
is used for -c, -h, -l, -m, and -s modes.

202 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

infile
Specifies the name of the input data set written in the RPC language. The
default is the data specified by the SYSIN DD statement.

-s transport
Compiles into server-side stubs, using the given transport. TCP and UDP are
the supported transports. You can invoke this option more than once to
compile a server that serves multiple transports. By default, RPCGEN creates
server stubs that support both TCP and UDP.

RPCGEN is a tool that generates C code to implement an RPC protocol. The input
to RPCGEN is a language similar to C, known as RPC language.

RPCGEN infile is normally used when you want to generate all four of the
following output data sets. For example:
v If the infile is named proto.x, RPCGEN generates:

– A header file called PROTO.H
– XDR routines called PROTOX.C
– Server-side stubs called PROTOS.C
– Client-side stubs called PROTOC.C

v If the infile is named USERA.RPC.SOURCE(PROTO), RPCGEN generates:
– A header file called USERA.RPC.H(PROTO)
– XDR routines called USERA.RPC.C(PROTOX)
– Server-side stubs called USERA.RPC.C(PROTOS)
– Client-side stubs called USERA.RPC.C(PROTOC)

RPCGEN obtains the file names for the C compiler for preprocessing input from
the CCRPCGEN CLIST, which must be customized similar to the C installation
procedure. For installation using the C/C++ compiler, the following would be an
example of the values for the statements in CCRPCGEN that are used by
RPCGEN:
SET CHD = &STR(CBC) /* PREFIX FOR SYSTEM FILES */
SET CVER = &STR() /* VERSION OF COMPILER */
SET COMPL = &STR(SCCNCMP) /* C COMPILER MODULES */
SET EDCMSGS = &STR(SCBCDMSG) /* C COMPILER MESSAGES */
SET LANG = &STR(CBCLMSGS) /* MESSAGE LANGUAGE */
SET SCEEHDRS = &STR(SCEEH) /* C SYSTEM HEADER FILES */
SET CMOD = &STR(CCNDRVR) /* C COMPILER EXECUTABLE MODULE */
SET WORKDA = &STR(SYSDA) /* UNIT TYPE FOR WORK FILES */
SET WRKSPC = &STR(1,1) /* CYLS ALLOCATED FOR WORK FILES */

The CCRPGEN clist must be in the SYSPROC concatenation.

Notes:

1. A temporary file called PROTO.EXPANDED is created by the RPCGEN
command. During normal operation, this file is also subsequently erased by the
RPCGEN command.

2. The code generated by RPCGEN is not suitable for input to a C++ compiler.

For more information about the RPCGEN command, see the Sun Microsystems
publication, Network Programming.

clnt_stat enumerated type
The clnt_stat enumerated type is defined in the CLNT.H file.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 203

RPCs frequently return information in the form of a clnt_stat enumerated value.
The following code is the format and a description of the clnt_stat enumerated
type:
enum clnt_stat {

RPC_SUCCESS=0, /* call succeeded */
/*
* local errors
*/
RPC_CANTENCODEARGS=1, /* can't encode arguments */
RPC_CANTDECODERES=2, /* can't decode results */
RPC_CANTSEND=3, /* failure in sending call */
RPC_CANTRECV=4, /* failure in receiving result */
RPC_TIMEDOUT=5, /* call timed out */
/*
* remote errors
*/
RPC_VERSMISMATCH=6, /* RPC versions not compatible */
RPC_AUTHERROR=7, /* authentication error */
RPC_PROGUNAVAIL=8, /* program not available */
RPC_PROGVERSMISMATCH=9, /* program version mismatched */
RPC_PROCUNAVAIL=10, /* procedure unavailable */
RPC_CANTDECODEARGS=11, /* decode arguments error */
RPC_SYSTEMERROR=12, /* generic “other problem” */
/*
* callrpc errors
*/
RPC_UNKNOWNHOST=13, /* unknown host name */
/*
* create errors
*/
RPC_PMAPFAILURE=14, /* the pmapper failed in its call */
RPC_PROGNOTREGISTERED=15, /* remote program is not registered */
/*
* unspecified error
*/
RPC_FAILED=16

};

Porting RPC applications
This topic contains information about porting RPC applications.

Remapping file names with MANIFEST.H
To conform to the MVS requirement that MVS data set names be eight characters
or less in length, a file called MANIFEST.H remaps the RPC long names to
eight-character derived names for internal processing.

The MANIFEST.H header file must be the first include file in the application, and
it must be present at compile-time. If it is not included, the application will fail to
link-edit. If the preprocessor macro MVS is defined when the RPC.H file is
included, RPC.H will implicitly include MANIFEST.H.

Note: #define Resolve_Via_Lookup must be specified before #include manifest.h
to enable the following socket calls: endhostent(), gethostent(), gethostbyaddr(),
gethostbyname(), and sethostent().

Accessing system return messages
To access system return values, you need only use the ERRNO.H include statement
supplied with the compiler. To access network return values, you must add the
following include statement:

204 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

#include <tcperrno.h>

Printing system return messages
To print only system errors, use perror(), a procedure available in the C compiler
run-time library. To print both system and network errors, use tcperror(), a
procedure included with TCP/IP.

Enumerations
Both xdr_enum() and xdr_union() are macros to account for varying length
enumerations. xdr_enum() and xdr_union cannot be referenced by callrpc(),
svc_freeargs(), svc_getargs(), or svc_sendreply(). An XDR routine for the specific
enumeration or union must be created. For more information, see “xdr_enum()” on
page 249.

Header files for remote procedure calls
The following header files are provided with TCP/IP. To compile your program,
you must include certain header files; however, not all of them are necessary for
every RPC application program.

auth.h

auth@uni.h

bsdtime.h

bsdtocms.h

clnt.h

in.h

inet.h

manifest.h

netdb.h

pmap@cln.h

pmap@pro.h

rpc.h

rpc@msg.h

svc.h

svc@auth.h

socket.h

tcperrno.h

types.h

xdr.h

Note: When you compile your application program using RPC, you must include
the RPC header files before the X Window System include files.

Compiling and linking RPC applications
You can use several methods to compile, link-edit, and execute your TCP/IP C
source program in MVS. This topic contains information about the data sets that
you must include to run your C source program under MVS batch, using
IBM-supplied cataloged procedures.

The following data set name is used as an example in the sample JCL statements:

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 205

USER.MYPROG.H
Contains user #include files.

Compatibility considerations when compiling and linking RPC
applications

Unless noted in z/OS Communications Server: New Function Summary, an
application program compiled and link edited on a release of z/OS
Communications Server IP can be used on higher level releases. That is, the API is
upward compatible.

Application programs that are compiled and link edited on a release of z/OS
Communications Server IP cannot be used on older releases. That is, the API is not
downward compatible.

Sample compilation cataloged procedure additions
Include the following statements in the compilation step of your cataloged
procedure. Cataloged procedures are included in the IBM-supplied samples for
your MVS system.
v Add the following statement as the first //SYSLIB DD statement.

//SYSLIB DD DSN=SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement.
//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

Compiling and linking RPC applications: Nonreentrant
modules

To compile and link nonreentrant RPC applications, the procedure is similar to the
procedure for nonreentrant C applications as described in the topic on
nonreentrant modules in the z/OS Communications Server: IP Sockets Application
Programming Interface Guide and Reference.

One additional JCL statement is needed. Add the following SYSLIB statement after
SEZACMTX statement in the link step:
// DD DSN=SEZARPCL,DISP=SHR

Compiling and linking RPC applications: Reentrant modules
To compile and link reentrant RPC applications, the procedure is similar to the
procedure for reentrant C applications as described in the topic on reentrant
modules in the z/OS Communications Server: IP Sockets Application
Programming Interface Guide and Reference.

One additional JCL statement is needed. Add the following SYSLIB statement after
the SEZARNT1 statement in the prelink-edit step:
// DD DSN=SEZARNT4,DISP=SHR

RPC global variables
These topics describe the three RPC global variables, rpc_createerr, svc_fds, and
svc_fdset.

206 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

rpc_createerr
Format
#include <rpc.h>

struct rpc_createerr rpc_createerr;

Usage

rpc_createerr is a global variable that is set when any RPC client creation routine
fails. Use clnt_pcreateerror() to print the message.

Context
v clntraw_create;()
v clnttcp_create()
v clntudp_create()

svc_fds
Format
#include <rpc.h>
int svc_fds;

Usage

svc_fds is a global variable that specifies the read descriptor bit set on the service
machine. This is of interest only if the service programmer decides to write an
asynchronous event processing routine; otherwise svc_run() should be used.
Writing asynchronous routines in the MVS environment is not simple, because
there is no direct relationship between the descriptors used by the socket routines
and the event control blocks commonly used by MVS programs for coordinating
concurrent activities.

Rule: Do not modify this variable.

Context
v svc_getreq()

svc_fdset
Format
#include <rpc.h>

fd_set svc_fdset;

Usage

svc_fdset is a global variable that specifies the read descriptor bit set on the service
machine. This is of interest only if the service programmer decides to write an
asynchronous event processing routine; otherwise svc_run() should be used.
Writing asynchronous routines in the MVS environment is not simple, because
there is no direct relationship between the descriptors used by the socket routines
and the event control blocks commonly used by MVS programs for coordinating
concurrent activities.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 207

Rule: Do not modify this variable.

Context
v svc_getreqset()

Remote procedure and external data representation calls
These topics provide the syntax, parameters, and other appropriate information for
each remote procedure and external data representation call supported by z/OS
Communications Server.

auth_destroy()
Format
#include <rpc.h>
void
auth_destroy(auth)
AUTH *auth;

Parameters

auth
Indicates a pointer to authentication information.

Usage

The auth_destroy() call deletes the authentication information for auth. After this
procedure is called, auth is undefined.

Context
v authnone_create()
v authunix_create()
v authunix_create_default()

authnone_create()
Format
#.include <rpc.h>.
AUTH *
authnone_create()

Parameters

None.

Usage

The authnone_create() call creates and returns an RPC authentication handle. The
handle passes the NULL authentication on each call.

Context
v auth_destroy()
v authunix_create()
v authunix_create_default()

208 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

authunix_create()
Format
#include <rpc.h>
AUTH *
authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid;
int gid;
int len;
int *aup_gids;

Parameters

host
Specifies a pointer to the symbolic name of the host where the desired server is
located.

uid
Specifies the user’s user ID.

gid
Specifies the user’s group ID.

len
Indicates the length of the information pointed to by aup_gids.

aup_gids
Specifies a pointer to an array of groups to which the user belongs.

Usage

The authunix_create() call creates and returns an authentication handle that
contains UNIX-based authentication information.

Context
v auth_destroy()
v authnone_create()
v authunix_create_default()

authunix_create_default()
Format
#include <rpc.h>

AUTH *
authunix_create_default()

Parameters

None

Usage

The authunix_create_default() call invokes authunix_create() with default
parameters.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 209

Context
v auth_destroy()
v authnone_create()
v authunix_create()

callrpc()
Format
#include <rpc.h>

enum clnt_stat
callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;

Parameters

host
Specifies a pointer to the symbolic name of the host where the desired server is
located.

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Specifies the XDR procedure used to encode the arguments of the remote
procedure.

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Specifies a pointer to the results of the remote procedure.

Usage

The callrpc() calls the remote procedure described by prognum, versnum, and
procnum running on the host system. callrpc() encodes and decodes the parameters
for transfer.

Notes:

1. clnt_perrno() can be used to translate the return code into messages.
2. callrpc() cannot call the procedure xdr_enum. See “xdr_enum()” on page 249

for more information.

210 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

3. This procedure uses UDP as its transport layer. See “clntudp_create()” on page
223 for more information.

Return codes

A value of RPC_SUCCESS (0) indicates success; otherwise, an error has occurred as
indicated by the value returned. The results of the remote procedure call are
returned to out.

Context
v clnt_broadcast()
v clnt_call()
v clnt_perrno()
v clntudp_create()
v clnt_sperrno()
v clnt_sperrno()
v xdr_enum()

clnt_broadcast()
Format
#include <rpc.h>
enum clnt_stat
clnt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, eachresult)
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
resultproc_t eachresult;

Parameters

prognum
Identifies the program number of the remote procedure.

versnum
Identifies the version number of the remote procedure.

procnum
Identifies the procedure number of the remote procedure.

inproc
Identifies the XDR procedure used to encode the arguments of the remote
procedure.

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Specifies a pointer to the results of the remote procedure; however, the output
of the remote procedure is decoded.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 211

eachresult
Specifies the procedure called after each response.

Note: resultproc_t is a type definition.
#include <rpc.h>
typedef bool_t (*resultproc_t)
();

addr
Specifies the pointer to the address of the machine that sent the results.

Usage

The clnt_broadcast() call broadcasts the remote procedure described by prognum,
versnum, and procnum to all locally connected broadcast networks. Each time
clnt_broadcast() receives a response it calls eachresult(). The format of eachresult()
is:

Format
#include <rpc.h>
bool_t eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

Return codes

If eachresult() returns 0, clnt_broadcast() waits for more replies; otherwise,
eachresult() returns the appropriate status.

Note: Broadcast sockets are limited in size to the maximum transfer unit of the
data link.

Context
v callpc()
v clnt_call()

clnt_call()
Format
#include <rpc.h>

enum clnt_stat
clnt_call(clnt, procnum,
inproc, in, outproc, out, tout)
CLIENT *clnt;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;

Parameters

clnt
Specifies the pointer to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

212 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

procnum
Identifies the remote procedure number.

inproc
Specifies the XDR procedure used to encode procnum arguments.

in
Specifies a pointer to the arguments of the remote procedure.

outproc
Indicates the XDR procedure used to decode the remote procedure results.

out
Specifies a pointer to the results of the remote procedure.

tout
Indicates the time allowed for the server to respond.

Usage

The clnt_call() calls the remote procedure (procnum) associated with the client
handle (clnt).

Return codes

A value of RPC_SUCCESS (0) indicates success; otherwise, an error has occurred as
indicated by the value returned. The results of the remote procedure call are
returned in out.

Context
v callrpc()
v clnt_broadcast()
v clnt_geterr()
v clnt_perror()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_control()
Format
#include <rpc.h>

bool_t
clnt_control(clnt, request, info)
CLIENT *clnt;
int request;
void *info;

Parameters

clnt
Indicates the pointer to a client handle that was previously obtained using
clntraw_create(), clnttcp_create(), or clntudp_create().

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 213

request
Determines the operation (either CLSET_TIMEOUT, CLGET_TIMEOUT,
CLGET_SERVER_ADDR, CLSET_RETRY_TIMEOUT, or
CLGET_RETRY_TIMEOUT).

info
Indicates the pointer to information used by the request.

Usage

The clnt_control() call performs one of the following control operations:
v Control operations that apply to both UDP and TCP transports:

CLSET_TIMEOUT
Sets timeout (info points to the timeval structure).

CLGET_TIMEOUT
Gets timeout (info points to the timeval structure).

CLGET_SERVER_ADDR
Gets server’s address (info points to the sockaddr_in structure).

v UDP only control operations:

CLSET_RETRY_TIMEOUT
Sets retry timeout (info points to the timeval structure).

CLGET_RETRY_TIMEOUT
Gets retry timeout (info points to the timeval structure). If you set the
timeout using clnt_control(), the timeout parameter to clnt_call() is ignored
in all future calls.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_create()
v clnt_destroy()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_create()
Format
#include <rpc.h>
CLIENT *
clnt_create(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
char *protocol;

Parameters

host
Indicates the pointer to the name of the host where the remote program is.

214 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

protocol
Indicates the pointer to the protocol, which can be either tcp or udp.

Usage

The clnt_create() call creates an RPC client transport handle for the remote
program specified by (prognum, versnum). The client uses the specified protocol as
the transport layer. Default timeouts are set, but they can be modified using
clnt_control().

Return codes

NULL indicates failure.

Context
v clnt_control()
v clnt_destroy()
v clnt_pcreateerror()
v clnt_spcreateerror()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_destroy()
Format
#include <rpc.h>
void
clnt_destroy(clnt)
CLIENT *clnt;

Parameters

clnt
Specifies the pointer to a client handle that was previously created using
clntudp_create(), clnttcp_create(), or clntraw_create().

Usage

The clnt_destroy() call deletes a client RPC transport handle. This procedure
involves the deallocation of private data resources, including clnt. After this
procedure is used, clnt is undefined. If the RPC library opened the associated
sockets, it also closes them. Otherwise, the sockets remain open.

Context
v clnt_control()
v clnt_create()
v clntraw_create()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 215

v clnttcp_create()
v clntudp_create()

clnt_freeres()
Format
#include <rpc.h>
bool_t
clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

Parameters

clnt
Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create().

outproc
Specifies the XDR procedure used to decode the remote procedure’s results.

out
Specifies the pointer to the results of the remote procedure.

Usage

The clnt_freeres() call deallocates any resources that were assigned by the system
to decode the results of an RPC.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_create()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_geterr()
Format
#include <rpc.h>
void
clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;

Parameters

clnt
Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create().

errp
Indicates the pointer to the address into which the error structure is copied.

216 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The clnt_geterr() call copies the error structure from the client handle to the
structure at address errp.

Context
v clnt_call()
v clnt_create()
v clnt_pcreateerror()
v clnt_perrno()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperrno()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_pcreateerror()
Format
#include <rpc.h>

void
clnt_pcreateerror(s)
char *s;

Parameters

s Indicates a null or null-terminated character string. If s is nonnull,
clnt_pcreateerror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage

The clnt_pcreateerror() call writes a message to the standard error device,
indicating why a client handle cannot be created. This procedure is used after
clntraw_create(), clnttcp_create(), clntudp_create(), or clnt_create(), fails.

Context
v clnt_create()
v clnt_geterr()
v clnt_perrno()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperrno()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 217

clnt_perrno()
Format
#include <rpc.h>
void
clnt_perrno(stat)
enum clnt_stat stat;

Parameters

stat
Indicates the client status.

Usage

The clnt_perrno() call writes a message to the standard error device corresponding
to the condition indicated by stat. This procedure should be used after callrpc() if
there is an error.

Context
v callrpc()
v clnt_geterr()
v clnt_pcreateerror()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperrno()
v clnt_sperror()

clnt_perror()
Format
#include <rpc.h>
void
clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

Parameters

clnt
Specifies the pointer to a client handle that was previously obtained using
clnt_create(), clntudp_create(), clnttcp_create(), or clntraw_create().

s Indicates a null or null-terminated character string. If s is nonnull,
clnt_perrorerror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage

The clnt_perror() call writes a message to the standard error device, indicating why
an RPC failed. This procedure should be used after clnt_call() if there is an error.

Context
v clnt_call()
v clnt_create()

218 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v clnt_geterr()
v clnt_pcreateerror()
v clnt_perrno()
v clnt_spcreateerror()
v clnt_sperrno()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clnt_spcreateerror()
Format
#include <rpc.h>

char *
clnt_spcreateerror(s)
char *s;

Parameters

s Indicates a null or null-terminated character string. If s is nonnull,
clnt_spcreateerror() prints the string s followed by a colon, followed by a
space, followed by the error message, and terminated with a new line. If s is
null or points to a null string, just the error message and the new line are
output.

Usage

The clnt_spcreateerror() call returns the address of a message indicating why a
client handle cannot be created. This procedure is used after clnt_create(),
clntraw_create(), clnttcp_create(), or clntudp_create() fails.

Return codes

Pointer to a character string ending with a new line.

Context
v callrpc()
v clnt_geterr()
v clnt_perrno()
v clnt_perror()
v clnt_pcreateerror()
v clnt_sperrno()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 219

clnt_sperrno()
Format
#include <rpc.h>
char *
clnt_sperrno(stat)
enum clnt_stat stat;

Parameters

stat
Indicates the client status.

Usage

The clnt_sperrno() call returns the address of a message corresponding to the
condition indicated by stat. This procedure should be used after callrpc(), if there is
an error.

Return codes

Pointer to a character string ending with a new line.

Context
v clnt_call()
v clnt_geterr()
v clnt_pcreateerror()
v clnt_spcreateerror()
v clnt_sperror()
v clnt_perrno()
v clnt_perror()

clnt_sperror()
Format
#include <rpc.h>

char *
clnt_sperror(clnt, s)
CLIENT *clnt;
char *s;

Parameters

clnt
Indicates the pointer to a client handle that was previously obtained using
clnt_create(), clntudp_create(), clnttcp_create(), or clntraw_create().

s Indicates a null or null-terminated character string. If s is nonnull,
clnt_sperror() prints the string s followed by a colon, followed by a space,
followed by the error message, and terminated with a new line. If s is null or
points to a null string, just the error message and the new line are output.

Usage

The clnt_sperror() call returns the address of a message indicating why an RPC
failed. This procedure should be used after clnt_call(), if there is an error.

220 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes

Pointer to a character string ending with a new line.

Context
v clnt_call()
v clnt_create()
v clnt_geterr()
v clnt_pcreateerror()
v clnt_perrno()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperrno()
v clntraw_create()
v clnttcp_create()
v clntudp_create()

clntraw_create()
Format
#include <rpc.h>
CLIENT *
clntraw_create(prognum, versnum)
u_long prognum;
u_long versnum;

Parameters

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

Usage

The clntraw_create() call creates a dummy client for the remote double (prognum,
versnum). Because messages are passed using a buffer within the address space of
the local process, the server should also use the same address space, which
simulates RPC programs within one address space. See “svcraw_create()” on page
240 for more information.

Return codes

NULL indicates failure.

Context
v clnt_call()
v clnt_create()
v clnt_destroy()
v clnt_freeres()
v clnt_geterr()
v clnt_pcreateerror()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 221

v clnt_perror()
v clnt_spcreateerror()
v clnt_sperror()
v clntudp_create()
v clnttcp_create()
v svcraw_create()

clnttcp_create()
Format
#include <rpc.h>
CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int *sockp;
u_int sendsz;
u_int recvsz;

Parameters

addr
Indicates the pointer to the Internet address of the remote program. If addr
points to a port number of 0, addr is set to the port on which the remote
program is receiving.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

sockp
Indicates the pointer to the socket. If *sockp is RPC_ANYSOCK, then this
routine opens a new socket and sets *sockp.

Requirement: If you use this handle to send the PMAPPROC_SET,
PMAPPROC_UNSET, RPCBPROC_SET, or RPCBPROC_UNSET RPC to
rpcbind, the following requirements apply:
v Your registration request must originate from an IP address on the local

host.
v If the SAF profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is defined

in the SERVAUTH class, your application user ID must be granted at least
READ access to the profile.

sendsz
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsz
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage

The clnttcp_create() call creates an RPC client transport handle for the remote
program that is specified by (prognum, versnum). The client uses TCP as the
transport layer.

222 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes

NULL indicates failure.

Context
v clnt_call()
v clnt_control()
v clnt_create()
v clnt_destroy()
v clnt_freeres()
v clnt_geterr()
v clnt_pcreateerror()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperror()
v clntraw_create()
v clntudp_create()

clntudp_create()
Format
#include <rpc.h>
CLIENT *
clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
struct timeval wait;
int *sockp;

Parameters

addr
Indicates the pointer to the Internet address of the remote program. If addr
points to a port number of 0, addr is set to the port on which the remote
program is receiving. The remote portmap service is used for this.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

wait
Indicates that UDP resends the call request at intervals of wait time, until either
a response is received or the call times out. The timeout length is set using the
clnt_call() procedure.

sockp
Specifies the pointer to the socket. If *sockp is RPC_ANYSOCK, this routine
opens a new socket and sets *sockp.

Requirement: If you use this handle to send the PMAPPROC_SET,
PMAPPROC_UNSET, RPCBPROC_SET, or RPCBPROC_UNSET RPC to
rpcbind, the following requirements apply:

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 223

v Your registration request must originate from an IP address on the local
host.

v If the SAF profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is defined
in the SERVAUTH class, your application user ID must be granted at least
READ access to the profile.

Usage

The clntudp_create() call creates a client transport handle for the remote program
(prognum) with version (versnum). UDP is used as the transport layer.

Note: This procedure should not be used with procedures that use large
arguments or return large results. While UDP packet size is configurable to a
maximum of 64 - 1 kilobytes, the default UDP packet size is only 8 kilobytes.

Return codes

NULL indicates failure.

Context
v call_rpc()
v clnt_call()
v clnt_control()
v clnt_create()
v clnt_destroy()
v clnt_freeres()
v clnt_geterr()
v clnt_pcreateerror()
v clnt_perror()
v clnt_spcreateerror()
v clnt_sperror()
v clntraw_create()
v clnttcp_create()

get_myaddress()
Format
#include <rpc.h>
void
get_myaddress(addr)
struct sockaddr_in *addr;

Parameters

addr
Indicates the pointer to the location where the local Internet address is placed.

Usage

The get_myaddress() call puts the local host Internet address into addr. The port
number (addr → sin_port) is set to htons (PMAPPORT), which is 111.

224 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Context
v clnttcp_create()
v getpcport()
v pmap_getmaps()
v pmap_getport()
v pmap_rmtcall()
v pmap_set()
v pmap_unset()

getrpcport()
Format
#include <rpc.h>
u_short
getrpcport(host, prognum, versnum, protocol)
char *host;
u_long prognum;
u_long versnum;
int protocol;

Parameters

host
Specifies the pointer to the name of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

protocol
Specifies the transport protocol used by the program (IPPROTO_TCP or
IPPROTO_UDP).

Usage

The getrpcport() call returns the port number associated with the remote program
(prognum), the version (versnum), and the transport protocol (protocol).

Return codes

The value 1 indicates that the mapping does not exist or that the remote portmap
could not be contacted. If portmapper cannot be contacted, rpc_createerr contains
the RPC status.

Context
v get_myaddress()
v pmap_getmaps()
v pmap_getport()
v pmap_rmtcall()
v pmap_set()
v pmap_unset()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 225

pmap_getmaps()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

struct pmaplist *
pmap_getmaps(addr)
struct sockaddr_in *addr;

Parameters

addr
Indicates the pointer to the Internet address of the foreign host.

Usage

The pmap_getmaps() call returns a list of current program-to-port mappings on the
foreign host specified by addr.

Return codes

Returns a pointer to a pmaplist structure, or NULL.

Context
v getrpcport()
v pmap_getport()
v pmap_rmtcall()
v pmap_set()
v pmap_unset()

pmap_getport()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
u_short
pmap_getport(addr, prognum,
versnum, protocol)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
int protocol;

Parameters

addr
Indicates the pointer to the Internet address of the foreign host.

prognum
Specifies the program number to be mapped.

versnum
Specifies the version number of the program to be mapped.

226 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

protocol
Indicates the transport protocol used by the program (IPPROTO_TCP or
IPPROTO_UDP).

Usage

The pmap_getport() call returns the port number associated with the remote
program (prognum), the version (versnum), and the transport protocol (protocol).

Return codes

The value 1 indicates that the mapping does not exist or that the remote portmap
could not be contacted. If portmapper cannot be contacted, rpc_createerr contains
the RPC status.

Context
v getrpcport()
v pmap_getmaps()
v pmap_rmtcall()
v pmap_set()
v pmap_unset()

pmap_rmtcall()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
enum clnt_stat
pmap_rmtcall(addr, prognum,
versnum, procnum, inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum;
u_long versnum;
u_long procnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
struct timeval tout;
u_long *portp;

Parameters

addr
Indicates the pointer to the Internet address of the foreign host.

prognum
Specifies the remote program number.

versnum
Specifies the version number of the remote program.

procnum
Identifies the procedure to be called.

inproc
Specifies the XDR procedure used to encode the arguments of the remote
procedure.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 227

in
Specifies the pointer to the arguments of the remote procedure.

outproc
Specifies the XDR procedure used to decode the results of the remote
procedure.

out
Indicates the pointer to the results of the remote procedure.

tout
Specifies the timeout period for the remote request.

portp
If the call from the remote portmap service is successful, portp contains the port
number of the triple (prognum, versnum, procnum).

Usage

The pmap_rmtcall() call instructs portmapper, on the host at addr, to make an RPC
call to a procedure on that host. This procedure should be used only for ping-type
functions.

Return codes

clnt_stat enumerated type.

Context
v getrpcport()
v pmap_getmaps()
v pmap_getport()
v pmap_set()
v pmap_unset()

pmap_set()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_set(prognum, versnum,
protocol, port)
u_long prognum;
u_long versnum;
int protocol;
u_short port;

Parameters

prognum
Specifies the local program number.

versnum
Specifies the version number of the local program.

protocol
Indicates the transport protocol used by the local program.

228 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

port
Indicates the port to which the local program is mapped.

Usage

The pmap_set() call sets the mapping of the program (specified by prognum,
versnum, and protocol) to port on the local machine. This procedure is automatically
called by the svc_register() procedure.

Requirement: When your application registers with rpcbind rather than with
portmapper, the following requirements apply:
v Your registration request must originate from an IP address on the local host.
v If you have defined the SAF profile

EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class, your
application user ID must be granted at least READ access to permit this library
call.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v getrpcport()
v pmap_getmaps()
v pmap_getport()
v pmap_rmtcall()
v pmap_unset()

pmap_unset()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>

bool_t
pmap_unset(prognum, versnum)
u_long prognum;
u_long versnum;

Parameters

prognum
Specifies the local program number.

versnum
Specifies the version number of the local program.

Usage

The pmap_unset() call removes the mappings associated with prognum and versnum
on the local machine. All ports for each transport protocol currently mapping the
prognum and versnum are removed from the portmap service.

Requirement: When your application registers with rpcbind rather than with
portmapper, the following requirements apply:

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 229

v Your registration request must originate from an IP address on the local host.
v If you have defined the SAF profile

EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class, your
application user ID must be granted at least READ access to permit this library
call.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v getrpcport()
v pmap_getmaps()
v pmap_getport()
v pmap_rmtcall()
v pmap_set()

registerrpc()
Format
#include <rpc.h>
int
registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum;
u_long versnum;
u_long procnum;
char *(*procname) ();
xdrproc_t inproc;
xdrproc_t outproc;

Parameters

prognum
Specifies the program number to register.

versnum
Specifies the version number to register.

procnum
Specifies the procedure number to register.

procname
Indicates the procedure that is called when the registered program is
requested. procname must accept a pointer to its arguments, and return a static
pointer to its results.

inproc
Specifies the XDR routine used to decode the arguments.

outproc
Specifies the XDR routine that encodes the results.

Usage

The registerrpc() call registers a procedure (prognum, versnum, procnum) with the
local portmapper, and creates a control structure to remember the server procedure
and its XDR routine. The control structure is used by svc_run(). When a request

230 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

arrives for the program (prognum, versnum, procnum), the procedure procname is
called. Procedures registered using registerrpc() are accessed using the UDP
transport layer.

Note: xdr_enum() cannot be used as an argument to registerrpc(). See
“xdr_enum()” on page 249 for more information.

Requirement: When your application registers with rpcbind rather than with
portmapper, the following requirements apply:
v Your registration request must originate from an IP address on the local host.
v If you have defined the SAF profile

EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class, your
application user ID must be granted at least READ access to permit this library
call.

Return codes

The value 1 indicates success; the value -1 indicates an error.

Context
v svc_register()
v svc_run()

svc_destroy()
Format
#include <rpc.h>
void
svc_destroy(xprt)
SVCXPRT *xprt;

Parameters

xprt
Specifies the pointer to the service transport handle.

Usage

The svc_destroy() call deletes the RPC service transport handle xprt, which
becomes undefined after this routine is called.

Context
v svcraw_create()
v svctcp_create()
v svcudp_create()

svc_freeargs()
Format
#include <rpc.h>
bool_t
svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 231

Parameters

xprt
Specifies the pointer to the service transport handle.

inproc
Specifies the XDR routine used to decode the arguments.

in
Indicates the pointer to the input arguments.

Usage

The svc_freeargs() call frees storage allocated to decode the arguments to a service
procedure using svc_getargs().

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v svc_getargs()

svc_getargs()
Format
#include <rpc.h>
bool_t
svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Parameters

xprt
Specifies the pointer to the service transport handle.

inproc
Specifies the XDR routine used to decode the arguments.

in
Indicates the pointer to the decoded arguments.

Usage

The svc_getargs() call uses the XDR routine inproc to decode the arguments of an
RPC request associated with the RPC service transport handle xprt. The results are
placed at address in.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v svc_freeargs()

232 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

svc_getcaller()
Format
#include <rpc.h>
struct sockaddr_in *
svc_getcaller(xprt)
SVCXPRT *xprt;

Parameters

xprt
Specifies the pointer to the service transport handle.

Usage

Macro obtains the network address of the client associated with the service
transport handle xprt.

Return codes

This is a pointer to a sockaddr_in structure.

Context
v get_myaddress()

svc_getreq()
Format
#include <rpc.h>
void
svc_getreq(rdfds)
int rdfds;

Parameters

rdfds
Specifies the read descriptor bit set.

Usage

The svc_getreq() call is used, rather than svc_run(), to implement asynchronous
event processing. The routine returns control to the program when all sockets have
been serviced.

svc_getreq limits you to 32 socket descriptors, of which 3 are reserved. Use
svc_getreqset if you have more than 29 socket descriptors.

Context
v svc_run()

svc_getreqset()
Format
#include <rpc.h>
void
svc_getreqset(readfds)
fd_set readfds;

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 233

Parameters

readfds
Specifies the read descriptor bit set.

Usage

The svc_getreqset() call is used, rather than svc_run(), to implement asynchronous
event processing. The routine returns control to the program when all sockets have
been serviced.

A server would use a select() call to determine if there are any outstanding RPC
requests at any of the sockets created when the programs were registered. The read
bit descriptor set returned by select() is then used on the call to svc_getreqset().

Note that you should not pass the global bit descriptor set svc_fdset on the call to
select(), because select() changes the values. Instead, you should make a copy of
svc_fdset before you call select().

Context
v svc_run()

svc_register()
Format
#include <rpc.h>
bool_t
svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum;
u_long versnum;
void (*dispatch) ();
int protocol;

Parameters

xprt
Specifies the pointer to the service transport handle.

prognum
Specifies the program number to be registered.

versnum
Specifies the version number of the program to be registered.

dispatch()
Indicates the dispatch routine associated with prognum and versnum.

The structure of the dispatch routine is:
#include <rpc.h>

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

protocol
The protocol used. The value is generally one of the following:
v 0
v IPPROTO_UDP
v IPPROTO_TCP

234 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

When the value 0 is used, the service is not registered with portmapper.

Rule: When using a toy RPC service transport created with svcraw_create(), a call
to xprt_register() must be made immediately after a call to svc_register().

Usage

The svc_register() call associates the program described by (prognum, versnum)
with the service dispatch routine dispatch.

Requirement: When your application registers with rpcbind rather than with
portmapper, the following requirements apply:
v Your registration request must originate from an IP address on the local host.
v If you have defined the SAF profile

EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class, your
application user ID must be granted at least READ access to permit this library
call.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v registerrpc()
v svc_unregister()
v xprt_register()

svc_run()
Format
#include <rpc.h>
svc_run()

Parameters

None.

Usage

The svc_run() call does not return control. It accepts RPC requests and calls the
appropriate service using svc_getreqset().

Context

svc_getreqset()

svc_sendreply()
Format
#include <rpc.h>
bool_t
svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 235

Parameters

xprt
Indicates the pointer to the caller’s transport handle.

outproc
Specifies the XDR procedure used to encode the results.

out
Specifies the pointer to the results.

Usage

The svc_sendreply() call is called by the service dispatch routine to send the results
of the call to the caller.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_call()

svc_unregister()
Format
#include <rpc.h>
void
svc_unregister(prognum, versnum)
u_long prognum;
u_long versnum;

Parameters

prognum
Specifies the program number that is removed.

versnum
Specifies the version number of the program that is removed.

Usage

The svc_unregister() call removes all local mappings of prognum and versnum to
dispatch routines and prognum, versnum, and * to port numbers.

Requirement: When your application registers with rpcbind rather than with
portmapper, the following requirements apply:
v Your registration request must originate from an IP address on the local host.
v If you have defined the SAF profile

EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class, your
application user ID must be granted at least READ access to permit this library
call.

236 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

svcerr_auth()
Format
#include <rpc.h>
void
svcerr_auth(xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

Parameters

xprt
Specifies the pointer to the service transport handle.

why
Specifies the reason the call is refused.

Usage

The svcerr_auth() call is called by a service dispatch routine that refuses to run an
RPC request because of authentication errors.

Context
v svcerr_noproc()
v svcerr_noprog()
v svcerr_progvers()
v svcerr_systemerr()
v svcerr_weakauth()

svcerr_decode()
Format
#include <rpc.h>
void
svcerr_decode(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The svcerr_decode() call is called by a service dispatch routine that cannot decode
its parameters.

Context
v svcerr_noproc()
v svcerr_noprog()
v svcerr_progvers()
v svcerr_systemerr()
v svcerr_weakauth()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 237

svcerr_noproc()
Format
#include <rpc.h>
void
svcerr_noproc(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The svcerr_noproc() call is called by a service dispatch routine that does not
implement the requested procedure.

Context
v svcerr_decode()
v svcerr_noprog()
v svcerr_progvers()
v svcerr_systemerr()
v svcerr_weakauth()

svcerr_noprog()
Format
#include <rpc.h>
void
svcerr_noprog(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The svcerr_noprog() call is used when the desired program is not registered.

Context
v svcerr_decode()
v svcerr_noproc()
v svcerr_progvers()
v svcerr_systemerr()
v svcerr_weakauth()

238 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

svcerr_progvers()
Format
#include <rpc.h>
void
svcerr_progvers(xprt, low_vers, high_vers)
SVCXPRT *xprt;
u_long low_vers;
u_long high_vers;

Parameters

xprt
Indicates the pointer to the service transport handle.

low_vers
Specifies the low version number that does not match.

high_vers
Specifies the high version number that does not match.

Usage

The svcerr_progvers() call is called when the version numbers of two RPC
programs do not match. The low version number corresponds to the lowest
registered version, and the high version corresponds to the highest version
registered on the portmapper.

Context
v svcerr_decode()
v svcerr_noproc()
v svcerr_noprog()
v svcerr_progvers()
v svcerr_systemerr()
v svcerr_weakauth()

svcerr_systemerr()
Format
#include <rpc.h>
void
svcerr_systemerr(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The svcerr_systemerr() call is called by a service dispatch routine when it detects a
system error that is not handled by the protocol.

Context
v svcerr_decode()
v svcerr_noproc()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 239

v svcerr_noprog()
v svcerr_progvers()
v svcerr_weakauth()

svcerr_weakauth()
Format
#include <rpc.h>
void
svcerr_weakauth(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Note: This is the equivalent of svcerr_auth(xprt, AUTH_TOOWEAK).

Usage

The svcerr_weakauth() call is called by a service dispatch routine that cannot run
an RPC because of correct but weak authentication parameters.

Context
v svcerr_decode()
v svcerr_noproc()
v svcerr_noprog()
v svcerr_progvers()
v svcerr_systemerr()

svcraw_create()
Format
#include <rpc.h>
SVCXPRT *
svcraw_create()

Parameters

None.

Usage

The svcraw_create() call creates a local RPC service transport used for timings, to
which it returns a pointer. Messages are passed using a buffer within the address
space of the local process; therefore, the client process must also use the same
address space. This allows the simulation of RPC programs within one computer.
See “clntraw_create()” on page 221 for more information.

Return codes

NULL indicates failure.

240 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Context
v svc_destroy()
v svctcp_create()
v svcudp_create()

svctcp_create()
Format
#include <rpc.h>
SVCXPRT *
svctcp_create(sock, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

Parameters

sock
Specifies the socket descriptor. If sock is RPC_ANYSOCK, a new socket is
created. If the socket is not bound to a local TCP port, it is bound to an
arbitrary port.

send_buf_size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage

The svctcp_create() call creates a TCP-based service transport to which it returns a
pointer. xprt—>xp_sock contains the transport socket descriptor. xprt—>xp_port
contains the transport port number.

Return codes

NULL indicates failure.

Context
v svcraw_create()
v svcudp_create()

svcudp_create()
Format
#include <rpc.h>
SVCXPRT *
svcudp_create(sockp, send_buf_size, recv_buf_size)
int sock;
u_int send_buf_size;
u_int recv_buf_size;

Parameters

sock
Specifies the socket associated with the service transport handle. If sock is
RPC_ANYSOCK, a new socket is created.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 241

send_buf_size
Specifies the size of the send buffer. Specify 0 to choose the default.

recv_buf_size
Specifies the size of the receive buffer. Specify 0 to choose the default.

Usage

The svcudp_create() call creates a UDP-based service transport to which it returns
a pointer. xprt—>xp_sock contains the transport socket descriptor. xprt—>xp_port
contains the transport port number.

Return codes

NULL indicates failure.

Context
v svcraw_create()
v svctcp_create()

xdr_accepted_reply()
Format
#include <rpc.h>
bool_t
xdr_accepted_reply(xdrs, ar)
XDR *xdrs;
struct accepted_reply *ar;

Parameters

xdrs
Specifies the pointer to an XDR stream.

ar
Specifies the pointer to the reply to be represented.

Usage

The xdr_accepted_reply() call translates RPC reply messages.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

242 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xdr_array()
Format
#include <rpc.h>
bool_t
xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep;
u_int maxsize;
u_int elsize;
xdrproc_t elproc;

Parameters

xdrs
Specifies the pointer to an XDR stream.

arrp
Specifies the address of the pointer to the array.

sizep
Specifies the pointer to the element count of the array.

maxsize
Specifies the maximum number of elements accepted.

elsize
Specifies the size of each of the array’s elements, found using sizeof().

elproc
Specifies the XDR routine that translates an individual array element.

Usage

The xdr_array() call translates between an array and its external representation.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 243

xdr_authunix_parms()
Format
#include <rpc.h>
bool_t
xdr_authunix_parms(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Parameters

xdrs
Specifies the pointer to an XDR stream.

aupp
Indicates the pointer to the authentication information.

Usage

The xdr_authunix_parms() call translates UNIX-based authentication information.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_bool()
Format
#include <rpc.h>
bool_t
xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

Parameters

xdrs
Specifies the pointer to an XDR stream.

bp
Indicates the pointer to the Boolean.

Usage

The xdr_bool() call translates between booleans and their external representation.

244 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_bytes()
Format
#include <rpc.h>
bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep;
u_int maxsize;

Parameters

xdrs
Specifies the pointer to an XDR stream.

sp Specifies the pointer to the byte string.

sizep
Indicates the pointer to the byte string size.

maxsize
Specifies the maximum size of the byte string.

Usage

The xdr_bytes() call translates between byte strings and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 245

v svc_sendreply()

xdr_callhdr()
Format
#include <rpc.h>
void
xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Parameters

xdrs
Specifies the pointer to an XDR stream.

chdr
Specifies the pointer to the call header.

Usage

The xdr_callhdr() call translates an RPC message header into XDR format.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_callmsg()
Format
#include <rpc.h>
bool_t
xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Parameters

xdrs
Specifies the pointer to an XDR stream.

cmsg
Specifies the pointer to the call message.

Usage

The xdr_callmsg() call translates RPC messages (header and authentication, not
argument data) to and from the XDR format.

246 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_char()
Format
#include <rpc.h>

bool_t
xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

Parameters

xdrs
Specifies the pointer to an XDR stream.

cp Specifies the pointer to the C character.

Usage

The xdr_char() call is a filter that translates between C characters and their external
representations.

Notes:

1. Encoded characters are not packed, and they occupy 4 bytes each.
2. xdr_string and xdr_text_char() are the only supported routines that convert

ASCII to EBCDIC. The xdr_char routine does not support conversion.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 247

v svc_sendreply()
v xdr_bytes()
v xdr_opaque()xdr_opaque()
v xdr_string()

xdr_destroy()
Format
#include <rpc.h>

void
xdr_destroy(xdrs)
XDR *xdrs;

Parameters

xdrs
Specifies the pointer to an XDR stream.

Usage

The xdr_destroy() call is a macro that invokes the destroy routine associated with
the XDR stream, xdrs. Destruction usually involves freeing private data structures
associated with the stream. Using xdrs after invoking xdr_destroy() is undefined.

xdr_double()
Format
#include <rpc.h>
bool_t
xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

dp Indicates the pointer to a double-precision number.

Usage

The xdr_double() call translates between C double-precision numbers and their
external representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()

248 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v svc_getargs()
v svc_sendreply()

xdr_enum()
Format
#include <rpc.h>
bool_t
xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

Parameters

xdrs
Indicates the pointer to an XDR stream.

ep Indicates the pointer to the enumerated number. enum_t can be any
enumeration type, such as enum colors, with colors declared as enum colors
(black, brown, red).

Usage

The xdr_enum() call translates between C-enumerated groups and their external
representation. When calling the procedures callrpc() and registerrpc(), a stub
procedure must be created for both the server and the client before the procedure
of the application program using xdr_enum(). This procedure should look like the
following:
#include <rpc.h>
enum colors (black, brown, red)
void
static xdr_enum_t(xdrs, ep)
XDR *xdrs;
enum colors *ep;
{

xdr_enum(xdrs, ep)
}

The xdr_enum_t procedure is used as the inproc and outproc in both the client and
server RPCs. For example:
v An RPC client would contain the following lines:

...
error = callrpc(argv[1],ENUMRCVPROG,VERSION,ENUMRCVPROC,

xdr_enum_t,&innumber,xdr_enum_t,&outnumber;);

...

v An RPC server would contain the following line:

...
registerrpc(ENUMRCVPROG,VERSION,ENUMRCVPROC,xdr_enum_t,xdr_enum_t);

...

Return codes

The value 1 indicates success; the value 0 indicates an error.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 249

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_float()
Format
#include <rpc.h>
bool_t
xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

Parameters

xdrs
Specifies the pointer to an XDR stream.

fp
Indicates the pointer to the floating-point number.

Usage

The xdr_float() call translates between C floating-point numbers and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_free()
Format
#include <rpc.h>

void
xdr_free(proc, objp)
xdrproc_t proc;
char *objp;

250 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Parameters

proc
Specifies the XDR routine.

objp
Indicates the pointer to the object being freed.

Usage

The xdr_free() call is a generic freeing routine.

Note: The pointer passed to this routine is not freed, but what it points to is freed
(recursively).

xdr_getpos()
Format
#include <rpc.h>

u_int
xdr_getpos(xdrs)
XDR *xdrs;

Parameters

xdrs
Specifies the pointer to an XDR stream.

Usage

The xdr_getpos() call is a macro that invokes the get-position routine associated
with the XDR stream, xdrs. A desirable feature of XDR streams is that simple
arithmetic works with this number, although the XDR stream instances do not
guarantee this.

Return codes

An unsigned integer, which indicates the position of the XDR byte stream.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 251

xdr_inline()
Format
#include <rpc.h>
long *
xdr_inline(xdrs, len)
XDR *xdrs;
int len;

Parameters

xdrs
Indicates the pointer to an XDR stream.

len
Specifies the byte length of the desired buffer.

Usage

The xdr_inline() call returns a pointer to a continuous piece of the XDR stream
buffer. The value is long * rather than char *, because the external data
representation of any object is always an integer multiple of 32 bits.

Note: xdr_inline() can return NULL if there is not sufficient space in the stream
buffer to satisfy the request.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_int()
Format
#include <rpc.h>
bool_t
xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

Parameters

xdrs
Indicates the pointer to an XDR stream.

ip Indicates the pointer to the integer.

252 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The xdr_int() call translates between C integers and their external representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_long()
Format
#include <rpc.h>
bool_t
xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

lp Indicates the pointer to the long integer.

Usage

The xdr_long() call translates between C long integers and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 253

xdr_opaque()
Format
#include <rpc.h>
bool_t
xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Parameters

xdrs
Indicates the pointer to an XDR stream.

cp Indicates the pointer to the opaque object.

cnt
Specifies the size of the opaque object.

Usage

The xdr_opaque() call translates between fixed-size opaque data and its external
representation.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_opaque_auth()
Format
#include <rpc.h>
bool_t
xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Parameters

xdrs
Indicates the pointer to an XDR stream.

ap Indicates the pointer to the opaque authentication information.

254 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Usage

The xdr_opaque_auth() call translates RPC message authentications.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_pmap()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
bool_t
xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Parameters

xdrs
Indicates the pointer to an XDR stream.

regs
Indicates the pointer to the portmap parameters.

Usage

The xdr_pmap() call translates an RPC procedure identification, such as is used in
calls to portmapper.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 255

v svc_sendreply()

xdr_pmaplist()
Format
#include <rpc.h>
#include <pmap_pro.h>
#include <pmap_cln.h>
bool_t
xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

rp Indicates the pointer that points to a pointer to the portmap data array.

Usage

The xdr_pmaplist() call translates a variable number of RPC procedure
identifications, such as portmapper creates.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_pointer()
Format
#include <rpc.h>
bool_t
xdr_pointer(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Parameters

xdrs
Indicates the pointer to an XDR stream.

pp Indicates the pointer that points to a pointer.

256 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

size
Specifies the size of the target.

proc
Indicates the XDR procedure that translates an individual element of the type
addressed by the pointer.

Usage

The xdr_pointer() call provides pointer-chasing within structures. This differs from
the xdr_reference() call in that it can serialize or deserialize trees correctly.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_reference()
Format
#include <rpc.h>
bool_t
xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

Parameters

xdrs
Indicates the pointer to an XDR stream.

pp Indicates the pointer that points to a pointer.

size
Specifies the size of the target.

proc
Specifies the XDR procedure that translates an individual element of the type
addressed by the pointer.

Usage

The xdr_reference() call provides pointer-chasing within structures.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 257

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_rejected_reply()
Format
#include <rpc.h>
bool_t
xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply *rr;

Parameters

xdrs
Indicates the pointer to an XDR stream.

rr Indicates the pointer to the rejected reply.

Usage

The xdr_rejected_reply() call translates rejected RPC reply messages.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

258 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xdr_replymsg()
Format
#include <rpc.h>
bool_t
xdr_replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc_msg *rmsg;

Parameters

xdrs
Indicates the pointer to an XDR stream.

rmsg
Indicates the pointer to the reply message.

Usage

The xdr_replymsg() call translates RPC reply messages.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_setpos()
Format
#include <rpc.h>

int
xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

Parameters

xdrs
Indicates the pointer to an XDR stream.

pos
Indicates the pointer to a set position routine.

Usage

The xdr_setpos() call is a macro that invokes the set position routine associated
with the XDR stream xdrs. The parameter pos is a position value obtained from
xdr_getpos().

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 259

Return codes

The value 1 indicates that the XDR stream can be repositioned; the value 0
indicates otherwise.

Note: It is difficult to reposition some types of XDR streams; therefore, this
routine might fail with one type of stream and succeed with another.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_short()
Format
#include <rpc.h>
bool_t
xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

sp Indicates the pointer to the short integer.

Usage

The xdr_short() call translates between C short integers and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

260 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xdr_string()
Format
#include <rpc.h>
bool_t
xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

Parameters

xdrs
Indicates the pointer to an XDR stream.

sp Indicates the pointer that points to a pointer to the string.

maxsize
Indicates the maximum size of the string.

Usage

The xdr_string() call translates between C strings and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_text_char()
Format
#include <rpc.h>

bool_t
xdr_text_char(xdrs, cp)
XDR *xdrs;
char *cp;

Parameters

xdrs
Specifies the pointer to an XDR stream.

cp Specifies the pointer to the C character.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 261

Usage

The xdr_text_char() call is a filter primitive that translates between C characters
and their external representations.

Notes:

1. Encoded characters are not packed, and they occupy 4 bytes each.
2. xdr_text_char() converts ASCII to EBCDIC.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()
v xdr_bytes()
v xdr_opaque()
v xdr_string()

xdr_u_char()
Format
#include <rpc.h>

bool_t
xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

ucp
Indicates the pointer to an unsigned C character.

Usage

The xdr_u_char() call is a filter primitive that translates between unsigned C
characters and their external representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

262 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_u_int()
Format
#include <rpc.h>
bool_t
xdr_u_int(xdrs, up)
XDR *xdrs;
u_int *up;

Parameters

xdrs
Indicates the pointer to an XDR stream.

up Indicates the pointer to the unsigned integer.

Usage

The xdr_u_int() call translates between C unsigned integers and their external
representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_u_long()
Format
#include <rpc.h>
bool_t
xdr_u_long(xdrs, ulp)
XDR *xdrs;
u_long *ulp;

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 263

Parameters

xdrs
Indicates the pointer to an XDR stream.

ulp
Indicates the pointer to the unsigned long integer.

Usage

The xdr_u_long() call translates between C unsigned long integers and their
external representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_u_short()
Format
#include <rpc.h>
bool_t
xdr_u_short(xdrs, usp)
XDR *xdrs;
u_short *usp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

usp
Indicates the pointer to the unsigned short integer.

Usage

The xdr_u_short() call translates between C unsigned short integers and their
external representations.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()

264 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_union()
Format
#include <rpc.h>
bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Parameters

xdrs
Indicates the pointer to an XDR stream.

dscmp
Indicates the pointer to the union discriminant. enum_t can be any
enumeration type.

unp
Indicates the pointer to the union.

choices
Indicates the pointer to an array detailing the XDR procedure to use on each
arm of the union.

dfault
Indicates the default XDR procedure to use.

Usage

The xdr_union() call translates between a discriminated C union and its external
representation.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Examples

The following is an example of this call:
#include <rpc.h>
enum colors (black, brown, red);
bool_t
xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum colors *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 265

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_vector()
Format
#include <rpc.h>
bool_t
xdr_vector(xdrs, basep, nelem, elemsize, xdr_elem)
XDR *xdrs;
char *basep;
u_int nelem;
u_int elemsize;
xdrproc_t xdr_elem;

Parameters

xdrs
Indicates the pointer to an XDR stream.

basep
Indicates the base of the array.

nelem
Indicates the element count of the array.

elemsize
Specifies the size of each of array elements, found using sizeof().

xdr_elem
Specifies the XDR routine that translates an individual array element.

Usage

The xdr_vector() call translates between a fixed-length array and its external
representation. Unlike variable-length arrays, the storage of fixed-length arrays is
static and cannot be freed.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()

266 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v svc_getargs()
v svc_sendreply()

xdr_void()
Format
#include <rpc.h>
bool_t
xdr_void()

Parameters

None.

Usage

The xdr_void call always returns 1. It may be passed to RPC routines that require
a function parameter, where no action is required. This call can be placed in the
inproc or outproc parameter of the clnt_call function when you do not need to
move data.

Return codes

Always a value of 1.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdr_wrapstring()
Format
#include <rpc.h>
bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

Parameters

xdrs
Indicates the pointer to an XDR stream.

sp Indicates the pointer that points to a pointer to the string.

Usage

The xdr_wrapstring() call is the same as calling xdr_string() with a maximum size
of MAXUNSIGNED. It is useful, because many RPC procedures implicitly invoke

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 267

two-parameter XDR routines, and xdr_string() is a three-parameter routine.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Context
v clnt_broadcast()
v clnt_call()
v clnt_freeres()
v pmap_rmtcall()
v registerrpc()
v svc_freeargs()
v svc_getargs()
v svc_sendreply()

xdrmem_create()
Format
#include <rpc.h>
void
xdrmem_create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

Parameters

xdrs
Indicates the pointer to an XDR stream.

addr
Indicates the pointer to the memory location.

size
Specifies the maximum size of addr.

op Determines the direction of the XDR stream (XDR_ENCODE, XDR_DECODE,
or XDR_FREE).

Usage

The xdrmem_create() call creates an XDR stream in memory. It initializes the XDR
stream pointed to by xdrs. Data is written to, or read from, addr.

xdrrec_create()
Format
#include <rpc.h>

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize;

268 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

u_int recvsize;
char *handle;
int (*readit) ();
int (*writeit) ();

Parameters

xdrs
Indicates the pointer to an XDR stream.

sendsize
Specifies the size of the send buffer. Specify 0 to choose the default.

recvsize
Specifies the size of the receive buffer. Specify 0 to choose the default.

handle
Specifies the first parameter passed to readit() and writeit().

readit()
Called when a stream input buffer is empty.

writeit()
Called when a stream output buffer is full.

Usage

The xdrrec_create() call creates a record-oriented stream and initializes the XDR
stream pointed to by xdrs.

Notes:

1. The caller must set the x_op field.
2. This XDR procedure implements an intermediate record string.
3. Additional bytes in the XDR stream provide record boundary information.

xdrrec_endofrecord()
Format
#include <rpc.h>
bool_t
xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

Parameters

xdrs
Indicates the pointer to an XDR stream.

sendnow
Specify nonzero to write out data in the output buffer.

Usage

The xdrrec_endofrecord() call can be invoked only on streams created by
xdrrec_create(). Data in the output buffer is marked as a complete record.

Return codes

The value 1 indicates success; the value 0 indicates an error.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 269

xdrrec_eof()
Format
#include <rpc.h>
bool_t
xdrrec_eof(xdrs)
XDR *xdrs;

Parameters

xdrs
Indicates the pointer to an XDR stream.

Usage

The xdrrec_eof() call can be invoked only on streams created by xdrrec_create().

Return codes

The value 1 indicates the current record has been consumed; the value 0 indicates
continued input on the stream.

xdrrec_skiprecord()
Format
#include <rpc.h>
bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

Parameters

xdrs
Indicates the pointer to an XDR stream.

Usage

The xdrrec_skiprecord() call can be invoked only on streams created by
xdrrec_create(). The XDR implementation is instructed to discard the remaining
data in the input buffer.

Return codes

The value 1 indicates success; the value 0 indicates an error.

xdrstdio_create()
Format
#include <rpc.h>
#include <stdio.h>
void
xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

270 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Parameters

xdrs
Indicates the pointer to an XDR stream.

file
Specifies the data set name for the input/output (I/O) stream.

op Determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE).

Usage

The xdrstdio_create() call creates an XDR stream connected to a file through
standard I/O mechanisms. It initializes the XDR stream pointed to by xdrs. Data is
written to, or read from, file.

xprt_register()
Format
#include <rpc.h>
void
xprt_register(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The xprt_register() call registers service transport handles with the RPC service
package. This routine also modifies the global variables svc_fds and svc_fdset.

Context

svc_fds

xprt_unregister()
Format
#include <rpc.h>
void
xprt_unregister(xprt)
SVCXPRT *xprt;

Parameters

xprt
Indicates the pointer to the service transport handle.

Usage

The xprt_unregister() call unregisters an RPC service transport handle. A transport
handle should be unregistered with the RPC service package before it is destroyed.
This routine also modifies the global variables svc_fds and svc_fdset.

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 271

Sample RPC programs
z/OS Communications Server provides sample RPC programs. The C source code
can be found in the SEZAINST data set.

The following are sample C source modules:

Program Description
SEZAINST(GENESEND) RPC client
SEZAINST(GENESERV) RPC server
RAWEX RAW client/server

Running RPC sample programs
This topic provides information needed to run the GENESERV, GENESEND, and
RAWEX modules.

Starting the GENESERV server
To start the GENESERV server, run GENESERV on the other MVS address space
(server).

Note: Portmapper must be running before you can run GENESERV.

Running GENESEND client
To start the GENESEND client, run GENESEND MVSX 4445 (MVSX is the name of
the host machine where the GENESERV server is running, and 4445 is the integer
to send and return).

The following output is displayed:
Value sent: 4445

Value received: 4445

Running the RAWEX module
To start RAWEX, run RAWEX 6667, (6667 is an integer chosen by you).

The following output is displayed:
Argument: 6667

Received: 6667

Sent: 6667

Result: 6667

RPC client
The following is an example of an RPC client program.

Note: The characters shown in this example might vary due to differences in
character sets. This code is included as an example only.
/* GENESEND.C */
/* Send an integer to the remote host and receive the integer back */
/* PORTMAPPER AND REMOTE SERVER MUST BE RUNNING */

/*** IBMCOPYR **/
/* */
/* Component Name: GENESEND.C */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */

272 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 */
/* */
/* Copyright IBM Corp. 1977, 2013 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* SMP/E Distribution Name: EZAEC00E */
/* */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
"GENESEND - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5647-A01 Copyright IBM Corp. 2013. "
"See IBM Copyright Instructions.";

#define MVS
#include <stdio.h>
#include <rpc.h>
#include <socket.h>

#define intrcvprog ((u_long)150000)
#define version ((u_long)1)
#define intrcvproc ((u_long)1)

main(argc, argv)
int argc;
char *argv[];

{
int innumber;
int outnumber;
int error;

if (argc != 3) {
fprintf(stderr,"usage: %s hostname integer\n", argv[0]);
exit (-1);

} /* endif */
innumber = atoi(argv[2]);
/*
* Send the integer to the server. The server should
* return the same integer.
*/
error = callrpc(argv[1],intrcvprog,version,intrcvproc,xdr_int,

(char *)&innumber,xdr_int,(char *)&outnumber);

if (error != 0) {
fprintf(stderr,"error: callrpc failed: %d \n",error);
fprintf(stderr,"intrcprog: %d version: %d intrcvproc: %d",

intrcvprog, version,intrcvproc);
exit(1);

} /* endif */

printf("value sent: %d value received: %d\n", innumber, outnumber);
exit(0);

}

RPC server
The following is an example of an RPC server program.

/* GENERIC SERVER */
/* RECEIVE AN INTEGER OR FLOAT AND RETURN THEM RESPECTIVELY */
/* PORTMAPPER MUST BE RUNNING */

/*** IBMCOPYR **/

Figure 4. RPC client program sample

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 273

/* */
/* Component Name: GENESERV.C */
/* */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5694-A01 */
/* */
/* Copyright IBM Corp. 1977, 2013 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV1R8
/* */

/* SMP/E Distribution Name: EZAEC00F */
/* */
/* */
/*** IBMCOPYR **/

static char ibmcopyr[] =
"GENESERV - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5647-A01 Copyright IBM Corp. 2013. "
"See IBM Copyright Instructions.";

#ifndef MVS
#define MVS
#endif

#include <rpc.h>
#include <stdio.h>

#define intrcvprog ((u_long)150000)
#define fltrcvprog ((u_long)150102)
#define intvers ((u_long)1)
#define intrcvproc ((u_long)1)
#define fltrcvproc ((u_long)1)
#define fltvers ((u_long)1)

main()
{

int *intrcv();
float *floatrcv();

/*REGISTER PROG, VERS AND PROC WITH THE PORTMAPPER*/

/*FIRST PROGRAM*/
registerrpc(intrcvprog,intvers,intrcvproc,intrcv,xdr_int,xdr_int);
printf("Intrcv Registration with Port Mapper completed\n");

/*OR MULTIPLE PROGRAMS*/
registerrpc(fltrcvprog,fltvers,fltrcvproc,

floatrcv,xdr_float,xdr_float);
printf("Floatrcv Registration with Port Mapper completed\n");

/*
* svc_run will handle all requests for programs registered.
*/
svc_run();
printf("Error:svc_run returned!\n");
exit(1);

}

274 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

/*
* Procedure called by the server to receive and return an integer.
*/
int *
intrcv(in)

int *in;
{

int *out;

printf("integer received: %d\n",*in);
out = in;
printf("integer being returned: %d\n",*out);
return (out);

}

/*
* Procedure called by the server to receive and return a float.
*/

float *
floatrcv(in)

float *in;
{

float *out;

printf("float received: %e\n",*in);
out=in;
printf("float being returned: %e\n",*out);
return(out);

}

RPC raw data stream
The following is an example of an RPC raw data stream program.
/*RAWEX */
/* AN EXAMPLE OF THE RAW CLIENT/SERVER USAGE */
/* PORTMAPPER MUST BE RUNNING */

static char ibmcopyr[] =
"RAWEX - Licensed Materials - Property of IBM. "
"This module is \"Restricted Materials of IBM\" "
"5647-A01 (C) Copyright IBM Corp. 1994. "
"See IBM Copyright Instructions.";

/*** IBMCOPYR **/
/* */
/* Component Name: RAWEX.C (alias EZAEC01H) */
/* */
/* Copyright: Licensed Materials - Property of IBM */
/* */
/* "Restricted Materials of IBM" */
/* */
/* 5647-A01 */
/* */
/* (C) Copyright IBM Corp. 1977, 1998 */
/* */
/* US Government Users Restricted Rights - */
/* Use, duplication or disclosure restricted by */
/* GSA ADP Schedule Contract with IBM Corp. */
/* */
/* Status: CSV2R6 */
/* */
/* */

Figure 5. RPC server program sample

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 275

/* SMP/E Distribution Name: EZAEC01H */
/* */
/* */
/*** IBMCOPYR **/

/*
* This program does not access an external interface. It provides
* a test of the raw RPC interface allowing a client and server
* program to be in the same process.
*
*/
#ifndef MVS
#define MVS
#endif
#include <rpc.h>
#include <stdio.h>

#define rawprog ((u_long)150104)
#define rawvers ((u_long)1)
#define rawproc ((u_long)1)

extern enum clnt_stat clntraw_call();
extern void raw2();

main(argc,argv)
int argc;
char *argv[];
{

SVCXPRT *transp;
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int bout,in;
register CLIENT *clnt;
enum clnt_stat cs;
int addrlen;

/*
* The only argument passed to the program is an integer to
* be transferred from the client to the server and back.
*/
if(argc!=2) {

printf("usage: %s integer\n", argv[0]);
exit(-1);

}
in = atoi(argv[1]);

/*
* Create the raw transport handle for the server.
*/
transp = svcraw_create();
if (transp == NULL) {

fprintf(stderr, "can’t create an RPC server transport\n");
exit(-1);

}

/* In case the program is already registered, deregister it */
pmap_unset(rawprog, rawvers);

/* Register the server program with PORTMAPPER */
if (!svc_register(transp,rawprog,rawvers,raw2, 0)) {

fprintf(stderr, "can’t register service\n");
exit(-1);

}
/*
* The following registers the transport handle with internal
* data structures.

276 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

*/
xprt_register(transp);

/*
* Create the client transport handle.
*/
if ((clnt = clntraw_create(rawprog, rawvers)) == NULL) {

clnt_pcreateerror("clntudp_create");
exit(-1);

}
total_timeout.tv_sec = 60;
total_timeout.tv_usec = 0;
printf("Argument: %d\n",in);

/*
* Make the call from the client to the server.
*/
cs=clnt_call(clnt,rawproc,xdr_int,

(char *)&in,xdr_int,(char *)&bout,total_timeout);

printf("Result: %d",bout);
if(cs!=0) {

clnt_perror(clnt,"Client call failed");
exit(1);

}
exit(0);

}

/*
* Service procedure called by the server when it receives the client
* request.
*/
void raw2(rqstp,transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
int in,out;
if (rqstp->rq_proc=rawproc) {

/*
* Unpack the integer passed by the client.
*/
svc_getargs(transp,xdr_int,&in);
printf("Received: %d\n",in);
/*
* Send the integer back to the client.
*/
out=in;
printf("Sent: %d\n",out);
if (!svc_sendreply(transp, xdr_int,&out)) {

printf("Can’t reply to RPC call.\n");
exit(1);

}
}

}

Figure 6. RPC raw data stream program sample

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 277

RPCGEN sample programs
This topic provides information about sample RPCGEN programs. The C source
code can be found in the SEZAINST data set.

The following are sample C source files:

File Description
RG RPCGEN user-generated input
RGUC RPCGEN user-generated client
RGUS RPCGEN user-generated server

Generating your own sequential data sets
This topic describes the steps of generating your own sequential data sets.

Procedure

The following steps describe how to generate your own sequential data sets:
1. Run RPCGEN RG from the TSO command line.

The following sequential data sets are generated in your user space:
v user_id.RG.H
v user_id.RGC.C
v user_id.RGS.C
v user_id.RGX.C

2. Verify that the sample C source code modules RGUC and RGUS contain the
#include statements found in user_id.RGX.C.

3. Verify that user_id.RG.H is referenced by the compilation procedure.

Building client and server executable modules
This topic describes the steps of building client and server executable modules.

Procedure

Complete the following steps to build client and server executable modules:
1. Compile the RGUS C source program.
2. Compile the RGUC C source program.
3. Compile the RGS.C C source program generated by RPCGEN.
4. Compile the RGC.C C source program generated by RPCGEN.
5. Link-edit the sample source modules RGS and RGUS.
6. Link-edit the sample source modules RGUC and RGC.

Running RPCGEN sample programs
This topic provides information needed to run the sample programs in RPCGEN.

Procedure
1. Execute RGS on the other MVS address space (server).

No message is displayed.
2. Execute RGUC MVSX 6504 (MVSX is the host machine where the RGS server is

running, and 6504 is the integer chosen by you).

278 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

After executing the RGUC client, the following message is displayed:
Output on the server session: 6504

Chapter 8. Remote procedure calls in the z/OS Communications Server environment 279

280 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 9. Remote procedure calls in the z/OS UNIX System
Services environment

The z/OS UNIX files used by z/OS UNIX System Services RPC and their location
in the z/OS UNIX file system are as follows:
v /usr/include/rpc: All header files are contained here.
v /usr/lib/librpclib.a: RPC archive files.
v orpcgen: ONC RPC protocol compiler.
v orpcinfo: Utility program for looking at portmaps of networked machines.
v oportmap: Network service program that maps ONC RPC program and version

numbers to transport-specific port numbers.

Deviations from Sun RPC 4.0
z/OS UNIX System Services RPC deviates from Sun RPC 4.0 in the following
ways:
v The source was modified to fit into 72 columns.
v xdr_enum()

In z/OS UNIX System Services rpc xdr_enum() is a macro. This is a change
identical to the changes in TCP/IP Version 2 for MVS and VM, and Version 3.1
for MVS. It is necessary because enumerations in C/370 may have a length of 1,
2, or 4 bytes. The enum_t is not defined and xdr_enum() is replaced first by a
call to _xdr_enum() that returns the entry to the appropriate XDR routine
(xdr_char(), xdr_short(), or xdr_long()), which is then followed by a call to that
routine. The xdr_union() is also modified into a macro, which separates the call
for the discriminant from the remainder. The discriminant is processed as an
enumeration, and then passed as a value to _xdr_union() to process the
remaining union.

v xdr_string()

As with previous 370 versions of TCP/IP, xdr_string() translates from EBCDIC
to ASCII or reverse. With z/OS UNIX System Services the iconv() call is used,
and data is translated directly into or out of the XDR buffers if sufficient buffers
are available as indicated by an xdr_inline() call. With previous versions (or with
z/OS UNIX System Services if the entire string will not fit into the buffer) it is
necessary to allocate an additional buffer. While encoding, if the length of the
data changes in the translation, xdr_setpos() is used to adjust the XDR buffer to
reflect the actual amount of translated data. realloc() is used while decoding or
for the temporary buffer, which may be necessary while encoding.
The default translation is between ISO8859-1 and IBM-1047. This can be
modified by iconv_open() calls during initialization, by specifying the external
iconv_t variables xdr_hton_cd and xdr_ntoh_cd.

v xdr_float(), xdr_double()

The format for S/370 floating point data differs from the IEEE format specified
for XDR. The xdr_float() and xdr_double() routines are modified to make the
necessary conversions. For z/OS UNIX System Services, these routines utilize
the C/370 library routines frexp() and ldexp() to extract and restore the exponent
from the floating point number, rather than private subroutines.

© Copyright IBM Corp. 2000, 2015 281

Using z/OS UNIX System Services RPC

Requirement: The _ALL_SOURCE feature test macro is required to compile
applications that use z/OS UNIX System Services RPC function. The source code
can use #define _ALL_SOURCE or the _ALL_SOURCE macro can be passed as a
compiler option.

For RPC, a Sun ONC sample program is provided in /usr/lpp/tcpip/rpc/samples.
To run the sample, you can run the Makefile facility in the rpc samples directory.
Running make produces three executable files.
v printmsg

The printmsg text command prints the message (text) on the local console. It
can be displayed by viewing the system log.

v msg_svc
msg_svc is an RPC server that enables the user at a remote station to put a
message on the console of the server. The msg_svc & command starts this server.

v rprintmsg
The rprintmsg rhost text command prints a message (text) on the console of
host rhost.

Note: The _C89_LIBDIRS environmental variable must be set (for example,
export_C89_LIBDIRS=/usr/lpp/tcpip/lib) before the make is executed.
A sample makefile is provided: /usr/lpp/tcpip/rpc/samples/Makefile. To run
make, use make -f /usr/lpp/tcpip/rpc/samples/Makefile from a writable
directory.
New cache call function for RPC
svcudp_enablecache(transp, size)
SVCXPRT *transp;
u_long size;

where:
– svcudp_enablecache enables the caching of replies to remote calls using UDP.

When a request due to a retry is received, and there is a reply to an earlier
attempt in the cache, the cached reply is immediately returned to the client
without calling the remote procedure.

– transp is the UDP service transport for which caching is to be enabled.
– size is the number of entries to be provided in the cache.

When issuing RPCGEN for a specification file that contains a %#, the following
compiler error message may be displayed: ERROR EDC0401 abc.x:n The
character is not valid, where abc.x is the name of the file and n is the line
number containing a %#. This combination of characters is not accepted by the
compiler.

Support for 64-bit integers
Four XDR functions support 64-bit integers in the z/OS UNIX System Services
RPC API.

The function xdr_hyper() is equivalent to xdr_longlong_t(). The function
xdr_u_hyper() is equivalent to xdr_u_longlong_t.

282 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

XDR Function Description
xdr_hyper() Translates between C long longs and their external

representatives.
xdr_u_hyper() Translates between C unsigned long longs and their external

representatives.
xdr_longlong_t() Translates between C long longs and their external

representatives.
xdr_u_longlong_t() Translates between C unsigned long longs and their external

representatives.

UDP transport protocol CLIENT handles
The function of clntudp_bufcreate() is similar to clnttcp_create() but creates UDP
transport protocol CLIENT handles. The wait time for retries and timeouts is
specified for the UDP transport. The total time allowed for RPC completion can be
specified by clnt_call(). Buffer sizes may be specified or defaulted. The same
potential for version number mismatch exists. Success returns the CLIENT handle,
failure NULL.
CLIENT *
clntudp_bufcreate(addr, prognum, versnum, wait, sockp,sendsz,recvsz)

struct sockaddr_in *addr;
u_long prognum, versnum;
struct temeval wait;
int *sockp;
u_int sendsz;
u_int recvsz;

RPC restrictions
RPC does not support the Binary Floating Point Facility. If you install the BFP
processor, you must compile your RPC applications to preclude use of the BFP
hardware. You can do this by specifying compiler option ARCH(0), (the default
setting).

Chapter 9. Remote procedure calls in the z/OS UNIX System Services environment 283

284 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 10. Network Computing System

The Network Computing System (NCS) is a set of tools for heterogeneous
distributed computing. These tools conform to the Network Computing
Architecture. This topic introduces the Network Computing Architecture and NCS.

To use the NCS system calls, you must know C language programming. For more
information about NCS, see NCS for IBM AIX/ESA® Planning and Administration
Guide and NCS for IBM AIX/ESA Programming Reference.

NCS and the Network Computing Architecture
NCS is an implementation of the Network Computing Architecture, an architecture
for distributing software applications across heterogeneous collections of
computers, networks, and programming environments. Programs based on NCS
can take advantage of computing resources throughout a network or internet, with
different parts of each program executing on the computers best suited for the
tasks.

The Network Computing Architecture supports distributed programs of many
kinds. For example, one program might perform graphical input and output on a
workstation while it does intense computation on a supercomputer. Another
program might perform many independent calculations on a large set of data; it
might distribute these calculations among any number of available processors on
the network or internet.

NCS components
The components of NCS are written in portable C wherever possible. They are
available in source code and in several binary formats. Currently, the NCS
components are:
v Remote procedure call (RPC) runtime library
v Location Broker
v Network Interface Definition Language (NIDL) compiler

The RPC runtime library and the Location Broker provide runtime support for
network computing. These two components, along with various utilities and files,
make up the Network Computing Kernel (NCK), which contains all the software
you need to run a distributed application.

The Network Interface Definition Language (NIDL) compiler is a tool for
developing distributed applications.

Remote procedure call runtime library
The RPC runtime library is the backbone of the Network Computing System. It
provides the calls that enable local programs to execute procedures on remote
hosts. These calls transfer requests and responses between clients (the programs
calling the procedures) and servers (the programs executing the procedures).

© Copyright IBM Corp. 2000, 2015 285

When you write NCS applications, you usually do not use many RPC runtime
library calls directly. Instead, you write interface definitions in NIDL and use the
NIDL compiler to generate most of the required calls to the runtime library.

Location broker
A broker is a server that provides information about resources. The location broker
enables clients to locate specific objects (for example, databases) or specific
interfaces (for example, data retrieval interfaces). Location broker software includes
the global location broker (GLB), the local location broker (LLB), a client agent
through which programs use GLB and LLB services, and administrative tools.

The GLB stores in a database the locations of objects and interfaces throughout a
network or internet; clients can use the GLB to access an object or interface without
knowing its location beforehand. The LLB stores in a local database similar
information about resources on the local host; it also implements a forwarding
facility that provides access by means of a single address to all of the objects and
interfaces at the host.

Network interface definition language compiler
The NIDL compiler takes as input an interface definition written in NIDL. From
this definition, the compiler generates source code in portable C for client and
server stub modules. An interface definition specifies the interface between a user
of a service and the provider of the service; it defines how a client sees a remote
service and how a server sees requests for its service.

The stubs produced by the NIDL compiler contain nearly all of the remoteness in a
distributed application. They perform data conversions, assemble and disassemble
packets, and interact with the RPC run-time library. It's much easier to write an
interface definition in NIDL than it would be to write the stub code that the NIDL
compiler generates from your definition.

MVS implementation of NCS
The following list indicates the NCS components that are available in MVS or
z/OS UNIX.
v Network Interface Definition Language (NIDL) compiler 1.0
v Network Computing Kernel (NCK) 1.1

The IBM MVS implementation of NCS differs from the Apollo Computer, Inc.
implementation of NCS. The following list summarizes the differences between the
two implementations:
v The IBM MVS implementation of NCS contains support for the Non-Replicated

Global Location Broker daemon (nrglbd). It does not contain support for the
Global Location Broker daemon (glbd), which can be replicated on multiple
hosts in the network.

v The IBM MVS implementation of NCS does not contain support for the Data
Replication Manager Administrative Tool (drm_admin). This tool works only
with the replicated version of the Global Location Broker, which is not
supported in MVS NCS.

v The IBM MVS implementation of NCS does not support multitasking. It does
not support forking or creating a task either. It does not support Apollo’s
Concurrent Programming Support (CPS).

v The IBM MVS implementation of NCS supports AF_INET only.

286 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v In NCS, the receiving machine (client or server) translates EBCDIC characters to
ASCII and ASCII characters to EBCDIC. The IBM MVS implementation of NCS
translates correctly, but the Apollo NCS Version 1.0 code has the following
problems:
– The EBCDIC Null character 0x00 is incorrectly translated to the ASCII

character 0x02. It should be translated to the ASCII character 0x00.
– The EBCDIC Delete character 0x07 is incorrectly translated to the ASCII

character 0x10.
– The EBCDIC Line Feed character 0x25 is incorrectly translated to the ASCII

character 0x3f.

These are the three significant errors in the EBCDIC to ASCII translation table
that is part of NCS Version 1.0. EBCDIC to ASCII translation works correctly
only if you do not use the previous characters or if the EBCDIC to ASCII
translation table has already been fixed in the NCS program on the receiving
side.

v NCS Version 1.0 does not correctly translate between IBM floating point and
IEEE floating point. This includes both the translation from IEEE to IBM floating
point and IBM to IEEE floating point. As with EBCDIC to ASCII translations, the
receiver of the data performs the floating point conversion. Servers and clients
can both act as receivers of data. Therefore, NCS programs on both sides need to
contain correct support of IBM floating point if you pass floating point data to
or from a system that uses IBM floating point.

v Apollo NCS Version 1.0 supports two enum data types: the short enum, which
NCS assumes occupies 2 bytes in storage; and the regular enum, which occupies
4 bytes. The IBM C/370 compiler dynamically determines the size required for
an enum variable as 1 byte, 2 bytes, or 4 bytes.
The NCS short enum data type works correctly on MVS, but the NCS regular
enum data type does not. If for some reason you cannot use the short enum data
type on MVS and must use the regular enum data type, then you must force the
C/370 compiler to allocate 4 bytes for all enum variables.
If your Interface Definition Language (IDL) contains enum typedefs as input to
the NIDL compiler, for example

typedef enum {low, medium, high} word;
typedef enum {red, green, blue} colors;

then you must modify the header data set that gets generated by the NIDL
compiler. If the header data set is to be used on MVS with the C/370 compiler,
you must force the compiler to use fullword enumeration types:
/* you should add the following define to the header data set */
#define INT_MAX (0x7fffffff)

/* you need to modify the declares for the enum data type to */
/* force the compiler to use 4 bytes (word) for regular enum. */
enum word {low, medium, high, word_expand_to_fullword = INT_MAX};
enum colors {red, green, blue, colors_expand_to_fullword = INT_MAX};

If you do not force the compiler to use fullword enumeration types, the compiler
assigns either 1 byte or 2 bytes to your enum variables and the enum variables
are not transmitted correctly using NCS.

Note: MVS NCS does not support C language pragma statements.

Chapter 10. Network Computing System 287

NCS system IDL data sets
The NCS System Interface Definition Language (IDL) data sets consist of several
interface definition data sets that are distributed with NCS. These data sets define
types and constants, or local or remote interfaces. Some of these data sets can be
imported by your own IDL data set. The import declaration is an NIDL statement
similar to the C #include directive, which causes other IDL data sets to be included
by the NIDL compiler. You do not need to run NIDL against the data sets to be
imported.
v base.idl

v conv.idl

v glb.idl

v lb.idl

v llb.idl

v nbase.idl

v rpc.idl

v rrpc.idl

v socket.idl

v uuid.idl

For more information on IDL files, see NCS for IBM AIX/ESA Planning and
Administration Guide.

NCS C header data sets and the Pascal include data set
The following is a list of the C header data sets that you might need to include in
your C source programs to use NCS. These data sets can also be included by the
NIDL-generated stub code. These data sets are located in SEZACMAC and must be
copied to your user ID.

The following is a list of the headers used by NCS:

base.h
conv.h
glb.h
bsdtocms.h
idl@base.h
lb.h
llb.h
nbase.h

ncsdefs.h
ncssock.h
pfm.h
rpc.h
rrpc.h
socket.h
uuid.h

IDL@BASE.COPY is the name of the Pascal include data set. This data set should
be included in your client or server source code if it is written in Pascal.

NCS RPC run-time library
On MVS, all of the routines that make up the NCS RPC run-time library are stored
in the SEZALIBN data set. This library must be specified on the SYSLIB DD
statement of your link-edit job step.

288 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

NCS portability issues
There are several NCS-based portability issues of which you need to be aware.

NCS defines NCSDEFS.H
The linkage editor and loader on MVS restrict the number of characters in an
external name to eight characters or less. This means that if you are porting an
existing non-MVS program, and it contains external references that are longer than
eight characters, you need to redefine these references into unique, eight-character
names. If you are writing new code on MVS and you create external references
that are longer than eight characters, you also have to redefine these references
into unique eight-character names.

A data set called NCSDEFS.H, contains the redefines of all the external references
greater than eight characters in length that are part of the NCS RPC run-time
library. This data set needs to be included in all of your code that uses NCS.

Figure 7 shows the lines of code that should be included in each NCS-based
routine to maintain portability of your code.

To compile the code on MVS, define IBM370 to the compiler by using the
compilation option DEFINE(IBM370). By isolating MVS-dependent sections of code,
you can maintain code portability.

Required user-defined USERDEFS.H
The NIDL compiler generates stub code. For this stub code to compile correctly on
MVS, the external references greater than eight characters must be redefined to
eight characters or less. The data set USERDEFS.H contains a template for the
information that needs to be redefined.

The following are considerations when using the USERDEFS.H data set.
v The data set should be copied to your user ID and be renamed to something

appropriate for your NCS-based code (for example, user_id.USERDEFS.H).
This data set is a good place to put any code-specific external names longer than
eight characters that need to be redefined.

v The data set must always contain the redefines for the server and client entry
point vector (epv). See the example USERDEFS.H data set shown in this topic
for more information about USERDEFS.H.

v The data set should be included in all your NCS-based source code
v The data set must be included by the NIDL-generated stubs and switches.

To have NIDL automatically add this include, use the NIDL run-time option
-inc.

Figure 8 on page 290 shows the H data set in the stub and switch code. You should
also follow this method for including the USERDEFS.H data set (or whatever you
renamed it) in your NCS-based code.

#ifdef IBM370
include “ncsdefs.h” /* NCS redefines for IBM 370.*/
#endif

Figure 7. Macro to maintain IBM System/370 portability

Chapter 10. Network Computing System 289

The following provides an example of the USERDEFS.H data set:
/***
* Template for User Redefines
* On IBM MVS or MVS operating systems external references longer
* than 8 characters must be redefined to 8 characters
* or less. This data set must be included in your Client or Server
* code, and you must provide the nidl compiler with the name of
* this data set when nidl is invoked so that the stub code can also
* include it.
***/
#define IDL_interface_name _server_epv xxxSEpv
#define IDL_interface_name: _client_epv xxxCEpv

The following is a description of the elements shown in the preceding example.

Element
Description

IDL_interface_name
The interface name coded in your IDL data set. You must replace
IDL_interface_name with this name.

xxx A unique three-character sequence, starting with a letter, that makes this
redefine name unique throughout your NCS-based programs. For example,
the xxx can be replaced with the first 3 characters of the
IDL_interface_name.

See “NIDL compiler options” on page 292 for a description of NIDL run-time
options.

NCS: Preprocessing, compiling, and linking
The following topics provide information about how to compile and link-edit your
program:
v NCS Preprocessor Programs
v Compiling and Linking NCS Programs

NCS preprocessor programs
The NIDL compiler translates an NIDL interface definition into the NCS client and
server stub modules. Before the C/C++ for z/OS compiler can be run on
NCS-based code, any $ (such as those in the NCS RPC run-time library routines)
must be converted to an underscore (_). You can use CPP to do this conversion.
For more information about CPP, see “Converting C identifiers using the CPP
program” on page 293.

NIDL compiler
The Network Interface Definition Language (NIDL) compiler is a member of
SEZALOAD. MVS data sets written in NIDL must have the form user_id.name.IDL.
The NIDL compiler generates a server stub data set, a client stub data set, a client
switch data set, and a header data set.

#ifdef IBM370
include “ncsdefs.h”
include “userdefs.h”
#endif

Figure 8. NCSDEFS.H and USERDEFS.H include statements

290 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

For more information about NIDL, see NCS for IBM AIX/ESA Planning and
Administration Guide.

A command list (CLIST) called RUNNIDL is provided to assist you in invoking the
NIDL compiler. RUNNIDL is a member of SEZAINST. The NIDL options specified
in RUNNIDL CLIST are set to the most frequently used NIDL run-time options. If
you do not want to run with these NIDL options, you can invoke the NIDL
compiler directly.

The NIDL compiler does not support IDL include files that are members of a
partitioned data set.

Any NCS system IDL files that are imported by your IDL data set must be copied
from SEZAINST to your user ID. The following are the members of SEZAINST
that you might need to copy.

Member
Data set name

basei user_id.base.idl

convi user_id.conv.idl

glbi user_id.glb.idl

lbi user_id.lb.idl

llbi user_id.llb.idl

nbasei user_id.nbase.idl

rpci user_id.rpc.idl

rrpci user_id.rrpc.idl

socketi
user_id.socket.idl

uuidi user_id.uuid.idl

Use the RUNNIDL CLIST command in the following format:

�� RUNNIDL IDL_d_s_n IDL
C

inc (d_s_n) pascal

��

Parameter
Description

IDL_d_s_n
Specifies the data set name of the NIDL data set.

IDL Specifies the data set type of the NIDL data set. The data set type must be
IDL.

inc (d_s_n)
Specifies the data set name of a header data set that contains redefines
specific to your programs and stubs. The NIDL compiler generates code to
include the user-specified-include data set name in the stub data set and
switch code that it generates. The data set name defaults to the
USERDEFS.H data set.

Chapter 10. Network Computing System 291

pascal Specifies that the NIDL compiler generates a Pascal language include data
set as output. The server stub data set, client stub data set, client switch
data set, and header data sets are generated in C language.

The following example invokes the NIDL compiler using the BANK.IDL data set as
input. The header data set containing the redefines for BANK is in the data set
BANKDEFS.H.
RUNNIDL BANK IDL inc (bankdefs)

NIDL compiler limitations:
You should be aware of the following limitations concerning the NIDL compiler
options on MVS.
v -no_cpp

You cannot invoke the NCS CPP routine from within the NIDL compiler. If you
invoke NIDL directly, you must specify the -no_cpp option.

v -ext
The extension option is used to generate unique data set names for the NIDL
output. The defaults for -ext on MVS are @C.C@CSTUB, @S.C@SSTUB, and
@W.C@CSWTCH. The extension is appended to the data set name of the IDL
data set to generate a unique data set name for the two stubs and the switch.
For example, the IDL data set name and default extension for a client switch are
appended in the following format:
IDL_data_set_name@W.C@CSWTCH

Note: This default restricts the IDL data set name to 6 characters or less.

The following is a list of data set names and default low-level qualifiers for the
NIDL generated output:

Data set name Low-level qualifier Description
IDL_data_set_name@C C@CSTUB Client stub
IDL_data_set_name@W C@CSWTCH Client switch
IDL_data_set_name@S C@SSTUB Server stub
IDL_data_set_name H C header data set
IDL_data_set_name COPY Pascal header data set (if the

pascal option is used).

You can change this default by invoking NIDL directly and specifying your own
-ext option. If you specify your own -ext option, the name of your data set is
restricted to a maximum of 8 characters, and the extension is restricted to a
maximum of 8 characters.

NIDL compiler options:
The linkage editor and loader on MVS restricts the number of characters in an
external name to 8 characters or less. For the code generated by the NIDL compiler
to compile correctly on MVS, the external references greater than 8 characters need
to be redefined to 8 characters or less. The data set USERDEFS.H contains a
template for the information to be redefined.

Using the -inc option, you can specify the data set name of a header data set that
contains redefines specific to your programs and stubs. If the -inc option is
specified, the NIDL compiler generates code to #include the user-specified -inc
data set name in the stub and switch code that it generates.

292 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

For example, the BANK sample program has a BANKDEFS.H data set, where all
of the BANK external names greater than 8 characters are redefined. When the
NIDL compiler is run against the BANK.IDL data set, if you specified -inc
bankdefs, the #include for this data set is automatically generated in the two stubs
and switch programs. The following is an example of the code:
#ifdef IBM370
include "ncsdefs.h"
include "bankdefs.h"
#endif

Converting C identifiers using the CPP program
All of the NCS RPC run-time library routines and most of the NCS constants and
data types contain a $ character. For example, the routine you call to register your
server with RPC run-time is rpc_$register. The routine you call to register your
server with the location broker is lb_$register.

IBM C/370, based on ANSI standards, does not allow a $ to be used as a correct
character in a C identifier. The IBM C/370 preprocessor does not allow you to
redefine a $ to another character. NCS provides a routine called CPP for systems
that do not allow a $ in C identifiers. The NCS CPP program reads a C source data
set, expands macros and include data sets, and writes an input for the C compiler.
The most important function that the CPP program performs for MVS NCS users
is that it converts every $ to an underscore (_) when it occurs in a C identifier.

Before any of your code or the stub code can be compiled, all occurrences of a $ in
a C identifier must be converted to an underscore (_). NCS uses CPP to do this.

Note: Because CPP does not contain all the functions of the C/370 preprocessor,
there can be times when you need to modify your code to make it acceptable to
CPP, even though C/370 might have accepted it.

A CLIST called RUNCPP is provided to assist you in invoking the CPP program.
You can use this CLIST, or invoke CPP directly. RUNCPP is a member of
SEZAINST.

Use the RUNCPP CLIST command in the following format:

�� RUNCPP data_set_name data_set_type ��

Parameter
Description

data_set_name
Specifies the name of the data set used as input to NCS CPP.

data_set_type
Specifies the data set type.

To run CPP with the data set BANK.C@CSTUB as input, enter the following:
RUNCPP BANK C@CSTUB

The RUNCPP CLIST has the most frequently used CPP run-time options hard
coded into it. IBM recommends using RUNCPP, but if you must use options that
are not specified with RUNCPP, invoke CPP directly.

For portability reasons, you should leave the $ in all the RPC run-time routines,
constants, and data types. CPP should be run against your code after you run

Chapter 10. Network Computing System 293

NIDL. In this way, the client stub and switch or server stub can be moved to a
system that supports the $. For portability to other systems, you should always
maintain the version of your code that contains the $.

For programs that are not run on any system other than IBM MVS, you can
permanently change $ to (_), so that you do not have to use CPP. Then, only the
client stub and switch or the server stub has to be run through the CPP routine. In
some cases, this is the preferred solution, especially if you need the full function of
the C/C++ for z/OS preprocessor and compiler and CPP does not include this
support. For example, many AD/Cycle C/370 header files contain preprocessor
directives that CPP does not understand. If you are including AD/Cycle C/370
header files in your application, you should manually change $ to underscore (_)
in your application and any included header files so that you do not have to run
CPP.

CPP does not support C include files that are members of a partitioned data set.
Any NCS C header files that are included by your data set must be copied to your
user ID. The following are the members of SEZACMAC that you might need to
copy:

Member
Data set name

ncssock1
user_id.socket.h

ncsrpc user_id.rpc.h

base user_id.base.h

conv user_id.conv.h

glb user_id.glb.h

bsdtocms
user_id.bsdtocms.h

idl@base
user_id.idl@base.h

lb user_id.lb.h

llb user_id.llb.h

nbase user_id.nbase.h

ncsdefs
user_id.ncfdefs.h

ncssock
user_id.ncssock.h

pfm user_id.pfm.h

rrpc user_id.rrpc.h

uuid user_id.uuid.h

Any C/370 standard header files that are included by your data set must be copied
from the C/370 product header partitioned data set (SEZACMAC).

294 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Compiling and linking NCS programs
This topic describes the steps of creating, building, and executing an NCS
application.

Procedure

Following are the steps needed to create, build, and execute an NCS application:
1. Set up.

Copy RUNNIDL and RUNCPP from SEZAINST to one of your
system-supported CLIST libraries.

2. Write the IDL description of the client and server applications.
Write your NIDL interface program and client or server code, and your
userdefs-type header file that redefines your long names.

3. Run NIDL.
v Copy any imported NCS IDL files from SEZAINST to your user ID.
v Run the NIDL compiler using your IDL data set as input.

RUNNIDL middle_qualifier IDL INC(userdefs)

If your data set is user_id.SAMPLE.IDL and your header file is
user_id.USERDEFS.H, the command to run is:

RUNNIDL SAMPLE IDL INC(userdefs)

4. Convert $ to _.
You can convert any identifiers containing a $ either using CPP or manually.
v Run CPP

– Copy any included header files from the partitioned data set where they
are to your user ID.

– Run CPP against all of your code, the client stub and switch, and the
server stub.

RUNCPP middle_qualifier low_level_qualifier

If your data set is user_id.SAMPLE.C, run the following command:
RUNCPP SAMPLE C

v Manually convert $ to underscore (_):
– Use an editor to convert all occurrences of $ to _ in all of your code, the

client stub and switch, and the server stub.
– Copy to a partitioned data set any C header files that contain a $ and that

are included by your code, the client stub or switch, or the server stub.
Edit the C header files in the partitioned data set to convert all
occurrences of $ to _. During compilation, this partitioned data set must
be specified on the SYSLIB statement ahead of SEZACMAC.

5. Compile and Link.
You can use several methods to compile, link-edit, and execute your C/C++ for
z/OS source program in MVS. This topic contains information about the
additional data sets that you must include to run the C data sets generated by
RUNCPP under MVS batch, using IBM-supplied cataloged procedures.
The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name
Contents

Chapter 10. Network Computing System 295

user_id.SAMPLE.CPPOUT
Sequential data set that contains the C program generated by RUNCPP.

user_id.OBJ
A partitioned data set that contains the compiled versions of C
programs as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD
A partitioned data set that contains the link-edited versions of C
programs as its members.

user_id.HDRS
A partitioned data set that contains C header files as its members.

NCS: Sample compilation cataloged procedure additions
Include the following in the compilation step of your cataloged procedure.
Cataloged procedures are included in the IBM-supplied samples for your z/OS
system.

Add the following to the CPARM parameter:
CPARM='DEF(IBM390)'

Add the following statement as the first //SYSLIB DD statement.
//SYSLIB DD DSN=SEZACMAC,DISP=SHR

Note: If you do not run CPP and your C source file includes either socket.h or
rpc.h, you must copy the NCS versions of these files (ncssock1 and ncsrpc) from
SEZACMAC to user_id.HDRS and rename them to socket and rpc. user_id.HDRS
must then be specified on the SYSLIB statement ahead of SEZACMAC.

//SYSLIB DD DSN=user_id.HDRS,DISP=SHR
DD DSN=SEZACMAC,DISP=SHR

NCS: Sample link-edit cataloged procedure additions
Include the following in the link-edit step of your cataloged procedure.
v Add the following statements as the first //SYSLIB DD statement:

// DD DSN=SEZALIBN,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

v Add the following // USERLIB DD statement:
//USERLIB DD DSN=user_id.OBJ,DISP=SHR

All entry points are not defined as external references in SEZALIBN. You must
include the following when you link-edit your application code.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

v Create a member SAMPLE of partitioned data set user_id.LOADLIST and add
the necessary objects to link to SAMPLE.
For example, to create SAMPLE load module with three objects (SAMPLE,
SAMPLE@C, SAMPLE@W), the corresponding contents of SAMPLE in
user_id.LOADLIST would be:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

296 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

INCLUDE USERLIB(SAMPLE)
INCLUDE USERLIB(SAMPLE@C)
INCLUDE USERLIB(SAMPLE@W)
MODE AMODE(31)
ENTRY CEESTART

Note: For more information about compiling and linking, see z/OS XL C/C++
User's Guide.

Running UUID@GEN
The NCS program UUID@GEN generates universal unique identifiers. The
UUID@GEN data set is a member of SEZALOAD.

For more information about using UUID@GEN, see NCS for IBM AIX/ESA Planning
and Administration Guide.

Use the following format to invoke the UUID@GEN.

�� UUID@GEN ��

NCS sample programs
The source code for the following NCS sample programs is included in SEZAINST:
v BANK
v NCSSMP
v BINOP

See “Compiling and linking NCS programs” on page 295 for step-by-step
instructions on compiling, link-editing, and running the sample programs. For
specific instructions on building and running each sample, see “Compiling, linking,
and running the sample BINOP program” on page 298, “Compiling, linking, and
running the NCSSMP program” on page 303, and “Compiling, linking, and
running the sample BANK program” on page 307.

Implement the BINOP sample program on your system, then run either the
NCSSMP program or BANK. BINOP uses a well-known port rather than the NCS
location broker. The BINOP sample program can help verify NCS on your system.

When running the NIDL compiler against any of the sample program IDL data
sets, ensure that you specify the include data set. For example, to run NIDL
against the BANK.IDL data set, enter the following:
RUNNIDL BANK IDL inc (bankdefs)

The NCSSMP sample program
The following sample is an example of an NCS sample program. It includes the
following program segments:
v NCS redefines for this sample program
v Instructions to compile and run the sample program on MVS

The source code for the following program segments are included in SEZAINST:
v NCSSERV1 (NCS server)

Chapter 10. Network Computing System 297

v NCSCLNT1 (NCS client)
v NCSSMPI (NCS NIDL interface)

NCS sample redefines
The following is an example of a redefine data set that is needed if this NCS
sample program is to run on MVS:
/***
* Redefines for NCS Sample Program *
* On IBM VM or MVS operating systems external references longer *
* than 8 characters must be redefined to 8 characters or less. *
* This file must be included in the Sample Programs and stubs. *
**/

#define binop_server_epv binSEpv
#define binop_client_epv binCEpv
#define binop_add binAdd
#define getNCShandle binGtHnd

Compiling, linking, and running the sample BINOP program
The NCS sample program BINOP consists of the following data sets, which are
members of SEZAINST:

Sample data set
Description

BINOPR
Describes how to run the BINOP sample program.

BINOPSC
Contains C source code for the BINOP server program.

BINOPCC
Contains C source code for the BINOP client program.

BINOP
Contains C source code for the BINOP remote subroutine.

BINOPI
Contains the interface definition language data set for BINOP sample
programs used as input to the NIDL compiler.

BINDEFS
Indicates the header data set containing the redefines of external
references, greater than 8 characters in length, used in the BINOP sample
programs.

The following topics describe steps required to run the sample BINOP program
successfully.
v “Setting up the sample BINOP program” on page 299
v “Compiling the sample BINOP program” on page 300
v “Linking the sample BINOP program” on page 301
v “Running the sample BINOP program” on page 302

Note: If you have a problem with any of these steps, you must resolve them
before you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS CS has been installed and is operational on your system.

298 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Setting up the sample BINOP program
This topic describes the prerequisites of using the sample BINOP program.

Before you begin

You need to know how to access data sets and copy files.

Procedure

Perform the following steps as prerequisites to compiling, linking, and running the
sample BINOP program.
1. Copy the sample data sets from SEZAINST to your user ID.

From location To location

SEZAINST(BINOP) user_id.binop.c

SEZAINST(BINOPCC) user_id.binopc.c

SEZAINST(BINOPSC) user_id.binops.c

SEZAINST(BINDEFS) user_id.bindefs.h

SEZAINST(BINOPI) user_id.binop.idl

2. Copy the imported data sets from SEZAINST to your user ID.

From location To location

SEZAINST(BASEI) user_id.base.idl

SEZAINST(NBASEI) user_id.nbase.idl

SEZAINST(RPCI) user_id.rpc.idl

3. To generate stubs, run NIDL using the following command:
RUNNIDL BINOP IDL INC(BINDEFS)

4. Copy the included C header files to your user ID.

From location To location

SEZACMAC(BASE) user_id.base.h

SEZACMAC(NBASE) user_id.nbase.h

SEZACMAC(NCSDEFS) user_id.ncsdefs.h

SEZACMAC(TYPES) user_id.types.h

SEZACMAC(BSDTIME) user_id.bsdtime.h

SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

SEZACMAC(BSDTYPES) user_id.bsdtypes.h

SEZACMAC(IDL@BASE) user_id.idl@base.h

SEZACMAC(PFM) user_id.pfm.h

SEZACMAC(NCSRPC) user_id.rpc.h

'C' library user_id.setjmp.h

'C' library user_id.stdio.h

'C' library user_id.time.h

Chapter 10. Network Computing System 299

Note: C library header files depend on the compiler you are using. For
example:
v C370 2.2
v AD/Cycle C/370

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP BINOPS C
RUNCPP BINOPC C
RUNCPP BINOP@S C@SSTUB
RUNCPP BINOP@C C@CSTUB
RUNCPP BINOP@W C@CSWTCH
RUNCPP BINOP C

Results

You know you are done when RUNCPP completes with no errors.

Compiling the sample BINOP program
This topic describes the steps of compiling the BINOP program.

Before you begin

You need to have completed the steps in “Setting up the sample BINOP program”
on page 299.

About this task

You can use several methods to compile, link-edit, and execute your program in
MVS. The following information explains how to compile your C data sets
generated by RUNCPP under MVS batch, using IBM-supplied cataloged
procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name
Contents

user_id.OBJ
A partitioned data set that contains the compiled versions of C programs
as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD
A partitioned data set that contains the link-edited versions of C programs
as its members.

In order for the program to compile correctly, you must make changes to the
EDCC cataloged procedure. For more information about the procedure, see z/OS
XL C/C++ User's Guide.

Procedure

Perform the following steps to compile your program.
1. Remove the OUTFILE and OUTDCB parameters.

300 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

2. Add the following line to the CPARM parameter:
CPARM='DEF(IBMCPP,IBM370)',

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following lines:

//SYSIN DD DSN=user_id..&INFILE..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id..OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:
//SYSLIB DD DSN=SEZACMAC,DISP=SHR

5. Submit the compilation job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following lines:

/s EDCC,INFILE=BINOPS
/s EDCC,INFILE=BINOPC
/s EDCC,INFILE=BINOP@S
/s EDCC,INFILE=BINOP@C
/s EDCC,INFILE=BINOP@W
/s EDCC,INFILE=BINOP

Results

You know you are done when no errors are received.

Linking the sample BINOP program
This topic describes the steps of linking the BINOP program.

Before you begin

You need to have completed the steps in “Setting up the sample BINOP program”
on page 299 and “Compiling the sample BINOP program” on page 300.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure. For more information about the procedure, see z/OS XL
C/C++ User's Guide.

Procedure

Perform the following steps to link-edit your program.
1. Remove the OUTFILE parameter.
2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=SEZALIBN,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

3. Add the following //USERLIB DD statement:
//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following lines:
//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following lines when you link-edit your application code, because
not all entry points are defined as external references in SEZALIBN.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following line:
//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

Chapter 10. Network Computing System 301

7. Create one member of the partitioned data set user_id.LOADLIST, by adding
the following lines to the data set BINOPC.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BINOP@C)
INCLUDE USERLIB(BINOP@W)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set user_id.LOADLIST, by
adding the following lines to the data set BINOPS.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BINOP@S)
INCLUDE USERLIB(BINOP)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following
lines:

/s EDCL,MEM=BINOPC
/s EDCL,MEM=BINOPS

Results

You know you are done when no errors are received.

Running the sample BINOP program
This topic describes the steps of running the BINOP program.

Before you begin

You need to have completed the steps in “Setting up the sample BINOP program”
on page 299, “Compiling the sample BINOP program” on page 300, and “Linking
the sample BINOP program” on page 301.

Procedure

Perform the following steps to run your program.
1. Start the NCS server sample program on one MVS user ID by entering the

following command:
CALL 'user_id.LOAD(BINOPS)' '2'

2. Start the NCS client on a different MVS user ID by entering the following
command:

CALL 'user_id.LOAD(BINOPC)' 'hostname 2 3'

where hostname is the name of the system that the server is running on.

Results

You know you are done when the program runs successfully.

302 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Compiling, linking, and running the NCSSMP program
The NCSSMP sample program consists of the following data sets, which are
members of SEZAINST:

NCSSMPR
Describes the NCS sample program.

NCSSERV1
Contains C source code for the server for the NCS sample program.

NCSCLNT1
Contains C source code for the client for the NCS sample program.

NCSSMPI
Contains the interface definition language data set for the NCS sample
program used as input to the NIDL compiler.

NSMPDEFS
Indicates the header data set containing the redefines of external
references, greater than 8 characters in length, used in the NCS sample
program.

For an example of the source code, see “The NCSSMP sample program” on page
297.

The following topics describe steps required to run the NCSSMP program
successfully.
v “Setting up the NCSSMP program”
v “Compiling the NCSSMP program” on page 304
v “Linking the NCSSMP program” on page 305
v “Running the NCSSMP program” on page 307

Note: If you have a problem with any of these steps, you must resolve them
before you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS CS has been installed and is operational on your system.
Also, ensure that the NCS Global Location Broker is running somewhere on your
network.

Setting up the NCSSMP program
This topic describes the prerequisites of using the NCSSMP program.

Before you begin

You need to know how to access data sets and copy files.

Procedure

Perform the following steps as prerequisites to compiling, linking, and running the
NCSSMP program.
1. Copy the sample data sets from SEZAINST to your user ID.

From location To location

SEZAINST(NCSSERV1) user_id.ncsserv1.c

SEZAINST(NCSCLNT1) user_id.ncsclnt1.c

Chapter 10. Network Computing System 303

From location To location

SEZAINST(NCSSMPI) user_id.ncssmp.idl

SEZAINST(NSMPDEFS) user_id.nsmpdefs.h

2. Copy the imported data sets from SEZAINST to your user ID.

From location To location

SEZAINST(RPCI) user_id.rpc.idl

SEZAINST(BASEI) user_id.base.idl

SEZAINST(NBASEI) user_id.nbase.idl

3. To generate stubs, run NIDL using the following command:
RUNNIDL NCSSMP IDL INC(nsmpdefs)

4. Copy the data sets included by CPP to your user ID.

From location To location

SEZACMAC(NCSDEFS) user_id.ncsdefs.h

SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

SEZACMAC(BASE) user_id.base.h

SEZACMAC(IDL@BASE) user_id.idl@base.h

SEZACMAC(NBASE) user_id.nbase.h

SEZACMAC(LB) user_id.lb.h

SEZACMAC(GLB) user_id.glb.h

SEZACMAC(TYPES) user_id.types.h

SEZACMAC(BSDTYPES) user_id.bsdtypes.h

SEZACMAC(BSDTIME) user_id.bsdtime.h

SEZACMAC(PFM) user_id.pfm.h

C library user_id.stdio.h

C library user_id.setjmp.h

Note: C library header files depend on the compiler you are using. For example:

v C370 2.2

v AD/Cycle C/370

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP NCSSERV1 C
RUNCPP NCSCLNT1 C
RUNCPP NCSSMP@S C@SSTUB
RUNCPP NCSSMP@C C@CSTUB
RUNCPP NCSSMP@W C@CSWTCH

Results

You know you are done when RUNCPP completes with no errors.

Compiling the NCSSMP program
This topic describes the steps of compiling the NCSSMP program.

304 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Before you begin

You need to have completed the steps in “Setting up the NCSSMP program” on
page 303.

About this task

You can use several methods to compile, link-edit, and execute your program in
MVS. This topic explains how to compile your C data sets generated by RUNCPP
under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

user_id.OBJ
A partitioned data set that contains the compiled versions of C programs
as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD
A partitioned data set that contains the link-edited versions of C programs
as its members.

In order for the program to compile correctly, you must make changes to the
EDCC cataloged procedure. For more information about the procedure, see z/OS
XL C/C++ User's Guide.

Procedure

Perform the following steps to compile your program.
1. Remove the OUTFILE and OUTDCB parameters.
2. Add the following to the CPARM parameter:

CPARM='DEF(IBMCPP,IBM370)',

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following:

//SYSIN DD DSN=user_id.&MEM..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:
//SYSLIB DD DSN=SEZACMAC,DISP=SHR

5. Submit the compilation job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following:

/s EDCC,MEM=NCSSERV1
/s EDCC,MEM=NCSCLNT1
/s EDCC,MEM=NCSSMP@S
/s EDCC,MEM=NCSSMP@C
/s EDCC,MEM=NCSSMP@W

Results

You know you are done when no errors are received.

Linking the NCSSMP program
This topic describes the steps of linking the NCSSMP program.

Chapter 10. Network Computing System 305

Before you begin

You need to have completed the steps in “Setting up the NCSSMP program” on
page 303 and “Compiling the NCSSMP program” on page 304.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure. For more information about the procedure, see z/OS XL
C/C++ User's Guide.

Procedure

Perform the following steps to link-edit your program.
1. Remove the OUTFILE parameter.
2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=SEZALIBN,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

3. Add the following //USERLIB DD statement:
//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following:
//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following when you link-edit your application code, because not all
entry points are defined as external references in SEZALIBN.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following:
//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

7. Create one member of the partitioned data set userid.LOADLIST by adding the
following lines to the data set NCSCLNT1.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(NCSSMP@C)
INCLUDE USERLIB(NCSSMP@W)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set userid.LOADLIST by adding
the following lines to the data set NCSSERV1.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(NCSSMP@S)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following:
/s EDCL,MEM=NCSCLNT1
/s EDCL,MEM=NCSSERV1

Results

You know you are done when no errors are received.

306 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Running the NCSSMP program
This topic describes the steps of running the NCSSMP program.

Before you begin

You need to have completed the steps in “Setting up the NCSSMP program” on
page 303, “Compiling the NCSSMP program” on page 304, and “Linking the
NCSSMP program” on page 305.

Procedure

Perform the following steps to run your program.
1. Make sure that the Local and Global Location Brokers are running.
2. Start the NCS server sample program on one MVS user ID by entering the

following command:
CALL 'user_id.LOAD(NCSSERV1)'

3. Start the NCS client on a different MVS user ID by entering the following
command:

CALL 'user_id.LOAD(NCSCLNT1)' '5 32'

Results

You know you are done when the program runs successfully.

Compiling, linking, and running the sample BANK program
The NCS sample program BANK consists of the following data sets, which are
members of SEZAINST:

Sample data set
Description

BANKR
Describes how to run the BANK sample program.

BANKDC
Contains C language source code for the BANK server program.

BANKC
Contains C language source code for the BANK client program.

UTILC
Contains utility routines used by the BANK server and client programs.

UTILH
Indicates a header data set used in the BANK sample program.

UUIDBIND
Contains autobind and unbind source code routines used by the BANK
server and client programs.

BANKIDL
Contains the interface definition language data set for the BANK sample
programs used as input to the NIDL compiler.

SHAWMUT
Contains input data for BANK server program.

Chapter 10. Network Computing System 307

BAYBANKS
Contains input data for BANK server program.

BANKDEFS
Indicates a header data set containing the redefines of external references,
greater than 8 characters in length, used in the BANK sample programs.

The following topics describe steps required to run the sample BANK program
successfully.
v “Setting up the sample BANK program”
v “Compiling the sample BANK program” on page 309
v “Linking the sample BANK program” on page 310
v “Running the sample BANK program” on page 312

Note: If you have a problem with any of these steps, you must resolve them
before you can go on to the next step. If you encounter a problem, first ensure that
TCP/IP for MVS or z/OS Communications Server has been installed and is
operational on your system. Also, ensure that the NCS Global Location Broker is
running somewhere on your network and the Local Location Broker is running on
the client system.

Setting up the sample BANK program
This topic describes the prerequisites of using the BANK program.

Before you begin

You need to know how to access data sets and copy files.

Procedure

Perform the following steps as prerequisites to compiling, linking, and running the
BANK program.
1. Copy the sample data sets from SEZAINST to your user ID.

From location To location

SEZAINST(BANKDC) user_id.bankd.c

SEZAINST(BANKC) user_id.bank.c

SEZAINST(UTILC) user_id.util.c

SEZAINST(UUIDBIND) user_id.uuidbind.c

SEZAINST(UTILH) user_id.util.h

SEZAINST(BANKIDL) user_id.bank.idl

SEZAINST(SHAWMUT) user_id.shawmut.bank

SEZAINST(BAYBANK) user_id.baybank.bank

SEZAINST(BANKDEFS) user_id.bankdefs.h

2. Copy the data sets imported by IDL from SEZAINST to your user ID.

From location To location

SEZAINST(BASEI) user_id.base.idl

SEZAINST(NBASEI) user_id.nbase.idl

SEZAINST(RPCI) user_id.rpc.idl

308 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

3. To generate stubs, run NIDL using the following command:
RUNNIDL BANK IDL INC(bankdefs)

4. Copy the data sets included by CPP to your user ID.

From location To location

SEZACMAC(NCSDEFS) user_id.ncsdefs.h

SEZACMAC(BSDTOCMS) user_id.bsdtocms.h

SEZACMAC(BASE) user_id.base.h

SEZACMAC(IDL@BASE) user_id.idl@base.h

SEZACMAC(NBASE) user_id.nbase.h

SEZACMAC(LB) user_id.lb.h

SEZACMAC(GLB) user_id.glb.h

SEZACMAC(TYPES) user_id.types.h

SEZACMAC(BSDTYPES) user_id.bsdtypes.h

SEZACMAC(BSDTIME) user_id.bsdtime.h

SEZACMAC(PFM) user_id.pfm.h

SEZACMAC(UUID) user_id.uuid.h

'C' library user_id.stdio.h

'C' library user_id.setjmp.h

'C' library(ERRNO) user_id.errno.h

'C' library(TIME) user_id.time.h

Note: 'C' library header files depend on the compiler you are using. For example:

v C370 2.2

v AD/Cycle C/370

5. You must run CPP to change $ to _ before you can compile this code. To run
CPP, enter the following commands:

RUNCPP UTIL C
RUNCPP UUIDBIND C
RUNCPP BANKD C
RUNCPP BANK C
RUNCPP BANK@S C@SSTUB
RUNCPP BANK@C C@CSTUB
RUNCPP BANK@W C@CSWTCH

Results

You know you are done when RUNCPP completes with no errors.

Compiling the sample BANK program
This topic describes the steps of compiling the BANK program.

Before you begin

You need to have completed the steps in “Setting up the sample BANK program”
on page 308.

Chapter 10. Network Computing System 309

About this task

You can use several methods to compile, link-edit, and execute your program in
MVS. This topic explains how to compile your C data sets generated by RUNCPP
under MVS batch, using IBM-supplied cataloged procedures.

The following list contains data set names, which are used as examples in the
following JCL statements:

Data set name
Contents

user_id.OBJ
A partitioned data set that contains the compiled versions of C programs
as its members.

user_id.LOADLIST
A partitioned data set that contains the loadlist as its members.

user_id.LOAD
A partitioned data set that contains the link-edited versions of C programs
as its members.

In order for the program to compile correctly, you must make changes to the
EDCC cataloged procedure. For more information about the procedure, see z/OS
XL C/C++ User's Guide.

Procedure

Perform the following steps to compile your program.
1. Remove the OUTFILE and OUTDCB parameters.
2. Add the following line to the CPARM parameter:

CPARM='DEF(IBMCPP,IBM370)',

3. Replace the //SYSIN DD statement and the //SYSLIN statement with the
following lines:

//SYSIN DD DSN=user_id.&MEM..CPPOUT,DISP=SHR
//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR

4. Add the following //SYSLIB DD statement:
//SYSLIB DD DSN=SEZACMAC,DISP=SHR

5. Submit the compilation job at the Spool Display and Search Facility (SDSF)
command panel, by entering the following lines:

/s EDCC,MEM=BANKD
/s EDCC,MEM=BANK
/s EDCC,MEM=BANK@S
/s EDCC,MEM=BANK@C
/s EDCC,MEM=BANK@W
/s EDCC,MEM=UTIL
/s EDCC,MEM=UUIDBIND

Results

You know you are done when no errors are received.

Linking the sample BANK program
This topic describes the steps of linking the BANK program.

310 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Before you begin

You need to have completed the steps in “Setting up the sample BANK program”
on page 308 and “Compiling the sample BANK program” on page 309.

In order for the program to link correctly, you must make changes to the EDCL
cataloged procedure. For more information about the procedure, see z/OS XL
C/C++ User's Guide.

Procedure

Perform the following steps to link-edit your program.
1. Remove the OUTFILE parameter.
2. Add the following statements after the //SYSLIB DD statement:

// DD DSN=SEZALIBN,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

3. Add the following //USERLIB DD statement:
//USERLIB DD DSN=user_id.OBJ,DISP=SHR

4. Replace the //SYSLIN DD statement with the following lines:
//SYSLIN DD DSN=user_id.OBJ(&MEM),DISP=SHR
// DD DSN=user_id.LOADLIST(&MEM),DISP=SHR

5. Include the following lines when you link-edit your application code, because
not all entry points are defined as external references in SEZALIBN.

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)

6. Replace the //SYSLMOD DD statement with the following line:
//SYSLMOD DD DSN=user_id.LOAD(&MEM),DISP=SHR

7. Create one member of the partitioned data set user_id.LOADLIST by adding the
following lines to the data set BANK:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BANK@C)
INCLUDE USERLIB(BANK@W)
INCLUDE USERLIB(UTIL)
INCLUDE USERLIB(UUIDBIND)
MODE AMODE(31)
ENTRY CEESTART

8. Create a second member of the partitioned data set user_id.LOADLIST by
adding the following lines to the data set BANKD:

INCLUDE SYSLIB(RPC@S)
INCLUDE SYSLIB(RPC@SEQ)
INCLUDE SYSLIB(RPC@UTIL)
INCLUDE SYSLIB(SOCKET)
INCLUDE USERLIB(BANK@S)
INCLUDE USERLIB(UTIL)
INCLUDE USERLIB(UUIDBIND)
MODE AMODE(31)
ENTRY CEESTART

9. Submit the link-edit job at the SDSF command panel, by entering the following
lines:

/s EDCL,MEM=BANK
/s EDCL,MEM=BANKD

Chapter 10. Network Computing System 311

Results

You know you are done when no errors are received.

Running the sample BANK program
This topic describes the steps of running the BANK program.

Before you begin

You need to have completed the steps in “Setting up the sample BANK program”
on page 308, “Compiling the sample BANK program” on page 309, and “Linking
the sample BANK program” on page 310.

Procedure

Perform the following steps to run your program.
1. Make sure that the Local and Global Location Brokers are running.
2. Start the NCS server sample program on one MVS user ID. To do so, enter the

following command:
CALL 'user_id.LOAD(BANKD)' 'ip shawmut shawmut.bank' asis

3. Start the NCS client on a different MVS user ID. To do so, enter the following
command:

CALL 'user_id.LOAD(BANK)' 'inquire shawmut Leach' asis

Results

You know you are done when the program runs successfully.

312 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 11. Running the sample mail filter program

This topic explains how to run the sample mail filter program, lf_smpl.c. A mail
filter is designed to provide more functionality for a sendmail daemon. These
functions might include adding a recipient, scanning for viruses, rejecting a
disallowed recipient address, and so on. This sample mail filter creates a file in
/tmp named msg.XXXXXXXX (where X represents any combination of letters and
numbers) to log the message body and headers.

Compiling and linking the lf_smpl.c source code
The following source is needed to compile and link the sample filter:
v /usr/lpp/tcpip/samples/sendmail/milter/lf_smpl.c - sample filter program
v /usr/include/libmilter/mfapi.h - header file needed for lf_smpl.c
v /usr/include/libmilter/mfdef.h - header file needed for lf_smpl.c
v /usr/lib/libmilter.a - milter API library

The sample filter program is documented in the end of /usr/lpp/tcpip/samples/
sendmail/libmilter/README.

Note: The milter API library libmilter.a is built in the IBM-1047 environment. The
sample filter must be compiled and linked in IBM-1047 to assure correct data
exchange between the sample filter and the milter API. The sample filter also must
be executed in the environment with codepage IBM-1047.

The following example shows how to use the cc command to compile and link the
sample filter.
cc -I. -o filter lf_smpl.c libmilter.a

Specifying filters in the sendmail configuration file
To use filters in sendmail, filters must be declared in the sendmail configuration
file (sendmail.cf). For more information about this sendmail configuration file, see
z/OS Communications Server: IP Configuration Guide.

Running the sample mail filter program
Error messages for the sample filter are written to a log file. The log file is defined
in lf_smpl.c as follows:
openlog(NULL, LOG_PID, LOG_LOCAL7)

To get error messages, first create a log file. The log reference in the source code
can be modified to reference the log file you created. For more information about
error messages, see z/OS Communications Server: IP Diagnosis Guide.

The lf_smpl.c sample program accepts the -p argument as follows:

-p socket_reference
Specifying the socket information of the filter, the parameter should be
formatted according to the socket specification in the sendmail
configuration file.

© Copyright IBM Corp. 2000, 2015 313

For example, use the command filter –p inet:3333@localhost with the following
configuration:
Xfilter, S=inet:3333@localhost
O InputMailFilters=filter

Library control functions
The following samples show mail filter program functions.

smfi_register
#include <libmilter/mfapi.h>
int smfi_register(

smfiDesc_str descr
);

The xxfi_flags field should contain the bitwise OR of zero or more of the following
values, describing the actions the filter might take:

SMFIF_ADDHDRS
This filter can add headers.

SMFIF_CHGHDRS
This filter can change and delete headers.

SMFIF_CHGBODY
This filter can replace the body during filtering. This can have significant
performance impact if other filters do body filtering after this filter.

SMFIF_ADDRCPT
This filter can add recipients to the message.

SMFIF_DELRCPT
This filter can remove recipients from the message.

smfi_register description
Register a set of filter callbacks. When called, smfi_register creates a filter using the
information given in the smfiDesc_str argument.

Notes:

1. smfi_register must be called before smfi_main.
2. Multiple calls to smfi_register within a single process are not allowed.

smfi_register parameters
descr A filter descriptor of type smfiDesc_str describing the filter's functions. The

structure has the following members:
struct smfiDesc
{
char *xxfi_name; /* filter name */
int xxfi_version; /* version code -- do not change */
unsigned long xxfi_flags; /* flags */

/* connection info filter */
sfsistat (*xxfi_connect)(SMFICTX *, char *, _SOCK_ADDR *);
/* SMTP HELO command filter */
sfsistat (*xxfi_helo)(SMFICTX *, char *);
/* envelope sender filter */
sfsistat (*xxfi_envfrom)(SMFICTX *, char **);
/* envelope recipient filter */
sfsistat (*xxfi_envrcpt)(SMFICTX *, char **);
/* header filter */

314 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

sfsistat (*xxfi_header)(SMFICTX *, char *, char *);
/* end of header */
sfsistat (*xxfi_eoh)(SMFICTX *);
/* body block */
sfsistat (*xxfi_body)(SMFICTX *, unsigned char *, size_t);
/* end of message */
sfsistat (*xxfi_eom)(SMFICTX *);
/* message aborted */
sfsistat (*xxfi_abort)(SMFICTX *);
/* connection cleanup */
sfsistat (*xxfi_close)(SMFICTX *);
};

A NULL value for any callback function indicates that the filter does not
process the given type of information, simply returning
SMFIS_CONTINUE.

smfi_register result
smfi_register can return MI_FAILURE for any of the following reasons:
v Memory allocation failed.
v Incompatible version or illegal flags value.

smfi_setconn
#include <libmilter/mfapi.h>
int smfi_setconn(

char *oconn;
);

smfi_setconn description

The smfi_setconn API sets the socket through which the filter communicates with
sendmail. The smfi_setconn API must be called once before smfi_main.

smfi_setconn parameters

oconn The address of the desired communication socket. The address should be a
NULL-terminated string in proto:address format as follows:
v {unix|local}:/path/to/file - A named pipe
v inet:port@{hostname|ip-address} - An IPv4 socket
v inet6:port@{hostname|ip-address} - An IPv6 socket

smfi_setconn result

smfi_setconn does not fail on an address that is not valid. A failure is detected only
in smfi_main.

Notes:

1. If possible, filters should not run as root when communicating over UNIX/local
domain sockets.

2. UNIX/local sockets should have their permissions set to 0600 (read/write
permission only for the socket's owner).

smfi_settimeout
#include <libmilter/mfapi.h>
int smfi_settimeout(

int otimeout
);

Chapter 11. Running the sample mail filter program 315

smfi_settimeout description
Sets the number of seconds libmilter will wait for an MTA connection before
timing out a socket. If smfi_settimeout is not called, a default timeout of 1800
seconds is used.

Note: The smfi_settimeout API should be called only before smfi_main.

smfi_settimeout parameters
otimeout

The number of seconds to wait before timing out (value must be greater
than zero). Zero means no wait, rather than wait forever.

smfi_settimeout result
smfi_settimeout always returns MI_SUCCESS.

smfi_main
#include <libmilter/mfapi.h>
int smfi_main(
);

smfi_main description
The smfi_main API is called after a filter's initialization is complete. smfi_main
passes control to the milter event loop.

smfi_main parameters
smfi_main has no parameters.

smfi_main result
smfi_main returns MI_FAILURE if it fails to establish a connection. This can occur
for a number of reasons (for instance, if an address that is not valid is passed to
smfi_setconn). The reason for the failure is logged. Otherwise, smfi_main returns
MI_SUCCESS.

Data access functions
The following functions are mail filter data access functions.

smfi_getsymval
#include <libmilter/mfapi.h>
char* smfi_getsymval(

SMFICTX *ctx,
char *symname

);

smfi_getsymval description

Get the value of a sendmail macro. smfi_getsymval can be called from within any
of the xxfi_* callbacks. Which macros are defined depends on when
smfi_getsymval is called.

smfi_getsymval parameters

ctx The opaque context structure.

symname
The name of a sendmail macro, optionally enclosed in braces ({ and }). See
below for default macros.

316 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

smfi_getsymval result

smfi_getsymval returns the value of the given macro as a null-terminated string, or
returns NULL if the macro is not defined.

Notes:

1. By default, the following macros are valid in the given contexts:

Sent With Macros

xxfi_connect daemon_name, if_name, if_addr, j, _

xxfi_helo tls_version, cipher, cipher_bits, cert_subject, cert_issuer

xxfi_envfrom i, auth_type, auth_authen, auth_ssf, auth_author, mail_mailer, mail_host,
mail_addr

xxfi_envrcpt rcpt_mailer, rcpt_host, rcpt_addr

2. All macros remain in effect from the point they are received until the end of the
connection for the first two sets, the end of the message for the third set
(xxfi_envfrom), and for each recipient for the final set (xxfi_envrcpt).

3. The macro list can be changed using the confMILTER_MACROS_* options in
sendmail.mc. The scopes of such macros are determined by when they are set
by sendmail. For descriptions of macro values, see Sendmail Installation and
Operation Guide provided with the sendmail distribution.

smfi_getpriv
#include <libmilter/mfapi.h>
void* smfi_getpriv(

SMFICTX *ctx
);

smfi_getpriv description
Get the connection-specific data pointer for this connection. smfi_getpriv can be
called in any of the xxfi_* callbacks.

smfi_getpriv parameters
ctx Opaque context structure.

smfi_getpriv result
smfi_getpriv returns the private data pointer stored by a prior call to smfi_setpriv,
or returns NULL if none has been set.

smfi_setpriv
#include <libmilter/mfapi.h>
int smfi_setpriv(

SMFICTX *ctx,
void *privatedata

);

smfi_setpriv description

Set the private data pointer for this connection.

smfi_setpriv parameters

ctx Opaque context structure.

Chapter 11. Running the sample mail filter program 317

privatedata
Pointer to private data. This value is returned by subsequent calls to
smfi_getpriv using ctx.

smfi_setpriv result

smfi_setpriv returns MI_FAILURE if the context of ctx is not valid. Otherwise, it
returns MI_SUCCESS.

Notes:

1. There is only one private data pointer per connection; multiple calls to
smfi_setpriv with different values cause previous values to be lost.

2. Before a filter terminates it should release the private data and set the pointer
to NULL.

smfi_setreply
#include <libmilter/mfapi.h>
int smfi_setreply(

SMFICTX *ctx,
char *rcode,
char *xcode,
char *message

);

smfi_setreply description
Directly set the SMTP error reply code for this connection. This code is used on
subsequent error replies resulting from actions taken by this filter. smfi_setreply
can be called from any of the xxfi_ callbacks.

Notes:

1. Values passed to smfi_setreply are not checked for standards compliance.
2. For details about reply codes and their meanings, see the documentation

provided with the sendmail distribution.

smfi_setreply parameters
ctx Opaque context structure.

rcode The three-digit SMTP reply code, as a null-terminated string. rcode cannot
be NULL and must be a valid reply code.

xcode The extended reply code. If xcode is NULL, no extended code is used.

message
The text part of the SMTP reply. If message is NULL, an empty message is
used.

smfi_setreply result
smfi_setreply fails and returns MI_FAILURE if:
v The rcode or xcode argument is not valid.
v A memory-allocation failure occurs.

Otherwise, it returns MI_SUCCESS.

Message modification functions
The following functions are mail filter message modification functions.

318 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

smfi_addheader
#include <libmilter/mfapi.h>
int smfi_addheader(

SMFICTX *ctx,
char *headerf,
char *headerv

);

smfi_addheader description

The smfi_addheader API adds a header to the current message. It is called only
from xxfi_eom.

smfi_addheader parameters

ctx Opaque context structure.

headerf
The header name, a non-NULL, null-terminated string.

headerv
The header value to be added, a non-NULL, null-terminated string. This
can be the empty string.

smfi_addheader result

smfi_addheader returns MI_FAILURE in the following cases:
v headerf or headerv is NULL.
v Adding headers in the current connection state is not valid.
v Memory allocation fails.
v A network error occurs.
v SMFIF_ADDHDRS was not set when smfi_register was called.

Otherwise, it returns MI_SUCCESS.

Notes:

1. smfi_addheader does not change a message's existing headers. To change a
header's current value, use smfi_chgheader.

2. A filter that calls smfi_addheader must have set the SMFIF_ADDHDRS flag in
the smfiDesc_str passed to smfi_register.

3. Filter order is important for smfi_chgheader; later filters see the header changes
made by previous filters.

4. Neither the name nor the value of the header is checked for standards
compliance. However, each line of the header must be less than 2048 characters
in length and should be less than 998 characters in length. If longer headers are
required, make them multiline. It is the filter writer's responsibility to ensure
that no standards are violated.

smfi_chgheader
#include <libmilter/mfapi.h>
int smfi_chgheader(

SMFICTX *ctx,
char *headerf,
mi_int32 hdridx,
char *headerv

);

Chapter 11. Running the sample mail filter program 319

smfi_chgheader description

The smfi_chgheader API changes a header's value for the current message. It is
called only from xxfi_eom.

smfi_chgheader parameters

ctx Opaque context structure.

headerf
The header name, a non-NULL, null-terminated string.

hdridx
Header index value (1-based). A hdridx value of 1 modifies the first
occurrence of a header named headerf. If hdridx is greater than the
number of times headerf appears, a new copy of headerf is added.

headerv
The new value of the given header. A headerv value of NULL implies that
the header should be deleted.

smfi_chgheader result

smfi_chgheader returns MI_FAILURE in the following cases:
v headerf is NULL.
v Modifying headers in the current connection state is not valid.
v Memory allocation fails.
v A network error occurs.
v SMFIF_CHGHDRS was not set when smfi_register was called.

Otherwise, it returns MI_SUCCESS.

Notes:

1. While smfi_chgheader can be used to add new headers, it is more efficient and
safer to use smfi_addheader to add new headers.

2. A filter that calls smfi_chgheader must have set the SMFIF_CHGHDRS flag in
the smfiDesc_str passed to smfi_register.

3. Filter order is important for smfi_chgheader; later filters see the header changes
made by previous filters.

4. Neither the name nor the value of the header is checked for standards
compliance. However, each line of the header must be less than 2048 characters
in length and should be less than 998 characters in length. If longer headers are
needed, make them multiline. It is the filter writer's responsibility to ensure
that no standards are violated.

smfi_addrcpt
#include <libmilter/mfapi.h>
int smfi_addrcpt(

SMFICTX *ctx,
char *rcpt

);

smfi_addrcpt description

The smfi_addrcpt API adds a recipient to the message envelope. It is called only
from xxfi_eom.

320 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

smfi_addrcpt parameters

ctx Opaque context structure.

rcpt The new recipient's address.

smfi_addrcpt result

smfi_addrcpt fails and returns MI_FAILURE if the following conditions occur:
v Adding headers in the current connection state is not valid.
v A network error occurs.
v SMFIF_ADDRCPT was not set when smfi_register was called.
v rcpt is NULL.

Otherwise, smfi_addrcpt returns MI_SUCCESS.

Note: A filter that calls smfi_addrcpt must have set the SMFIF_ADDRCPT flag in
the smfiDesc_str passed to smfi_register.

smfi_delrcpt
#include <libmilter/mfapi.h>
int smfi_delrcpt(

SMFICTX *ctx;
char *rcpt;

);

smfi_delrcpt description

The smfi_delrcpt API removes the named recipient from the current message's
envelope. It is called only from xxfi_eom.

smfi_delrcpt parameters

ctx Opaque context structure.

rcpt The recipient address to be removed, a non-NULL, null-terminated string.

smfi_delrcpt result

smfi_delrcpt fails and returns MI_FAILURE if any of the following conditions
occur:
v rcpt is NULL.
v Adding headers in the current connection state is not valid.
v A network error occurs.
v SMFIF_DELRCPT was not set when smfi_register was called.

Otherwise, it returns MI_SUCCESS.

Note: The addresses to be removed must match exactly (for example, an address
and its expanded form must match).

Chapter 11. Running the sample mail filter program 321

smfi_replacebody
#include <libmilter/mfapi.h>
int smfi_replacebody(

SMFICTX *ctx,
unsigned char *bodyp,
int bodylen

);

smfi_replacebody description

The smfi_replacebody API replaces the body of the current message. It is called
only from xxfi_eom and can be called more than once. If it is called multiple times,
subsequent calls result in data being appended to the new body.

smfi_replacebody parameters

ctx Opaque context structure.

bodyp A pointer to the start of the new body data, which does not have to be
null-terminated. If bodyp is NULL, it is treated as having length equal to 0.
Body data should be in CR/LF form.

bodylen
The number of data bytes bodyp points to.

smfi_replacebody result

smfi_replacebody fails and returns MI_FAILURE if any of the following conditions
occur:
v bodyp is equal to NULL and bodylen is greater than 0.
v Changing the body in the current connection state is not valid.
v A network error occurs.
v SMFIF_CHGBODY was not set when smfi_register was called.

Otherwise, it will return MI_SUCCESS.

Notes:

1. Becuase the message body can be very large, setting SMFIF_CHGBODY might
significantly affect filter performance.

2. If a filter sets SMFIF_CHGBODY but does not call smfi_replacebody, the
original body remains unchanged.

3. Filter order is important for smfi_replacebody; later filters see the new body
contents created by previous filters.

Mail filter callbacks
Each of these callbacks should return one of the values that is defined in Table 6.
Any value other than those listed constitutes an error and causes sendmail to
terminate its connection to the offending filter.

Table 6. Callback return values

Return value Description

SMFIS_CONTINUE Continue processing the current connection, message, or recipient.

322 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 6. Callback return values (continued)

Return value Description

SMFIS_REJECT For a connection-oriented routine, reject this connection; call
xxfi_close. For a message-oriented routine (except xxfi_eom or
xxfi_abort), reject this message. For a recipient-oriented routine,
reject the current recipient (but continue processing the current
message).

SMFIS_DISCARD For a message or recipient-oriented routine, accept this message, but
silently discard it. SMFIS_DISCARD should not be returned by a
connection-oriented routine.

SMFIS_ACCEPT For a connection-oriented routine, accept this connection without
further filter processing; call xxfi_close. For a message or
recipient-oriented routine, accept this message without further
filtering.

SMFIS_TEMPFAIL Return a temporary failure; the corresponding SMTP command will
return an appropriate 4xx status code. For a message-oriented
routine (except xxfi_envfrom), fail for this message. For a
connection-oriented routine, fail for this connection; call xxfi_close.
For a recipient-oriented routine, fail only for the current recipient;
continue message processing.

xxfi_connect - Connection information
#include <libmilter/mfapi.h>
sfsistat (*xxfi_connect)(

SMFICTX *ctx,
char *hostname,
_SOCK_ADDR *hostaddr);

xxfi_connect description
Called once, at the start of each SMTP connection. Default behavior is to do
nothing and return SMFIS_CONTINUE.

xxfi_connect parameters
ctx The opaque context structure.

hostname
The host name of the message sender, as determined by a reverse lookup
on the host address. If the reverse lookup fails, hostname will contain the
message sender's IP address enclosed in square brackets (for example,
[a.b.c.d]).

hostaddr
The host address, as determined by a getpeername() call on the SMTP
socket. NULL if the type is not supported in the current version.

xxfi_connect result
If a previous filter rejects the connection in its xxfi_connect() routine, this filter's
xxfi_connect() is not called.

xxfi_helo - SMTP HELO/EHLO command
#include <libmilter/mfapi.h>
sfsistat (*xxfi_helo)(

SMFICTX * ctx,
char * helohost

);

Chapter 11. Running the sample mail filter program 323

xxfi_helo description
Handle the HELO/EHLO command. xxfi_helo is called whenever the client sends
a HELO/EHLO command. It can therefore be called between zero and three times.
Default is to do nothing and return SMFIS_CONTINUE.

xxfi_helo parameters
ctx Opaque context structure.

helohost
Value passed to HELO/EHLO command, which should be the domain
name of the sending host (but is, in practice, anything the sending host
wants to send).

xxfi_envfrom - Envelope sender
#include <libmilter/mfapi.h>
sfsistat (*xxfi_envfrom)(

SMFICTX * ctx,
char ** argv

);

xxfi_envfrom description
Handle the envelope FROM command. xxfi_envfrom is called once at the
beginning of each message, before xxfi_envrcpt. The default behavior is to do
nothing and return SMFIS_CONTINUE.

xxfi_envfrom parameters
ctx Opaque context structure.

argv Null-terminated SMTP command arguments; argv[0] is guaranteed to be
the sender address. Later arguments are the ESMTP arguments.

xxfi_envfrom result
Can return the following values:

SMFIS_TEMPFAIL
Reject this sender and message with a temporary error; a new sender (and
associated new message) can subsequently be specified. xxfi_abort is not
called.

SMFIS_REJECT
Reject this sender and message; a new sender and message can be
specified. xxfi_abort is not called.

SMFIS_DISCARD
Accept and silently discard this message. xxfi_abort is not called.

SMFIS_ACCEPT
Accept this message. xxfi_abort is not called.

xxfi_envrcpt - Envelope recipient
#include <libmilter/mfapi.h>
sfsistat (*xxfi_envrcpt)(

SMFICTX * ctx,
char ** argv

);

324 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xxfi_envrcpt description
Handle the envelope RCPT command. xxfi_envrcpt is called once per recipient
(one or more times per message), immediately after xxfi_envfrom. The default
behavior is to do nothing and return SMFIS_CONTINUE.

xxfi_envrcpt parameters
ctx Opaque context structure.

argv Null-terminated SMTP command arguments; argv[0] is guaranteed to be
the recipient address. Later arguments are the ESMTP arguments.

xxfi_envrcpt result
Can return the following values:

SMFIS_TEMPFAIL
Temporarily fail for this particular recipient; further recipients can still be
sent. xxfi_abort is not called.

SMFIS_REJECT
Reject this particular recipient; further recipients can still be sent. xxfi_abort
is not called.

SMFIS_DISCARD
Accept and discard the message. xxfi_abort is called.

SMFIS_ACCEPT
Accept recipient. xxfi_abort is not called.

xxfi_header - Header
#include <libmilter/mfapi.h>
sfsistat (*xxfi_header)(

SMFICTX * ctx,
char * headerf,
char * headerv

);

xxfi_header description

Handle a message header. xxfi_header is called zero or more times between
xxfi_envrcpt and xxfi_eoh, once per message header. The default behavior is to do
nothing and then return SMFIS_CONTINUE.

xxfi_header parameters

ctx Opaque context structure.

headerf
Header field name.

headerv
Header field value. The content of the header can include folded white
space (multiple lines with following white space). The trailing line
terminator (CR/LF) is removed.

Notes:

1. Later filters see any header changes or additions made by previous filters.
2. For more detail about header format, see sendmail documentation.

Chapter 11. Running the sample mail filter program 325

xxfi_eoh - End of header
#include <libmilter/mfapi.h>
sfsistat (*xxfi_eoh)(

SMFICTX * ctx
);

xxfi_eoh description
Handle the end of a message header. xxfi_eoh is called once after all headers have
been sent and processed. The default behavior is to do nothing and then return
SMFIS_CONTINUE.

xxfi_eoh parameters
ctx Opaque context structure.

xxfi_body - body block
#include <libmilter/mfapi.h>
sfsistat (*xxfi_body)(

SMFICTX * ctx,
unsigned char * bodyp,
size_t len

);

xxfi_body description

Handle a piece of a message's body. xxfi_body is called zero or more times
between xxfi_eoh and xxfi_eom. The default behavior is to do nothing and then
return SMFIS_CONTINUE.

xxfi_body parameters

ctx Opaque context structure.

bodyp
Pointer to the start of this block of body data. bodyp is not valid outside
this call to xxfi_body.

len The amount of data pointed to by bodyp.

Notes:

1. Because message bodies can be very large, defining xxfi_body can significantly
impact filter performance.

2. End-of-lines are represented as received from SMTP (normally CR/LF).
3. Later filters see body changes made by previous filters.
4. Message bodies might be sent in multiple chunks, with one call to xxfi_body

per chunk.

xxfi_eom - End of message
#include <libmilter/mfapi.h>
sfsistat (*xxfi_eom)(

SMFICTX * ctx
);

xxfi_eom description

End of a message. xxfi_eom is called once for a given message, after all calls to
xxfi_body. The default behavior is to do nothing and then return
SMFIS_CONTINUE.

326 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xxfi_eom parameters

ctx Opaque context structure.

Note: A filter is required to make all its modifications to the message headers,
body, and envelope in xxfi_eom. Modifications are made using the smfi_* routines.

xxfi_abort - Message aborted
#include <libmilter/mfapi.h>
sfsistat (*xxfi_abort)(

SMFICTX * ctx
);

xxfi_abort description

Handle the current message being aborted. xxfi_abort can be called at any time
during message processing (between some message-oriented routine and
xxfi_eom).

xxfi_abort parameters

ctx Opaque context structure.

Notes:

1. xxfi_abort must reclaim any resources allocated on a per-message basis, and
must be tolerant of being called between any two message-oriented callbacks.

2. Calls to xxfi_abort and xxfi_eom are mutually exclusive.
3. xxfi_abort is not responsible for reclaiming connection-specific data, since

xxfi_close is always called when a connection is closed.
4. Becuase the current message is already being aborted, the return value is

currently ignored.
5. xxfi_abort is called only if the message is aborted outside the filter's control and

the filter has not completed its message-oriented processing. For example, if a
filter has already returned SMFIS_ACCEPT, SMFIS_REJECT or
SMFIS_DISCARD from a message-oriented routine, xxfi_abort is not called,
even if the message is later aborted outside its control.

xxfi_close - Connection cleanup
#include <libmilter/mfapi.h>
sfsistat (*xxfi_close)(

SMFICTX * ctx
);

xxfi_close description

Provides notification that the current connection is being closed. xxfi_close is
always called once at the end of each connection. The default behavior is to do
nothing and then return SMFIS_CONTINUE.

xxfi_close parameters

ctx Opaque context structure.

Notes:

1. xxfi_close is called on close even if the previous mail transaction was aborted.

Chapter 11. Running the sample mail filter program 327

2. xxfi_close is responsible for freeing any resources allocated on a per-connection
basis.

3. Because the connection is already closing, the return value is currently ignored.

328 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 12. Policy API (PAPI)

The Policy Agent includes an application programming interface (API) known as
the Policy API or PAPI.

Using the PAPI interface, user applications can connect to the Policy Agent through
a UNIX socket connection and access policy related data. Data returned from the
Policy Agent are queued in the user's address space. A set of PAPI functions is
defined to access specific portions of the returned data. The interface also provides
for terminating the connection and cleaning up resources obtained while the API
was in use.

Currently, the only function provided by PAPI is to retrieve policy performance
data.

API outline for retrieving data from Policy Agent
Using the PAPI interface, an application uses the papi_connect() call to define an
API connection and to register with the Policy Agent. The papi_get_perf_data() call
is used to retrieve the policy performance data from the Policy Agent. An
application can then use a set of helper functions to access performance
information returned on the papi_get_perf_data() call. The set of helper functions
is:
v papi_get_policy_instance() - Returns the policy instance number for the set of

policies in the performance data returned.
v papi_get_rules_count() - Returns the number of policy rules in the performance

data returned.
v papi_get_actions_count() - Returns the number of policy actions in the

performance data returned.
v papi_get_rule_perf_info() - Returns a policy rule entry based on the rule number

that contains the rule performance information.
v papi_get_rule_perf_by_id() - Returns a policy rule entry based on the rule ID

that contains the rule performance information.
v papi_get_action_perf_info() - Returns a policy action entry based on the action

number that contains the action performance information.
v papi_get_action_perf_by_id() - Returns a policy action entry based on the action

ID that contains the action performance information.
v papi_strerror() - Returns a string describing a PAPI return code value, similar to

the C strerror() function.

When the application is done using the data returned on the papi_get_perf_data()
call, it can call papi_free_perf_data() to free the data. When the application no
longer wants to retrieve policy performance data from the Policy Agent, it can call
papi_disconnect() to end the connection.

Compiling and linking PAPI applications
This topic describes the steps of using the PAPI application.

© Copyright IBM Corp. 2000, 2015 329

Procedure

To use the PAPI interface, an application must perform the following steps:
1. Include the <papiuser.h> header file, which is available in the /usr/include

directory.
2. Compile the application with the DLL compiler option. See z/OS XL C/C++

User's Guide for more information about how to specify compiler options.
3. Include the PAPI definition side deck (papi.x), which is available in the

/usr/lib directory, when prelinking or binding the application.
4. If the Binder is used instead of the C prelinker, specify the Binder

DYNAM=DLL option. See z/OS MVS Program Management: User's Guide and
Reference for information about specifying Binder options.

Running PAPI applications
At execution time, the PAPI application must have access to the PAPI DLL
(papi.dll), which is available in the /usr/lib directory. Ensure that the LIBPATH
environment variable includes this directory when running the application. The
PAPI application must either run with superuser authority to use PAPI, or must
have security product authority in the SERVAUTH class. These security product
profiles can be defined by TCP/IP stack (TcpImage) and policy type (only ptype =
QOS is applicable). Wildcarding of profile names is allowed. The security product
profiles take the following form:

EZB.PAGENT.<sysname>.<TcpImage>.<ptype> where:
v sysname - System name defined in sysplex
v TcpImage - TCP name for the requested policy information
v ptype - Policy Type that is being requested (QOS)

Note: Wildcarding is allowed on segments of the profile name.

See the EZARACF sample in SEZAINST for sample commands needed to create
the profile name and permit users access to it.

PAPI return codes
The following return codes may be returned from PAPI functions.

Table 7. PAPI function return codes

Return Code Value Description

PAPI_OK 0 Success.

PAPI_HELPER_RETURN_NULL NULL NULL return from PAPI helper function.

PAPI_HELPER_RETURN_ZERO 0 Zero return from PAPI helper function.

PAPI_NOK 1 Generic error.

PAPI_INVALID_PARAMETER_VALUE 2 Parameter has an invalid value.

PAPI_CLIENT_ALREADY_INITIALIZED 4 User already issued papi_connect().

PAPI_CLIENT_ALREADY_REGISTERED 5 User already issued papi_connect().

PAPI_FUNC_NOT_READY 8 PAPI function not ready - try again later.

330 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 7. PAPI function return codes (continued)

Return Code Value Description

PAPI_INVALID_ACCEPTABLE_CACHED_TIME 10 The acceptableCachedTime input parameter
is ignored because it is less than the
MinimimSamplingInterval configured to the
Policy Agent.

PAPI_ PERF_COLL_TYPE_MISMATCH 11 Some or all of the requested type of
performance data (rules, actions, or both) is
not being collected by the Policy Agent.

PAPI_MALLOC_FAILED 16 PAPI could not allocate memory in user's
address space.

PAPI_MALLOC_IN_PAGENT_FAILED 17 Policy Agent could not allocate memory.

PAPI_PAGENT_INTERNAL_ERROR 18 Internal error encountered in Policy Agent.

PAPI_INTERNAL_ERROR 19 Internal error encountered in PAPI.

PAPI_CLIENT_NOT_REGISTERED 20 User did not issue papi_connect().

PAPI_NOT_VALID_AUTHORIZATION 21 User not authorized to issue PAPI function.

PAPI_VERSION_INCORRECT 22 Incompatibility between the version of the
PAPI DLL (papi.dll) and the version of
Policy Agent.

PAPI_CONNECT_FAILED 30 Connect to Policy Agent failed.

PAPI_READ_FAILED 31 Read from Policy Agent failed.

PAPI_SOCKET_NOT_READABLE 32 Socket for Policy Agent connection is not
readable.

PAPI_WRITE_FAILED 33 Write to Policy Agent failed.

PAPI_READ_TIMEOUT 34 Read from Policy Agent timed out.

PAPI_SOCKET_FAILED 35 Could not open socket for Policy Agent
connection.

PAPI_FCNTL_FAILED 36 fcntl() on connection socket failed.

PAPI_NULL_INPUT 50 A required parameter is not specified.

PAPI_TCPIMAGE_NOT_VALID 51 The specified kernel name is not known to
the Policy Agent.

PAPI_TCPIMAGE_INVALID_LENGTH 52 The specified kernel name is too long.

PAPI_FILTERNAME_INVALID_LENGTH 53 The specified filter name is too long.

PAPI_KERNEL_NOT_AVAILABLE 54 The TCP/IP stack is not available to process
a request, or an error occurred while
obtaining data from the stack.

PAPI client library services
The Policy Agent API provides the following client library calls to connect,
disconnect, get, and free storage for policy performance data.
v papi_connect()
v papi_debug()
v papi_disconnect()
v papi_free_perf_data()
v papi_get_perf_data()

Chapter 12. Policy API (PAPI) 331

The Policy Agent API provides the following helper functions to access the policy
performance data.
v papi_get_action_perf_by_id()
v papi_get_action_perf_info()
v papi_get_actions_count()
v papi_get_policy_instance()
v papi_get_rule_perf_by_id()
v papi_get_rule_perf_info()
v papi_get_rules_count()
v papi_strerror()

To use these calls, the application must include the file papiuser.h.

PAPI: Connecting and retrieving data
Use the following PAPI functions for connecting and retrieving data.

papi_connect - Connect to Policy Agent
#include <papiuser.h>

extern int papi_connect(void **papiHandle, void *regReq);

papi_connect description
This function is used to open a connection and register with the Policy Agent. The
parameters it takes are a pointer to a void pointer, which is used to return the
handle, and a void pointer to pass in the registration information. The registration
information is currently not used. All information about this connection is stored
internally using the handle pointer as a reference. Most other PAPI functions
require that this handle be passed in as input. A call should subsequently be made
to papi_disconnect() to release the resources used by papi_connect().

papi_connect parameters
**papiHandle

This is an output parameter that points to the handle to identify this
papi_connect().

*regReq
This is an input parameter that points to the registration information. This
pointer should be NULL.

papi_connect result
If the connection is successful, the call returns a return code of PAPI_OK, and
papiHandle is set.

If the connect fails, the call returns a non-PAPI_OK return code value.

papi_connect example
void *mainHandle;
int nRc;

nRc = papi_connect(&mainHandle, NULL);

if (nRc != PAPI_OK)
{

printf("Error in papi_connect : %d\n", nRc);
}

332 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

else
{

/* everything is ok so far ... */
}

papi_debug - Set debug capability
#include <papiuser.h>

extern int papi_debug(papiDebug_t *debugValue);

papi_debug description
With this function, the debug information can be displayed for PAPI functions.
This function can be called by the application to turn debug on or off anytime
during the PAPI processing.

papi_debug parameters
*debugValue

This is a pointer to an input parameter that is used to turn debug on or
off.

If papi_debug() is not issued, then no debug information is displayed.

If debug is being used, then the application can pass in a user exit in the
papiDebug_t papiLogFunc field.

If papiLogFunc is NULL, then all messages are logged using printf().

The following defines are located in papiuser.h.
typedef struct {

unsigned int papiDebugOpt; /* Debug On/Off */
void *papiUserValue; /* User Define value */
papiLogUserExit_t papiLogFunc; /* Logging Function */

} papiDebug_t; /* Input papi_debug()*/

Set papiDebugOpt:
#define PAPI_DEBUG_OFF 0 /* Debug Off */
#define PAPI_DEBUG_ON 1 /* Debug On */

papi_debug result
If the debug is successful, the call returns a return code of PAPI_OK.

If the debug fails, the call returns a non-PAPI_OK return code value.

papi_disconnect - Disconnect from the Policy Agent
#include <papiuser.h>

extern int papi_disconnect(void *papiHandle);

papi_disconnect description
This function is used to terminate a connection with the Policy Agent. The only
parameter it takes is a pointer to the handle that was set in the papi_connect() call.

papi_disconnect parameters
*papiHandle

This is an input parameter of type void. It is the responsibility of the caller
to disconnect from the Policy Agent based on the papiHandle returned on
the papi_connect() API.

Chapter 12. Policy API (PAPI) 333

papi_disconnect result
If the disconnect is successful, the call returns a return code of PAPI_OK.

If the disconnect fails, the call returns a non-PAPI_OK return code value.

papi_disconnect example
void *mainHandle;
int nRc;

nRc = papi_disconnect(mainHandle);

if (nRc != PAPI_OK)
{

printf("Error in papi_disconnect : %d\n", nRc);
}
else
{

/* everything is ok so far ... */
}

papi_free_perf_data - Free retrieved QoS performance data
#include <papiuser.h>

extern int papi_free_perf_data(void *perfDataHandle);

papi_free_perf_data description
This function is used to free the memory associated with the policy performance
data returned by the papi_get_perf_data() API. This API should be invoked with
the handle to free the memory allocated to hold the performance information.

papi_free_perf_data parameters
*perfDataHandle

This is an input parameter of type void that points to the memory
obtained from the papi_get_perf_data() API.

papi_free_perf_data result
If the free is successful, the call returns a return code of PAPI_OK.

If the free fails, the call returns a non-PAPI_OK return code value.

papi_free_perf_data example
int nRc;
void *perfDataHandle;

/* Initialization and obtaining data to be done here */

nRc = papi_free_perf_data(perfDataHandle);

if (nRc != PAPI_OK)
{

printf("Error in papi_free_perf_data : %d\n", nRc);
}
else
{

/* everything is ok so far ... */
}

334 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

papi_get_perf_data - Retrieve QoS performance data
#include <papiuser.h>

extern int papi_get_perf_data(void *papiHandle,
int typeFlag,
void *filter,
int *acceptableCachedTime,
char *kernelName,
void **perfDataHandle);

papi_get_perf_data description
This function is used to retrieve the policy performance data from the Policy
Agent.

Policy performance metrics collected by the kernel are affected by the
FLUSH/NOFLUSH parameter on the Policy Agent TcpImage configuration
statement. FLUSH causes the metrics values to be reset to 0 at the following times:
v When a new TcpImage statement is processed for the first time, including Policy

Agent starting. This should not be a concern in most cases.
v When a MODIFY REFRESH command is entered.

Metrics are never reset when NOFLUSH is specified. See z/OS Communications
Server: IP Configuration Reference and the policy-based networking information in
z/OS Communications Server: IP Configuration Guide for more information.

Note: Changes to policy definitions might not cause immediate changes in
performance metrics, due to averaging and smoothing over several sampling
intervals. A period of time must elapse after a policy change in order to reach a
new steady state.

papi_get_perf_data parameters
*papiHandle

This is an input parameter of type void that points to the handle to
identify the associated papi_connect().

typeFlag
This is an input parameter of type int that specifies the type of
performance data that is requested. This field is treated as a bit stream and
multiple data types can be specified by turning on the required bits.
Turning on the bits will return all the performance data of that type (for
example, turning on the rules bit returns all rule performance data). The
supported bit definitions are:

PAPI_RULES
Indicates to retrieve performance data from policy rules.

PAPI_ACTIONS
Indicates to retrieve performance data from policy actions.

PAPI_ALL
Indicates to retrieve performance data from policy rules and policy
actions.

If this API is issued to get data for a type (rule and action) that has not
been configured by the DataCollection parameter on the
PolicyPerformanceCollection statement, this API is able to return only data

Chapter 12. Policy API (PAPI) 335

that is configured to be collected by the Policy Agent. A
PAPI_PERF_COLL_TYPE_MISMATCH return code indicates that the
request type was not collected.

*filter
This field of type void is reserved for future use. The only type of filtering
that is supported is through the use of the typeFlag field. This parameter
must be specified as NULL.

*acceptableCachedTime
This is an input and output parameter of type int. This parameter is
specified in seconds and is used to determine whether Policy Agent returns
to the caller any performance data that has been cached. If the time that
had elapsed after the data was retrieved and cached is greater than the
acceptableCachedTime, Policy Agent retrieves new data from the stack and
returns this new data to the caller. The acceptableCachedTime is set to
MinimumSamplingInterval. This new performance data will now be
cached.

If this API specifies an acceptableCachedTime that is less than the
MinimumSamplingInterval parameter on the PolicyPerformanceCollection
statement, the MinimumSamplingInterval is used to determine whether
data needs to be retrieved from the stack. An error
(PAPI_INVALID_ACCEPTABLE_CACHED_TIME) is returned stating that
the acceptableCachedTime has been ignored. Data will be returned and the
MinimumSamplingInterval will be returned as the acceptableCachedTime.
See z/OS Communications Server: IP Configuration Reference for setting
the MinimumSamplingInterval parameter on the
PolicyPerformanceCollection statement in the Policy Agent configuration
file.

Note: This is a required parameter.

*kernelName
This is an input parameter. It is a pointer to a character string of the kernel
name whose policy performance data will be returned. The kernel name
must be eight characters or less in length. If kernelName is NULL, the
default kernel name, as determined using the standard resolver search
order, will be used. If kernelName is invalid, the return code of
PAPI_TCPIMAGE_NOT_VALID will be returned.

**perfDataHandle
This is an output parameter that points to the handle to identify this
papi_get_perf_data(). It is the responsibility of the caller to free this
memory by calling the papi_free_perf_data() API. The values within this
memory should be obtained using the helper functions provided.

papi_get_perf_data result
If the retrieve is successful, the call returns a return code of PAPI_OK, and
perfDataHandle is set.

If the retrieve fails, the call returns a non-PAPI_OK return code value.

papi_get_perf_data example
void *mainHandle;
int nRc, type;
int cacheTime = 10;
void *perfDataHandle;
static char kernelName[9] = {’\0’};

336 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

/* initialization to be done here */

strcpy(kernelName, "TCPNAME");
type = PAPI_RULES_DATA | PAPI_ACTION_DATA;
nRc = papi_get_perf_data(mainHandle,

type,
NULL,
&cachetime,
kernelName,
&perfDataHandle);

if (nRc != PAPI_OK)
{

printf("Error in papi_get_perf_data : %d\n", nRc);
}
else
{

/* everything is ok so far ... */
}

PAPI helper functions
The following are PAPI helper functions.

papi_get_action_perf_by_id - Obtain performance information
on the action specified by the action ID

#include <papiuser.h>

extern ActionPerfInfo *papi_get_action_perf_by_id(void *perfDataHandle,
int actionId);

papi_get_action_perf_by_id description
This function is used to obtain the performance information on a particular action
specified by the action ID.

The performance information is returned as an ActionPerfInfo structure, as
described in “papi_get_action_perf_info - Obtain performance information on a
particular action” on page 338 (the recordId will match the actionId field).

papi_get_action_perf_by_id parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

actionId
This is an input parameter of type int. This parameter identifies a
particular action.

papi_get_action_perf_by_id result
If the function is successful, the ActionPerfInfo is returned. This pointer should not
be freed.

If the function fails, it returns NULL.

Chapter 12. Policy API (PAPI) 337

papi_get_action_perf_info - Obtain performance information
on a particular action

#include <papiuser.h>

extern ActionPerfInfo *papi_get_action_perf_info(void *perfDataHandle,
int actionNum);

papi_get_action_perf_info description
This function is used to obtain the performance information on a particular action.
The action number is specified by actionNum. When multiple policy rules refer to
a given policy action, the performance information in the action is an aggregate of
all the rules that refer to it.

The performance information is returned as an ActionPerfInfo structure, defined as:
typedef struct {

char name[MAX_POLICY_NAME]; /* Rule / Action name */
Bit32 recordType; /* Rule / Action */
Bit32 recordId; /* Rule / Action Id */
time_t firstActivated; /* Time first activated */
time_t lastMapped; /* Time last mapped */
Bit64 bytesXmitted; /* Total bytes transmitted*/
Bit64 packetsXmitted; /* Total packets

transmitted */
Bit32 activeConnections; /* Active connections

count */
Bit32 reserved4; /* Reserved */
Bit64 acceptedConnections; /* Total accepted

connections */
Bit32 smoothedRttAvg; /* Average smoothed RTT */
Bit32 smoothedRttMdev; /* MDEV of smoothed RTT */
Bit64 bytesRexmitted; /* Total bytes

retransmitted */
Bit64 packetsRexmitted; /* Total packets

retransmitted */
Bit32 smoothedConnDelayAvg; /* Average smoothed conn

delay */
Bit32 smoothedConnDelayMdev; /* MDEV of smoothed conn

delay */
Bit32 acceptQDelayAvg; /* Average accept queue

delay */
Bit32 acceptQDelayMDev; /* MDEV of accept queue

delay */
Bit64 packetsXmittedInProfile;/* Outbound in profile

packets count */
Bit64 bytesXmittedInProfile; /* Outbound in profile bytes

count */
Bit64 reserved2; /* Reserved @Q1A*/
Bit64 reserved3; /* Reserved @Q1A*/
Bit64 packetsReceived; /* Total packets

received @Q1A*/
Bit64 bytesReceived; /* Total bytes

received @Q1A*/
Bit64 packetsXmittedTimedOut; /* Total transmitted

packets timed out @Q1A*/
Bit64 deniedConnections; /* Total denied

connections @Q1A*/
} RulePerfInfo, ActionPerfInfo;

papi_get_action_perf_info parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

338 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

actionNum
This is an input parameter of type int. This parameter points to a
particular action. The action number starts from 0. For example, if the
number of actions returned by the papi_get_actions_count() function is 6,
specify 0 through 5 for the actionNum parameter.

papi_get_action_perf_info result
If the function is successful, the ActionPerfInfo is returned. This pointer should not
be freed.

If the function fails, it returns NULL.

papi_get_actions_count - Obtain number of actions in the
policy performance data

#include <papiuser.h>

extern int papi_get_actions_count(void *perfDataHandle);

papi_get_actions_count description
This function is used to obtain the number of actions in the policy performance
data returned by the papi_get_perf_data() function.

papi_get_actions_count parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

papi_get_actions_count result
If the function is successful, the number of actions in the policy performance data
is returned.

If the function fails, 0 is returned.

papi_get_policy_instance - Obtain policy instance number for
policies in the policy performance data

#include <papiuser.h>

extern int papi_get_policy_instance(void *perfDataHandle);

papi_get_policy_instance description
This function is used to obtain the policy instance number for the set of policies in
the policy performance data returned by the papi_get_perf_data() function. The
instance number is a value that applies to an entire set of policies, and changes
only when a change has been made to the set of policies (for example, when
policies are added or deleted).

papi_get_policy_instance parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

papi_get_policy_instance result
If the function is successful, the policy instance number for the set of policies in
the policy performance data is returned. The instance number is a positive integer.

Chapter 12. Policy API (PAPI) 339

If the function fails, 0 is returned.

papi_get_rule_perf_by_id - Obtain performance information on
the rule specified by the rule ID

#include <papiuser.h>

extern RulePerfInfo *papi_get_rule_perf_by_id(void *perfDataHandle,
int ruleId);

papi_get_rule_perf_by_id description
This function is used to obtain the performance information on the rule that is
specified by the rule ID.

The performance information is returned as a RulePerfInfo structure, as described
in “papi_get_rule_perf_info - Obtain performance information on a particular rule”
(the recordId will match the ruleId field).

papi_get_rule_perf_by_id parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

ruleId This is an input parameter of type int. This parameter identifies a
particular rule.

papi_get_rule_perf_by_id result
If the function is successful, the RulePerfInfo is returned. This pointer should not
be freed.

If the function fails, it returns NULL.

papi_get_rule_perf_info - Obtain performance information on a
particular rule

#include <papiuser.h>

extern RulePerfInfo *papi_get_rule_perf_info(void *perfDataHandle,
int ruleNum);

papi_get_rule_perf_info description
This function is used to obtain the performance information on a particular rule.
The rule number is specified by ruleNum.

The performance information is returned as a RulePerfInfo structure, defined as:
typedef struct {

char name[MAX_POLICY_NAME]; /* Rule / Action name */
Bit32 recordType; /* Rule / Action */
Bit32 recordId; /* Rule / Action Id */
time_t firstActivated; /* Time first activated */
time_t lastMapped; /* Time last mapped */
Bit64 bytesXmitted; /* Total bytes transmitted*/
Bit64 packetsXmitted; /* Total packets */

transmitted */
Bit32 activeConnections; /* Active connections

count */
Bit32 reserved4; /* Reserved */
Bit64 acceptedConnections; /* Total accepted

connections */
Bit32 smoothedRttAvg; /* Average smoothed RTT */

340 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Bit32 smoothedRttMdev; /* MDEV of smoothed RTT */
Bit64 bytesRexmitted; /* Total bytes

retransmitted */
Bit64 packetsRexmitted; /* Total packets

retransmitted */
Bit32 smoothedConnDelayAvg; /* Average smoothed conn

delay */
Bit32 smoothedConnDelayMdev; /* MDEV of smoothed conn

delay */
Bit32 acceptQDelayAvg; /* Average accept queue

delay */
Bit32 acceptQDelayMDev; /* MDEV of accept queue

delay */
Bit64 packetsXmittedInProfile;/* Outbound in profile

packets count */
Bit64 bytesXmittedInProfile; /* Outbound in profile bytes

count */
Bit64 reserved2; /* Reserved @Q1A*/
Bit64 reserved3; /* Reserved @Q1A*/
Bit64 packetsReceived; /* Total packets

received @Q1A*/
Bit64 bytesReceived; /* Total bytes

received @Q1A*/
Bit64 packetsXmittedTimedOut; /* Total transmitted

packets timed out @Q1A*/
Bit64 deniedConnections; /* Total denied

connections @Q1A*/
} RulePerfInfo, ActionPerfInfo;

papi_get_rule_perf_info parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

ruleNum
This is an input parameter of type int. This parameter points to a
particular rule. The rule number starts from 0. For example, if the number
of rules returned by the papi_get_rules_count() function is 5, specify 0
through 4 for the ruleNum parameter.

papi_get_rule_perf_info result
If the function is successful, the RulePerfInfo is returned. This pointer should not
be freed.

If the function fails, it returns NULL.

papi_get_rules_count - Obtain number of rules in the policy
performance data

#include <papiuser.h>

extern int papi_get_rules_count(void *perfDataHandle);

papi_get_rules_count description
This function is used to obtain the number of rules in the policy performance data
returned by the papi_get_perf_data() function.

papi_get_rules_count parameters
*perfDataHandle

This is an input parameter of type void. This parameter points to the
performance data returned by the papi_get_perf_data() API.

Chapter 12. Policy API (PAPI) 341

papi_get_rules_count result
If the function is successful, the number of rules in the policy performance data is
returned.

If the function fails, 0 is returned.

papi_strerror - Return string describing PAPI return code
value

#include <papiuser.h>

extern char *papi_strerror(int papiReturnCode);

papi_strerror description
This function is used to obtain a string describing a PAPI return code value. It is
similar to the C strerror() function.

papi_strerror parameters
papiReturnCode

This is an input parameter of type int. This parameter contains a PAPI
return code value.

papi_strerror result
If the return code is known, a string describing the return code value is returned.

If the return code is not known, a generic unknown error string is returned.

342 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 13. FTP Client Application Programming Interface
(API)

This topic describes the FTP Client Application Programming Interface (API) to the
z/OS FTP client. This topic explains how to initialize the interface, how to use the
interface to submit a subcommand to the client, how to retrieve results of a
request, and how to terminate the interface.

The following terms apply:
v Subcommand refers to z/OS FTP client subcommands.
v Request refers to a request sent to the interface (see “Sending requests to the FTP

client API” on page 365).
A subcommand might result from a request, because a request can do the
following tasks:
– Invoke a specific subcommand (on an SCMD request)
– Result in an implicit subcommand (OPEN resulting from INIT)
– Automatically generate a subcommand (QUIT sent by TERM)
– Result in no subcommand (INIT with no host name or IP address included in

start parameters; TERM issued after the user has explicitly issued SCMD
QUIT; GETL; or POLL)

Guideline: Subcommands are processed by the z/OS FTP client. Some
subcommands result in one or more FTP commands being sent to the FTP server.
Examples of subcommands and commands are:
v LOCSTAT is a subcommand. No command is sent to the server for this

subcommand.
v SYSTEM is a subcommand; a SYSTEM subcommand causes the client to send a

SYST command to the server.
v GET is a subcommand. A data connection establishment command (PORT, PASV,

or EPSV) might be sent to the server; then a RETR command is sent to the
server.

Tip: FTP subcommands in z/OS Communications Server: IP User's Guide and
Commands describes the subcommands that are supported by the z/OS FTP client.

The interface to the z/OS FTP client enables a user program to send subcommands
for the client to process. The user program can multitask to different instances of
the interface by requesting no-wait mode when processing a subcommand. The
interface also enables the user program to retrieve output that includes the
messages from the client, replies from the FTP server, and other data generated as
the result of the request.

The interface requires the use of an FTP Client Application Interface (FCAI) control
block that is created by the user program (see “FTP Client Application Interface
(FCAI) control block” on page 350). The FCAI is a parameter on all calls to the
interface and it is used to pass information between the interface and the user
program.

The following topics are included in this topic:
v “FTP client API compatibility considerations” on page 344

© Copyright IBM Corp. 2000, 2015 343

v “FTP client API guidelines and requirements”
v “Java call formats” on page 346
v “COBOL, C, REXX, assembler, and PL/I call formats” on page 347
v “Converting parameter descriptions” on page 348
v “z/OS FTP client behavior when invoked from the FTP client API” on page 348
v “FTP Client Application Interface (FCAI) control block” on page 350
v “FTP Client Application Interface (FCAI) stem variables” on page 358
v “Sending requests to the FTP client API” on page 365
v “FTP client API for C functions” on page 382
v “FTP client API for REXX function” on page 385
v “Output register information for the FTP client API” on page 403
v “FTP client API: Other output that is returned to the application” on page 403
v “Prompts from the client” on page 404
v “FTP client API messages and replies” on page 406
v “Interpreting results from an interface request” on page 407
v “Programming notes for the FTP client API” on page 409
v “Using the FTP client API trace” on page 413
v “FTP client API sample programs” on page 417

FTP client API compatibility considerations
Unless noted in the z/OS Communications Server: New Function Summary, an
application program that is compiled and link edited on a particular release of
z/OS Communications Server IP can be used on higher level releases. Application
programs that are compiled and link edited on a particular release of z/OS
Communications Server IP cannot be used on older releases.

FTP client API guidelines and requirements
This topic lists the usage guidelines, requirements, and restrictions for the FTP
Client Application Programming Interface (API) for user application programs.

Table 8 describes the programming requirements that apply to the FTP client API.

Table 8. Programming requirements for the FTP client API

Function Restriction

Authorization Supervisor state or problem state, any PSW key

Dispatchable unit mode Task

SRB mode The API can be invoked only in TCB mode (task mode).

Cross-memory mode The API can be invoked only in a non-cross-memory
environment (PASN=SASN=HASN).

ASC mode Primary address space control (ASC) mode

Interrupt status Enabled for interrupts

Locks No locks should be held when issuing these calls.

Control parameters Parameter lists and the FCAI control block must be in primary
storage that is accessible by the API to prevent ABENDs in the
EZAFTPKS interface program.

344 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 8. Programming requirements for the FTP client API (continued)

Function Restriction

Functional Recovery
Routine (FRR)

Do not invoke the API with an FRR set. This can cause system
recovery routines to be bypassed and severely damage the
system.

Storage Storage acquired for the purpose of containing data returned
from an FTP client API call must be obtained in the same key
as the application program status word (PSW) at the time of
the call.

Nested FTP client API
calls

You cannot issue nested FTP client API calls within the same
task. If a request block (RB) issues an FTP client API call and is
interrupted by an interrupt request block (IRB) in an STIMER
exit, no additional FTP client API calls can be issued by the
IRB.

Addressability mode
(AMODE) considerations

The API must be invoked while the caller is in 31-bit
addressability mode.

Guidelines:

v The FTP client API is re-entrant.
v The user program can have more than one FTP Client Application Interface

control block initialized and active in a single address space (see “FTP Client
Application Interface (FCAI) control block” on page 350).

v The FTP client API creates a child process for the z/OS FTP client. If you have a
signal handler, you might see the SIGCHILD signal raised when the FTP client
terminates; no action is required.

v The z/OS FTP client contains handlers for various asynchronous signals. The
FTP client API does not contain any signal handlers, nor does it block or
explicitly raise any signals. See “Programming notes for the FTP client API” on
page 409 for more information about errors in the z/OS FTP client process.

Requirements:

v The application must supply an accessible parameter list and FCAI in primary
storage to the FTP client API. ABENDs can occur in the interface if the
application fails to comply with this requirement.

v Other ABENDS that occur due to inaccessible storage are trapped by the
interface and returned to the application program as an interface error (see
FCAI_IE and its associated values in “FTP Client Application Interface (FCAI)
control block” on page 350). To enable the interface to trap these ABENDs,
specify TRAP(ON,NOSPIE) to disable invocation of the ESPIE macro when the
application program executes within a Language Environment enclave. For
example, specify the following execution parameter for a COBOL application
program:
PARM=’TRAP(ON,NOSPIE)/’

For instructions on specifying runtime options and parameters for Language
Environment languages, see the information about using runtime options in
z/OS Language Environment Programming Guide.

v All of the requests using the same FCAI control block must be made from the
same thread.

v The user program must use a standard call interface. Samples are provided for
COBOL, C, PL/I, and assembler (see “FTP client API sample programs” on page
417).

Chapter 13. FTP Client Application Programming Interface (API) 345

v The user program must run in 31-bit addressing mode (AMODE 31). Other
addressing modes are not supported by the interface. The program can be at any
location (RMODE can be 24 or ANY).

v The application must have an OMVS segment defined (or defaulted).
v The interface module EZAFTPKI must be accessible to the application in the

linklist or in a STEPLIB or JOBLIB DD statement.
v You can either statically link the FTP client API stub program (EZAFTPKS) into

the user application program or load it dynamically for execution. The stub
program is in SYSn.CSSLIB and is designed to maintain upward compatibility.

v For a PL/I program, include this statement before your first call instruction:
DCL EZAFTPKS ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

Restriction: Do not set TRACE RESOLVER in the TCPIP DATA file that an FTP
client API application is using. If you need a resolver trace, pass the environment
variable RESOLVER_TRACE to the FTP client on the INIT request.

Java call formats
The FTP client API for Java™ provides an interface to the z/OS FTP client that
enables a user program written in Java to send subcommands for the client to
process. The user program can also use this interface to retrieve output that
includes the messages from the client, replies from the FTP server, and other data
that is generated as the result of the request.

Each instance of the interface is represented by an FTPClient object. A user
program can create multiple instances of the FTPClient object. A single user
program can use these objects to establish multiple simultaneous connections to
the same FTP server or to different FTP servers. The user program can multitask to
different instances of the interface by requesting that the API not wait for the
completion of an FTP subcommand before it returns control.

The z/OS FTP client that is used by the FTP client API is described in File Transfer
Protocol (FTP) information in z/OS Communications Server: IP User's Guide and
Commands and in the File Transfer Protocol information in z/OS Communications
Server: IP Configuration Reference. The z/OS FTP client, when started with the
FTP client API for Java, operates essentially the same as it does when invoked in
an interactive environment under the z/OS UNIX shell. See “z/OS FTP client
behavior when invoked from the FTP client API” on page 348 for a description of
the differences.

FTP client API for Java package uses the Java Native Interface (JNI) to interface
with the z/OS FTP client using the C Java FTP client API. See “FTP client API for
C functions” on page 382 for more information about the FTP client API for C.

The FTP client API for Java uses the Java logging API (java.util.logging.Logger) to
generate debug information. See documentation about the java.util.logging package
for details about using the Java logging API.

Guidelines:

v The user program can have more than one FTPClient object initialized and
active in a single address space.

v The FTP client API creates a child process for the z/OS FTP client. If you have a
signal handler, you might see the SIGCHILD signal raised when the FTP client
terminates; no action is required.

346 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v The z/OS FTP client contains handlers for various asynchronous signals. The
FTP client API does not contain any signal handlers and does not block or
explicitly raise any signals.

Requirements:

v All requests that use the same FTPClient object must be made from the same
thread.

v The Java JVM in which the application runs must operate in 31-bit addressing
mode. No other addressing modes are supported by the interface.

v The application must have an OMVS segment defined (or set by default).
v The interface module EZAFTPKI must be accessible to the application in the link

list or in a STEPLIB or JOBLIB DD statement.
v To use this package, you must include the EZAFTP.jar file in your classpath. In

addition, the libEZAFTP.so file must be located in $LIBPATH so that the JNI
methods can be found. The EZAFTP.jar file is installed into the directory
/usr/include/java_classes and the libEZAFTP.so file is installed into the
directory /usr/lib.

For more information about the FTP client API for Java, see the JavaDoc that is
included in the EZAFTPDoc.jar file, which is installed into the directory
/usr/include/java_classes. Download the jar file to a workstation, unpack it, and
read it in a web browser.

COBOL, C, REXX, assembler, and PL/I call formats
The FTP client API is invoked by calling the EZAFTPKS program. The following
list shows formats for the COBOL, C, assembler, and PL/I languages.
v COBOL language call format

The EZAFTPKS call format for COBOL programs is:
>>---CALL EZAFTPKS USING FCAI-Map, request_type, parm1, parm2, ... -----><

v C language call format
See “FTP client API for C functions” on page 382 for in-line functions that can
be used with C/C++ programs. These in-line functions provide the calls to
EZAFTPKS.

v REXX language call format
See “FTP client API for REXX function” on page 385 for an external REXX
function that can be used with REXX programs.

v Assembler language call format
The EZAFTPKS call format for assembler language programs is:
>>---CALL EZAFTPKS,(FCAI_Map, request_type, parm1, parm2, ...),VL -----><

v PL/I language call format
The EZAFTPKS call format for PL/I programs is:
>>---CALL EZAFTPKS (FCAI_Map, request_type, parm1, parm2, ...); -----><

The following parameter definitions apply for each of the call formats:

FCAI-Map or FCAI_Map
The name of the FTP Client Application Interface block storage that
describes an instance of use of the interface, or a pointer to the storage.
The storage for this space is acquired by the calling program. COBOL and
assembler callers can append storage within the calling program to the

Chapter 13. FTP Client Application Programming Interface (API) 347

area defined in the COBOL copy member or assembler macro. PL/I or C
callers must alter the INCLUDE member to add user storage to the area.

request_type
The type of processing requested by the invocation of the interface.

parmn_

A variable number of parameters, depending on the request type.

Some parameters are optional depending on the request. When an optional
parameter is omitted but more parameters follow, use a placeholder appropriate
for the language:
v COBOL uses the special name OMITTED in place of the missing parameter.
v C and PL/I use the special name NULL in place of the missing parameter.
v Assembler language uses a comma to indicate the position of the missing

parameter.

Converting parameter descriptions
The coding examples in this topic use IBM Enterprise COBOL for z/OS language
syntax and conventions. The application program should use the syntax and
conventions that are appropriate for the language in which it is written.

Example storage definition statements for COBOL, C, PL/I, and assembler
language programs are:
v IBM Enterprise COBOL for z/OS

PIC S9(4) COMP-5 HALFWORD BINARY VALUE
PIC S9(8) COMP-5 FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF n BYTES

v C
short int /* HALFWORD BINARY VALUE */
long int /* FULLWORD BINARY VALUE */
char x[n] /* CHARACTER FIELD OF n BYTES */

v PL/I declare statement
DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

v Assembler declaration
DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

z/OS FTP client behavior when invoked from the FTP client API
The z/OS FTP client that is used by the FTP client API is described in the File
Transfer Protocol (FTP) information in the z/OS Communications Server: IP User's
Guide and Commands and in the File Transfer Protocol information in the z/OS
Communications Server: IP Configuration Reference. The z/OS FTP client, when
started with the FTP client API, operates essentially as it does when invoked in an
interactive environment under the z/OS UNIX shell.

The following list shows the differences in the behavior of the z/OS FTP client
when it is invoked by the FTP client API:
v When the z/OS FTP client starts, options (parameters) are processed that affect

the operation of the client. The user program uses the START-PARM parameter

348 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

on the INIT request to pass its options to the FTP client API, which passes the
options on to the client (see “INIT” on page 366). All of the options that are
defined for the z/OS FTP client are accepted when the client is started with the
FTP client API. However, the following conditions apply:
– The -e and the EXIT options are ignored by the FTP client API.

These options are intended to affect the operation of the FTP client by causing
it to stop when an eligible subcommand encounters an error. In the FTP client
API, those errors are passed back to the user program as a client error code
(see Table 9 on page 351). The user program can process the error and decide
whether to continue or to end the client process.

– The -i option to disable prompting for the subcommands MGET, MPUT,
MDELETE has no effect on the API.
See “Prompts from the client” on page 404 for a discussion on how prompts
are handled when the z/OS FTP client is invoked from the FTP client API.

– When the z/OS FTP client is invoked within the z/OS UNIX shell, a
backslash (\) is required before the open parenthesis [(] that signals the start
of the MVS-type parameters. Do not use the backslash when invoking the
client with the FTP client API.

v When the z/OS FTP client is invoked from a batch job or from TSO, data sets
and files can be allocated to DD names for use by the client. When the z/OS
FTP client is created from the FTP client API, DD names that are associated with
the application are not available to the client process. Specifically, the use of the
following DD names is not supported by the FTP client API:

SYSFTPD and SYSTCPD
NETRC
INPUT (SYSIN) and OUTPUT

Transfer of data sets by DD name is not possible in the created client process. If
the application sends a transfer subcommand (PUT, GET, and so on) that
includes //DD:ddname, the client returns an error such as
FCAI_CEC_FILE_ACCESS.

v Changing local site defaults using FTP.DATA in z/OS Communications Server:
IP User's Guide and Commands describes how to change local site defaults by
using FTP.DATA. The search order for locating the FTP.DATA configuration file
for the client under the FTP client API is as follows:
1. -f parameter
2. $HOME/ftp.data
3. userid.FTP.DATA
4. /etc/ftp.data
5. SYS1.TCPPARMS(FTPDATA)
6. tcpip_hlq.FTP.DATA

Restriction: The -f parameter cannot be a DD name when the FTP client is
invoked from the FTP client API.

Tip: The $HOME variable is taken from the user's RACF® user profile OMVS
segment. The $HOME variable can be modified with the environment variable
list passed during FTP client API initialization. Initialization is performed with
an ftpapi('init') request in the REXX environment; with a call to the EZAFTPKS
stub program with the INIT keyword for assembler, COBOL, and PL/1; or with
a call to the FAPI_INIT function for C/C++.

Chapter 13. FTP Client Application Programming Interface (API) 349

v The FTP.DATA statements that can be used to change local site defaults for the
z/OS FTP client are defined in the FTP.DATA statements information in the
z/OS Communications Server: IP Configuration Reference. One of the
statements is CLIENTERRCODES, which controls return code settings in the
client. When the client is started by the FTP client API, the value on the
CLIENTERRCODES statement does not affect the reporting of results. See
“Interpreting results from an interface request” on page 407 for a complete
description of how results from the interface and the client are reported.

v When the z/OS FTP client or server prompts for a password or accounting
information, the prompt must be satisfied before any other subcommand or
command is accepted. Under the FTP client API, the user program has the
option to issue GETL or TERM even when a password or accounting
information is expected. If the request is TERM, the interface generates a QUIT
subcommand, which is accepted and stops the client process. See “GETL” on
page 374, “TERM” on page 380, and “Prompts from the client” on page 404 for
more information about how the FTP client API handles prompts.

v The FTP client API requires a secondary subcommand parameter with an SCMD
PROXY request. See “SCMD” on page 369 and “Prompts from the client” on
page 404 for more information.

FTP Client Application Interface (FCAI) control block
The user program written in Cobol, C, assembler, and PL/I and the FTP Client
Application Programming Interface use the FCAI control block to describe an
instance of use of the interface. The space for this control block is acquired by the
user program.

Tip: REXX programs do not use an FCAI control block. For REXX programs, see
“FTP Client Application Interface (FCAI) stem variables” on page 358.

Requirement: The FCAI control block must be aligned on at least a fullword
boundary and be in primary storage.

Guideline: FCAI_Map can be altered to embed in a structure that generates
multiple copies of the FCAI. If this is done, ensure that additional storage in
FCAI_UserArea is acquired in fullword increments to preserve the alignment of
each copy of the FCAI control block.

Table 9 on page 351 is a layout of the control block. The Type column indicates the
type of value that the field contains: text (all text fields must be in EBCDIC),
binary, or undefined. This column also contains the following information:
v (I) to indicate input from the user program. If the field is defined by values that

appear in a table following Table 9 on page 351, there is a reference to that table.
v (O) to indicate output from the interface program. If the field is defined by

values that appear in a table following Table 9 on page 351, there is a reference
to that table.

v (R) to indicate a reserved field.
v (U) to indicate user area.

The field names in this table are the names used for assembler and PL/I. All
sections of this topic use this name syntax with the following exceptions:
v “Sending requests to the FTP client API” on page 365 uses the COBOL syntax;

the field names contain a dash (-) instead of an underscore (_).

350 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v “FTP client API for C functions” on page 382 uses the C syntax; the field names
are identical to assembler and PL/I, but the constant definitions are all in upper
case.

Other than these differences for C and COBOL, the field names in the supplied
macros and samples for each language are similar.

Table 9. FCAI control block

Field name Length Offset Description Type

FCAI_Map 256 and
higher

0 FCAI control block. various

FCAI_DefinedFields 76 0 Fields defined to the interface. various

FCAI_Eyecatcher 4 0 Eyecatcher= FCAI; this field is
required.

(I) text

FCAI_Size 2 4 Size of FCAI; this field is required
and has a minimum value of 256.

(I) binary

FCAI_Version 1 6 Version of FCAI; this field is
required.

(I - see Table 10 on
page 352) binary

FCAI_PollWait 1 7 POLL wait timer in seconds (see
“FCAI_PollWait: Specifying a wait
time before POLL” on page 411).

(I) binary

FCAI_ReqTimer 1 8 Request timer in seconds or 0 for
none (see “FCAI_ReqTimer:
Controlling requests that retrieve
results from the created z/OS FTP
client process” on page 410).

(I) binary

FCAI_TraceIt 1 9 Trace indicator for this request (see
“Using the FTP client API trace” on
page 413).

(I - see Table 11 on
page 352) binary

FCAI_TraceID 3 10 ID used in a trace record. This
value is used only when a request
initiates the interface trace function
and does not change thereafter.

(I) text

FCAI_TraceCAPI 1 13 TRACECAPI value on FTP.DATA
statement.

(O - see Table 12 on
page 353) binary

FCAI_TraceStatus 1 14 Status of the trace (see
“FCAI_Status_TraceFailed and
FCAI_TraceStatus: Reporting
failures in the interface trace
function” on page 409).

(O - see Table 13 on
page 353) binary

FCAI_TraceSClass 1 15 SYSOUT class for trace file. This
value is used only when a request
initiates the interface trace function
and does not change thereafter.

(I) text

FCAI_TraceName 8 16 ddname of the trace file. (O) text

FCAI_Token 4 24 Interface token (do not alter after
INIT).

(O) binary

FCAI_RequestID 4 28 Last request (for example, 'SCMD'). (O) text

FCAI_RCV 16 32 Request completion values (see
“Interpreting results from an
interface request” on page 407).

(O) binary

FCAI_Result 1 32 Request result (the return code
register also contains this value).

(O - see Table 14 on
page 353) binary

FCAI_Status 1 33 Status code. (O - see Table 15 on
page 354) binary

FCAI_IE 1 34 Interface error. (O - see Table 16 on
page 354) binary

Chapter 13. FTP Client Application Programming Interface (API) 351

Table 9. FCAI control block (continued)

Field name Length Offset Description Type

FCAI_CEC 1 35 Client error code (see FTP return
codes in the z/OS Communications
Server: IP User's Guide and
Commands).

(O) binary

FCAI_ReplyCode 2 36 Server reply code or 0 if no reply
(see FTPD reply codes in z/OS
Communications Server: IP and
SNA Codes).

(O) binary

FCAI_SCMD 1 38 Subcommand code (see FTP
subcommand codesFTP
subcommand codesin z/OS
Communications Server: IP User's
Guide and Commands).

(O) binary

Reserved 1 39 Reserved. (R) undefined

FCAI_ReturnCode 4 40 Return code (see Table 13 on page
353 and Table 16 on page 354 for
errors that have associated return
code data).

(O) binary

FCAI_ReasonCode 4 44 Reason code (see Table 13 on page
353 and Table 16 on page 354 for
errors that have associated reason
code data).

(O) binary

Summary fields for output lines that are held in the interface buffer

FCAI_NumberLines 4 48 Number of output lines returned by
the request.

(O) binary

FCAI_LongestLine 4 52 Size of the longest line. (O) binary

FCAI_SizeAll 4 56 Size of all output lines. (O) binary

FCAI_SizeMessages 4 60 Size of all message lines. (O) binary

FCAI_SizeReplies 4 64 Size of all reply lines. (O) binary

FCAI_SizeList 4 68 Size of all list lines. (O) binary

FCAI_SizeTrace 4 72 Size of all trace lines. (O) binary

FCAI_PID 4 76 Process ID of FTP client. (O) binary

Reserved and user areas

FCAI_ReservedForInterface 176 80 Reserved. (R) undefined

FCAI_UserArea 0 to
unlimited

256 Start of user area. It is not necessary
to add the size of the user area to
the value in FCAI_Size.

(U) undefined

Table 10. FCAI_Version field value

Name Value Description

FCAI_Version_Number 1 Version number

For more information about the values found in Table 11, see “Using the FTP client
API trace” on page 413.

Table 11. FCAI_TraceIt field value

Name Value Description

FCAI_TraceIt_No 0 Do not trace this request.

FCAI_TraceIt_Yes 1 Trace this request.

352 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 12. FCAI_TraceCAPI field value

Name Value Description

FCAI_TraceCAPI_C 0 Trace according to
FCAI_TraceIt.

FCAI_TraceCAPI_A 1 Trace all events.

FCAI_TraceCAPI_N 2 Trace no events.

For more information about the values found in Table 13, see
“FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting failures in the interface
trace function” on page 409.

Table 13. FCAI_TraceStatus field value

Name Value Description Additional information returned
with FCAI_Status_TraceFailed

FCAI_TraceStatus_OK 0 Tracing OK or not
started

None

FCAI_TraceStatus_StorageErr 1 Failed to acquire or
access storage

FCAI_ReturnCode = GETMAIN
return code

FCAI_TraceStatus_AllocErr 2 Allocation error FCAI_ReturnCode = S99ERROR
value or 8; FCAI_ReasonCode =
S99ERSN for SMS error, S99INFO
otherwise

FCAI_TraceStatus_OpenErr 3 Open error FCAI_ReturnCode contains the
OPEN return code or
FCAI_ReasonCode contains the
ABEND code

FCAI_TraceStatus_WriteErr 4 Write error FCAI_ReasonCode=ABEND code

FCAI_TraceStatus_CloseErr 5 Close error FCAI_ReturnCode contains the
CLOSE return code or
FCAI_ReasonCode contains the
ABEND code

FCAI_TraceStatus_SysoutClassErr 6 FCAI_TraceSClass
contains a Sysout
output class that is
not valid

None

For more information about the values found in Table 14, see “Interpreting results
from an interface request” on page 407.

Table 14. FCAI_Result field value

Name Value Description

FCAI_Result_OK 0 OK with no additional status.

FCAI_Result_Status 1 Status code returned in FCAI_Status.

FCAI_Result_IE 2 Interface error returned in FCAI_IE.

FCAI_Result_CEC 3 Client Error Code returned in FCAI_CEC.

FCAI_Result_NoMatch 4 GETL request has no matches.

FCAI_Result_UnusableFCAI 17 FCAI is not usable.

FCAI_Result_TaskMismatch 18 Task is not the same as INIT task.

FCAI_Result_CliProcessKill 32 TERM issued BPX1KIL to end the client
process. This is informational.

Chapter 13. FTP Client Application Programming Interface (API) 353

For more information about the values found in Table 15, see “Prompts from the
client” on page 404 and “Interpreting results from an interface request” on page
407.

Table 15. FCAI_Status field values

Name Value Description Additional Information

FCAI_Status_InProgress 1 Subcommand is
in-progress.

This status is returned for
an SCMD issued in no-wait
mode or if FCAI_ReqTimer
expires on an SCMD issued
in wait mode, and on any
subsequent POLL requests
until the SCMD completes.

FCAI_Status_PromptPass 2 Request prompted
for a PASS
subcommand.

The interface accepts only
SCMD PASS or a GETL
request until the prompt is
satisfied or this instance of
the interface is terminated.

FCAI_Status_Acct 3 Request prompted
for an ACCT
subcommand.

The interface accepts only
SCMD ACCT or a GETL
request until the prompt is
satisfied or this instance of
the interface is terminated.

FCAI_Status_TraceFailed 200 The interface trace
failed on this
request and has
been disabled.

This status is added to any
other status returned. See
“FCAI_Status_TraceFailed
and FCAI_TraceStatus:
Reporting failures in the
interface trace function” on
page 409 for more
information.

Table 16. FCAI_IE field values

Name Value Description Additional Information

General interface errors

FCAI_IE_RequestMissing 1 Request ID is missing. Request ID parameter not
passed to EZAFTPKS.

FCAI_IE_RequestUnknown 2 Unknown request. Request ID not INIT, TERM,
POLL, GETL, or SCMD.

FCAI_IE_ParmMissing 3 Parameter missing. Required parameter not
passed to EZAFTPKS.

FCAI_IE_ParmStorageErr 4 Storage error for a
parameter.

Parameter list points to
inaccessible storage.

FCAI_IE_TooManyParameters 5 More parameters were
passed than are
defined for this request
type.

Failure to include VL on an
assembler language call to
EZAFTPKS is one cause.

FCAI_IE_ControlErr 6 Error altering an open
file descriptor.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by BPX1FCT in
z/OS UNIX System Services
Programming: Assembler
Callable Services Reference.

354 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 16. FCAI_IE field values (continued)

Name Value Description Additional Information

FCAI_IE_InternalErr 7 Internal error in the
interface.

For example, allocated buffer
not found in chain; see
“FCAI_IE_InternalErr:
Unanticipated exceptional
conditions in the interface” on
page 412.

FCAI_IE_LengthInvalid 8 Negative or zero
length.

For example, zero buffer
length with GETL; see
“FCAI_IE_LengthInvalid:
Improper lengths passed to
the interface” on page 410.

INIT errors

FCAI_IE_APIAlreadyInit 16 Interface already
initialized.

This FCAI was used on a
prior INIT request.

FCAI_IE_InitParmTooBig 17 INIT parameter is too
big.

FTP start parms string exceeds
2393 bytes.

FCAI_IE_APILoadFailed 18 The load of the
interface failed.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by the BLDL
service.

FCAI_IE_NoTokenAddr 19 Token address is 0. This FCAI has not been
initialized and the current
request is not INIT.

FCAI_IE_BadTokenAddr 20 Bad token field. FCAI_Token is not valid.

FCAI_IE_GetWorkareaFailed 21 Error acquiring
workarea.

FCAI_ReturnCode contains
the value returned by the
GETMAIN service.

FCAI_IE_ReqTimerExpired 22 INIT timed out waiting
for output from the
client.

See “FCAI_ReqTimer:
Controlling requests that
retrieve results from the
created z/OS FTP client
process” on page 410 for more
information.

FCAI_IE_TooManyInitParms 23 More than 30 separate
tokens were passed in
the start parameters.

Tokens are defined as
characters or punctuation
surrounded by whitespace.

FCAI_IE_TooManyEnvVars 24 More than nine
environment variables
were passed on the
INIT.

Use _CEE_ENVFILE=
hfs_filename to pass more than
nine environment variables.

FCAI_IE_CreatePipeErr 26 Error creating pipe to
the client.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by BPX1PIP in the
z/OS UNIX System Services
Programming: Assembler
Callable Services Reference.

FCAI_IE_SpawnErr 27 Error spawning the
client.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by BPX1SPN in the
z/OS UNIX System Services
Programming: Assembler
Callable Services Reference.

SCMD errors

FCAI_IE_ScmdParmTooBig 32 SCMD subcommand
string too long.

SCMD subcommand
parameter string must not
exceed 2064 bytes.

FCAI_IE_UNKMode 33 Mode parameter value
incorrect.

Mode parameter value must
be W or N.

Chapter 13. FTP Client Application Programming Interface (API) 355

Table 16. FCAI_IE field values (continued)

Name Value Description Additional Information

FCAI_IE_PassPromptErr 34 The current SCMD
request is in error
because PASS is
required.

A prior request set
FCAI_Status_PromptPass and
the current SCMD is not
PASS.

FCAI_IE_AcctPromptErr 35 The current SCMD
request is in error
because ACCT is
required.

A prior request set
FCAI_Status_PromptAcct and
the current SCMD is not
ACCT.

FCAI_IE_AlreadyInProgress 37 The current SCMD
request is in error
because an SCMD is
in-progress.

A prior SCMD returned
FCAI_Status_InProgress. Issue
a POLL request to complete
the prior SCMD.

FCAI_IE_CliProcessStopped 38 The current request is
in error because the
client process was
stopped normally with
a QUIT subcommand.

Only GETL can be issued
prior to TERM when the client
has processed a QUIT
subcommand; the current
request is not GETL or TERM.

FCAI_IE_WriteErr 41 Error writing to the
client.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by BPX1WRT in the
z/OS UNIX System Services
Programming: Assembler
Callable Services Reference.

INIT, SCMD, and POLL errors

FCAI_IE_ReadErr 42 Error reading from the
client.

FCAI_ReturnCode and
FCAI_ReasonCode contain
values set by BPX1RED in the
z/OS UNIX System Services
Programming: Assembler
Callable Services Reference.

FCAI_IE_CliProcessBroken 47 Client process broken;
send a TERM request.

A previous error was
encountered when
communicating with the client
or the client has terminated
unexpectedly. Only GETL or
TERM are accepted when this
occurs.

POLL errors

FCAI_IE_NotInProgress 48 A POLL request was
issued when no
subcommand was
in-progress.

Processing can continue
normally with the next
request.

GETL errors

FCAI_IE_UnknownOperation 64 GETL OPERATION
parameter is not
recognized.

OPERATION must be FIND
or COPY.

FCAI_IE_UnknownType 65 GETL TYPE parameter
is not recognized.

TYPE must be one of the
following values:

M - client message

R - server reply

T - client trace

L - LIST/NLST output

A - any

356 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 16. FCAI_IE field values (continued)

Name Value Description Additional Information

FCAI_IE_UnknownSequence 66 GETL FIND
SEQUENCE parameter
is not recognized.

Sequence must be one of the
following values:

F - first

L - last

N - next

FCAI_IE_VectorStorageErr 67 The buffer described
by the vector cannot
be accessed.

See the description of the
VECTOR parameter in
“Parameter values that are set
by the application” on page
376.

FCAI_IE_BufferTooSmall 68 The buffer described
by the vector is too
small to hold the first
line of returned
output.

See “GETL” on page 374 for
more information.

FCAI_IE_TraceIDTooBig 69 Length of traceID must
be 0 - 3 characters.

Set only by the FTP client API
for REXX.

FCAI_IE_TraceSClassTooBig 70 Length of traceSClass
value must be 0 - 3
characters.

Set only by the FTP client API
for REXX.

FCAI_IE_UnknownTraceIt 71 The traceIt value is not
recognized.

Set only by the FTP client API
for REXX.

FCAI_IE_ReqTimerInvalid 72 The request timer
value is not in the
range 0 - 255.

Set only by the FTP client API
for REXX.

FCAI_IE_LinesParmTooBig 73 The GETL lines stem
name is more than 200
characters in length.

Set only by the FTP client API
for REXX.

FCAI_IE_PollWaitInvalid 74 The pollWait value is
not in the range
0 - 255.

Set only by the FTP client API
for REXX.

FCAI_FCAI_IE_NumTraceInvalid 75 The numTrace value is
not in the range
1 - 1000000.

Set only by the FTP client API
for REXX.

FCAI_IE_FcaiMapParmTooBig 76 The FCAI stem name
is more than 250
characters in length.

Set only by the FTP client API
for REXX.

FCAI_IE_EnvVarStorageErr 77 Unable to allocate
storage for an
environment variable.

Set only by the FTP client API
for REXX.

FCAI_IE_SysoutClassErr 78 FCAI_TraceSClass
contains a Sysout
output class that is not
valid.

Set only by the FTP client API
for REXX.

Define the space for the FCAI by including the appropriate macro or source copy
book in your program as follows:
v EZAFTPKA - Assembler macro found in SEZACMAC
v EZAFTPKC - COBOL copy book found in SEZANMAC
v ftpcapi.h - C header file found in /usr/include/
v EZAFTPKP - PL/I include deck found in SEZANMAC

Chapter 13. FTP Client Application Programming Interface (API) 357

FTP Client Application Interface (FCAI) stem variables
The user-written REXX program uses an FCAI stem to represent an instance of use
of the interface.

Guideline: When passing the REXX stem to the FTP client API for REXX, include
the terminating period (.).

Table 17 describes the stem variables that are created from the REXX stem. The
Type column indicates the type of value that the field contains, which can be
decimal or binary.

All stem variables, with the exception of stem.FCAI_Map, are output fields. The
stem.FCAI_Map variable is used internally by the FTP client API for REXX function
package.

Table 17. FCAI stem variables

Name Type Description Additional Information

stem.FCAI_Result Decimal This stem variable
corresponds to the
FCAI_Result field in the
FCAI_Map control block.

See Table 15 on page
354.

stem.FCAI_IE Decimal This stem variable
corresponds to the
FCAI_IE field in the
FCAI_Map control block.

See Table 16 on page
354.

stem.FCAI_CEC Decimal This stem variable
corresponds to the
FCAI_CEC field in the
FCAI_Map control block.

See FTP return codes in
the z/OS
Communications Server:
IP User's Guide and
Commands.

stem.FCAI_ReplyCode Decimal This stem variable
corresponds to the
FCAI_ReplyCode in the
FCAI_Map control block.

See FTPD reply codes in
z/OS Communications
Server: IP and SNA
Codes.

stem.FCAI_TraceStatus Decimal This stem variable
corresponds to the
FCAI_TraceStatus field in
the FCAI_Map control
block. It can be used to
determine whether the
last FTP client API trace
succeeded or failed.

See Table 13 on page
353.

stem.FCAI_ReturnCode Decimal This stem variable
corresponds to the
FCAI_ReturnCode field in
the FCAI_Map control
block.

See Table 13 on page 353
and Table 16 on page
354.

stem.FCAI_ReasonCode Decimal This stem variable
corresponds to the
FCAI_ReasonCode field
in the FCAI_Map control
block.

See Table 13 on page 353
and Table 16 on page
354.

358 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 17. FCAI stem variables (continued)

Name Type Description Additional Information

stem.FCAI_SCMD Decimal This stem variable
corresponds to the
FCAI_SCMD field in the
FCAI_Map control block.

See FTP subcommand
codes in the z/OS
Communications Server:
IP User's Guide and
Commands.

stem.FCAI_Map Binary This stem variable
contains a binary
representation of the
FCAI_Map control block,
plus additional fields
used by the FTP client
API for REXX.

This stem variable must
not be modified by the
REXX program.

Predefined REXX variables
Predefined REXX variables make symbolic references easier and more consistent.
Instead of using a numeric or non-numeric value, you can use the predefined
variable, which defines that value for you. Table 18 shows the data type and value
for each predefined variable. The predefined variables are created on the first
CREATE request issued by a REXX program.

Requirement: The REXX program must treat the predefined variables as read-only,
and must not assign any values to them.

The predefined variables, listed alphabetically, are shown in Table 18.

Table 18. Predefined REXX variables

Name Type Description Additional Information

FCAI_CEC_ALREADY_CONNECTED Decimal 6 Can be stored in stem.FCAI_CEC

FCAI_CEC_AUTHENTICATION Decimal 17 Can be stored in stem.FCAI_CEC

FCAI_CEC_CLIENT_ERR Decimal 24 Can be stored in stem.FCAI_CEC

FCAI_CEC_CONNECT_FAILED Decimal 8 Can be stored in stem.FCAI_CEC

FCAI_CEC_CONVERSION Decimal 21 Can be stored in stem.FCAI_CEC

FCAI_CEC_EOD_BEFORE_EOF Decimal 25 Can be stored in stem.FCAI_CEC

FCAI_CEC_EXIT_EZAFCCMD_PREVENT Decimal 27 Can be stored in stem.FCAI_CEC

FCAI_CEC_EXIT_EZAFCCMD_TERM Decimal 28 Can be stored in stem.FCAI_CEC

FCAI_CEC_EXIT_EZAFCCMD_WRONG_RC Decimal 29 Can be stored in stem.FCAI_CEC

FCAI_CEC_EXIT_EZAFCREP_TERM Decimal 30 Can be stored in stem.FCAI_CEC

FCAI_CEC_EXIT_EZAFCREP_WRONG_RC Decimal 31 Can be stored in stem.FCAI_CEC

FCAI_CEC_FILE_ACCESS Decimal 18 Can be stored in stem.FCAI_CEC

FCAI_CEC_FILE_READ Decimal 19 Can be stored in stem.FCAI_CEC

FCAI_CEC_FILE_WRITE Decimal 20 Can be stored in stem.FCAI_CEC

FCAI_CEC_INPUT_ERR Decimal 12 Can be stored in stem.FCAI_CEC

FCAI_CEC_INTERNAL_ERROR Decimal 1 Can be stored in stem.FCAI_CEC

FCAI_CEC_INVALID_ENVIRONMENT Decimal 15 Can be stored in stem.FCAI_CEC

FCAI_CEC_INVALID_PARAM Decimal 4 Can be stored in stem.FCAI_CEC

FCAI_CEC_LOGIN_FAILED Decimal 11 Can be stored in stem.FCAI_CEC

FCAI_CEC_NEEDS_CONNECTION Decimal 26 Can be stored in stem.FCAI_CEC

FCAI_CEC_NOT_ENABLED Decimal 16 Can be stored in stem.FCAI_CEC

Chapter 13. FTP Client Application Programming Interface (API) 359

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_CEC_NOTFOUND Decimal 14 Can be stored in stem.FCAI_CEC

FCAI_CEC_OPEN_IOSTREAM_FAILED Decimal 5 Can be stored in stem.FCAI_CEC

FCAI_CEC_PROXY_ERR Decimal 22 Can be stored in stem.FCAI_CEC

FCAI_CEC_SERVER_ERROR Decimal 2 Can be stored in stem.FCAI_CEC

FCAI_CEC_SESSION_ERROR Decimal 10 Can be stored in stem.FCAI_CEC

FCAI_CEC_SQL_ERR Decimal 23 Can be stored in stem.FCAI_CEC

FCAI_CEC_TIMEOUT Decimal 9 Can be stored in stem.FCAI_CEC

FCAI_CEC_USAGE Decimal 7 Can be stored in stem.FCAI_CEC

FCAI_ERROR_CEC Decimal -3 Can be returned by FTPAPI call

FCAI_ERROR_IE Decimal -2 Can be returned by FTPAPI call

FCAI_GETL_ANY_LINE Char A Value for type parameter on GETL_FIND or
GETL_COPY requests

FCAI_GETL_FIND_FIRST Char F Value for sequence parameter on GETL_FIND
requests

FCAI_GETL_FIND_LAST Char L Value for sequence parameter on GETL_FIND
requests

FCAI_GETL_FIND_NEXT Char N Value for sequence parameter on GETL_FIND
requests

FCAI_GETL_LIST_LINE Char L Value for sequence parameter on GETL_FIND
requests

FCAI_GETL_MESSAGE_LINE Char M Value for type parameter on GETL_FIND or
GETL_COPY requests

FCAI_GETL_REPLY_LINE Char R Value for type parameter on GETL_FIND or
GETL_COPY requests

FCAI_GETL_TRACE_LINE Char T Value for type parameter on GETL_FIND or
GETL_COPY requests

FCAI_IE_ACCTPROMPTERR Decimal 35 Can be stored in stem.FCAI_IE

FCAI_IE_ALREADYINPROGRESS Decimal 37 Can be stored in stem.FCAI_IE

FCAI_IE_APIALREADYINIT Decimal 16 Can be stored in stem.FCAI_IE

FCAI_IE_APILOADFAILED Decimal 18 Can be stored in stem.FCAI_IE

FCAI_IE_BADTOKENADDR Decimal 20 Can be stored in stem.FCAI_IE

FCAI_IE_BUFFERTOOSMALL Decimal 68 Can be stored in stem.FCAI_IE

FCAI_IE_CLIPROCESSBROKEN Decimal 47 Can be stored in stem.FCAI_IE

FCAI_IE_CLIPROCESSSTOPPED Decimal 38 Can be stored in stem.FCAI_IE

FCAI_IE_CONTROLERR Decimal 6 Can be stored in stem.FCAI_IE

FCAI_IE_CREATEPIPEERR Decimal 26 Can be stored in stem.FCAI_IE

FCAI_IE_ENVVARSTORAGEERR Decimal 77 Can be stored in stem.FCAI_IE

FCAI_IE_GETWORKAREAFAILED Decimal 21 Can be stored in stem.FCAI_IE

FCAI_IE_INITPARMTOOBIG Decimal 17 Can be stored in stem.FCAI_IE

FCAI_IE_INTERNALERR Decimal 7 Can be stored in stem.FCAI_IE

FCAI_IE_LENGTHINVALID Decimal 8 Can be stored in stem.FCAI_IE

FCAI_IE_LINESPARMTOOBIG Decimal 73 Can be stored in stem.FCAI_IE

FCAI_IE_NOTINPROGRESS Decimal 48 Can be stored in stem.FCAI_IE

FCAI_IE_NOTOKENADDR Decimal 19 Can be stored in stem.FCAI_IE

FCAI_IE_PARMMISSING Decimal 3 Can be stored in stem.FCAI_IE

FCAI_IE_PARMSTORAGEERR Decimal 4 Can be stored in stem.FCAI_IE

FCAI_IE_PASSPROMPTERR Decimal 34 Can be stored in stem.FCAI_IE

360 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_IE_POLLWAITINVALID Decimal 74 Can be stored in stem.FCAI_IE

FCAI_IE_READERR Decimal 42 Can be stored in stem.FCAI_IE

FCAI_IE_REQTIMEREXPIRED Decimal 22 Can be stored in stem.FCAI_IE

FCAI_IE_REQTIMERINVALID Decimal 72 Can be stored in stem.FCAI_IE

FCAI_IE_REQUESTMISSING Decimal 1 Can be stored in stem.FCAI_IE

FCAI_IE_REQUESTUNKNOWN Decimal 2 Can be stored in stem.FCAI_IE

FCAI_IE_SCMDPARMTOOBIG Decimal 32 Can be stored in stem.FCAI_IE

FCAI_IE_SPAWNERR Decimal 27 Can be stored in stem.FCAI_IE

FCAI_IE_STEMINUSE Decimal 90 Can be stored in stem.FCAI_IE

FCAI_IE_SYSOUTCLASSERR Decimal 78 Can be stored in fcaiMap.FCAI_IE

FCAI_IE_TOOMANYENVVARS Decimal 24 Can be stored in stem.FCAI_IE

FCAI_IE_TOOMANYINITPARMS Decimal 23 Can be stored in stem.FCAI_IE

FCAI_IE_TOOMANYPARAMETERS Decimal 5 Can be stored in stem.FCAI_IE

FCAI_IE_TRACEIDTOOBIG Decimal 69 Can be stored in stem.FCAI_IE

FCAI_IE_TRACESCLASSTOOBIG Decimal 70 Can be stored in stem.FCAI_IE

FCAI_IE_UNKMODE Decimal 33 Can be stored in stem.FCAI_IE

FCAI_IE_UNKNOWNOPERATION Decimal 64 Can be stored in stem.FCAI_IE

FCAI_IE_UNKNOWNSEQUENCE Decimal 66 Can be stored in stem.FCAI_IE

FCAI_IE_UNKNOWNTRACEIT Decimal 71 Can be stored in stem.FCAI_IE

FCAI_IE_UNKNOWNTYPE Decimal 65 Can be stored in stem.FCAI_IE

FCAI_IE_VECTORSTORAGEERR Decimal 67 Can be stored in stem.FCAI_IE

FCAI_IE_WRITEERR Decimal 41 Can be stored in stem.FCAI_IE

FCAI_MODE_NOWAIT Char N Can be stored in stem.FCAI_IE

FCAI_MODE_WAIT Char W Can be stored in stem.FCAI_IE

FCAI_RESULT_CEC Decimal -3 Can be returned by an FTPAPI call

FCAI_RESULT_IE Decimal -2 Can be returned by an FTPAPI call

FCAI_RESULT_INPROGRESS Decimal 1 Can be stored in stem.FCAI_IE

FCAI_RESULT_NOMATCH Decimal 4 Can be stored in stem.FCAI_Result or can be
returned by an FTPAPI call

FCAI_RESULT_OK Decimal 0 Can be stored in stem.FCAI_Result or returned by an
FTPAPI call

FCAI_RESULT_PROMPTACCT Decimal 3 Can be stored in stem.FCAI_Result or returned by an
FTPAPI call

FCAI_RESULT_PROMPTPASS Decimal 2 Can be stored in stem.FCAI_Result or returned by an
FTPAPI call

FCAI_RESULT_REXXERROR Decimal -19 Can be returned by an FTPAPI call

FCAI_RESULT_UNUSABLEFCAI Decimal -17 Can be returned by an FTPAPI call

FCAI_SCMD_ACCT Decimal 3 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_AMBIGUOUS Decimal 1 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_APPE Decimal 4 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_ASCII Decimal 5 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_BIG5 Decimal 57 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

Chapter 13. FTP Client Application Programming Interface (API) 361

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_SCMD_BINARY Decimal 6 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_BLOCK Decimal 58 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CCC Decimal 77 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CD Decimal 7 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CDUP Decimal 51 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CLEAR Decimal 72 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CLOSE Decimal 8 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_COMPRESS Decimal 59 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_CPROTECT Decimal 73 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_DEBUG Decimal 11 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_DELE Decimal 13 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_DELIMIT Decimal 12 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_DIR Decimal 14 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_DUMP Decimal 70 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_EBCDIC Decimal 15 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_EUCKANJI Decimal 46 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_FEAT Decimal 78 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_FILE Decimal 60 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_GENHELP Decimal 2 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_GET Decimal 16 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_GLOB Decimal 65 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_HANGEUL Decimal 53 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_HELP Decimal 17 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_IBMKANJI Decimal 47 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_JIS78KJ Decimal 48 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_JIS83KJ Decimal 49 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

362 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_SCMD_KSC5601 Decimal 54 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LANG Decimal 79 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LCD Decimal 41 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LMKDIR Decimal 45 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LOCSITE Decimal 42 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LOCSTAT Decimal 18 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LPWD Decimal 43 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_LS Decimal 20 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MDELETE Decimal 21 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MGET Decimal 22 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MKD Decimal 44 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MKFIFO Decimal 82 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MODE Decimal 23 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MPUT Decimal 24 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MVSGET Decimal 83 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_MVSPUT Decimal 84 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_NOOP Decimal 25 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_OEEXCL Decimal 68 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_OPEN Decimal 10 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PASS Decimal 26 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PRIVATE Decimal 74 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PROMPT Decimal 66 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PROTECT Decimal 75 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PROXY Decimal 61 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PUT Decimal 27 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_PWD Decimal 28 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

Chapter 13. FTP Client Application Programming Interface (API) 363

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_SCMD_QUIT Decimal 29 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_QUOTE Decimal 30 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_RECORD Decimal 62 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_RENAME Decimal 31 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_REST Decimal 56 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_RMD Decimal 52 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SAFE Decimal 76 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SCHINESE Decimal 63 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SENDPORT Decimal 32 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SENDSITE Decimal 33 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SITE Decimal 34 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SJISKJ Decimal 50 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SREST Decimal 80 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_STAT Decimal 35 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_STREAM Decimal 64 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_STRU Decimal 36 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SUNIQUE Decimal 37 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_SYST Decimal 38 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_TCHINESE Decimal 55 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_TSO Decimal 9 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_TYPE Decimal 40 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_UCS2 Decimal 67 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_UNKNOWN Decimal 99 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_USER Decimal 19 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_SCMD_VERBOSE Decimal 71 Can be stored in fcaiMap.FCAI_SCMD by a
GET_FCAI_MAP request

FCAI_STATUS_INPROGRESS Decimal 1 Can be returned by an FTPAPI call

FCAI_STATUS_PROMPTACCT Decimal 3 Can be returned by an FTPAPI call

FCAI_STATUS_PROMPTPASS Decimal 2 Can be returned by an FTPAPI call

364 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 18. Predefined REXX variables (continued)

Name Type Description Additional Information

FCAI_STATUS_TRACEFAILED Decimal 200 Can be returned by an FTPAPI call

FCAI_TASK_CLIPROCESSKILL Decimal -32 Can be stored in stem.FCAI_Result or returned by an
FTPAPI function call

FCAI_TASK_TASKMISMATCH Decimal -18 Can be stored in stem.FCAI_Result or returned by an
FTPAPI function call

FCAI_TRACE_DATASET_NAME String Data set name to which the REXX FTP Client trace is
written if the FTP client API for REXX is active, or
an empty string ('') if the trace is not active.

FCAI_TRACE_DATASET_RETCODE Integer Return code from FTP client API for REXX tracing
from the last invocation of the FTP client API for
REXX

FCAI_TRACE_WORKAREA Binary Binary data used by the FTP client API for REXX
when writing trace records.
Rule: This variable must not be modified by the
REXX program.

FCAI_TRACECAPI_A Decimal 1 Can be stored in fcaiMap.FCAI_TraceCAPI by a
GET_FCAI_MAP request

FCAI_TRACECAPI_C Decimal 0 Can be stored in fcaiMap.FCAI_TraceCAPI by a
GET_FCAI_MAP request

FCAI_TRACECAPI_N Decimal 2 Can be stored in fcaiMap.FCAI_TraceCAPI by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_ALLOCERR Decimal 2 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_CLOSEERR Decimal 5 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_OK Decimal 0 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_OPENERR Decimal 3 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_STORAGEERR Decimal 1 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

FCAI_TRACESTATUS_WRITEERR Decimal 4 Can be stored in fcaiMap.FCAI_TraceStatus by a
GET_FCAI_MAP request

Sending requests to the FTP client API
This topic contains the description, syntax, parameters, and other related
information for each of the following requests submitted to this API:
v INIT
v SCMD
v POLL
v GETL
v TERM

Note: The text in this topic sometimes uses shorthand when referring to results.
When a request is said to return FCAI_IE_LengthInvalid, for example, it means
that FCAI_Result contains FCAI_Result_IE and FCAI_IE contains
FCAI_IE_LengthInvalid. See “Interpreting results from an interface request” on
page 407.

Chapter 13. FTP Client Application Programming Interface (API) 365

This topic provides information on the Cobol, C, assembler and PL/I programming
languages. For REXX programs, see “FTP client API for REXX function” on page
385.

INIT
The user program issues the INIT request to initialize the FTP client API. This call
is the first call to the interface and is made only one time for each FCAI control
block that defines an instance of use of the interface.

Rules:

v Align the FCAI on at least a fullword boundary.
v The FCAI must be in primary space (not a dataspace).
v Initialize the FCAI by performing the steps listed in step 3 in “Application tasks

for the INIT request” on page 368.
v The caller can specify the number of seconds to wait by setting an

FCAI_ReqTimer value (or specify that no timer is to be used). See
“FCAI_ReqTimer: Controlling requests that retrieve results from the created
z/OS FTP client process” on page 410.

v Before exiting, your application should issue a TERM request for each INIT
request.

v If using the Trace Resolver facility, the trace should be activated by specifying
the RESOLVER_TRACE environment variable to collect the trace information in
a file or MVS dataset.

Example of the INIT call instruction
WORKING-STORAGE SECTION.

COPY EZAFTPKC.
01 REQUEST-INIT PIC X(4) VALUE IS ’INIT’.
01 START-PARM.

05 PARM-LEN PIC 9(2) COMP-5 VALUE IS 6.
05 PARM-VAL PIC X(6) VALUE IS ’-n tls’.

01 ENV-VAR-LIST.
05 ENV-VAR-COUNT PIC 9(8) COMP-5 VALUE IS 3.
05 ENV-VAR1-LEN PIC 9(8) COMP-5.
05 ENV-VAR2-LEN PIC 9(8) COMP-5.
05 ENV-VAR3-LEN PIC 9(8) COMP-5.
05 ENV-VAR1-P USAGE IS POINTER.
05 ENV-VAR2-P USAGE IS POINTER.
05 ENV-VAR3-P USAGE IS POINTER.

01 ENV-VAR-VALUES.
05 ENV-VAR1.

10 ENV-VAR PIC X(17) VALUE IS ’_CEE_DMPTARG=/etc’.
10 FILLER PIC X(1) VALUE LOW-VALUES.

05 ENV-VAR2.
10 ENV-VAR PIC X(18) VALUE IS ’_BPX_JOBNAME=MYJOB’.
10 FILLER PIC X(1) VALUE LOW-VALUES.

05 ENV-VAR3.
10 ENV-VAR PIC X(20) VALUE IS ’NLSPATH=/u/user79/%N’.
10 FILLER PIC X(1) VALUE LOW-VALUES.

PROCEDURE DIVISION.

MOVE LOW-VALUES TO FCAI-Map.
MOVE FCAI-C-Eyecatcher TO FCAI-Eyecatcher.
MOVE FCAI-C-Version-1 TO FCAI-Version.

366 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

MOVE LENGTH OF FCAI-Map TO FCAI-Size.

MOVE LENGTH OF ENV-VAR1 TO ENV-VAR1-LEN.
SET ENV-VAR1-P TO ADDRESS OF ENV-VAR1.
MOVE LENGTH OF ENV-VAR2 TO ENV-VAR2-LEN.
SET ENV-VAR2-P TO ADDRESS OF ENV-VAR2.
MOVE LENGTH OF ENV-VAR3 TO ENV-VAR3-LEN.
SET ENV-VAR3-P TO ADDRESS OF ENV-VAR3.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-INIT START-PARM ENV-VAR-LIST.

Since both START-PARM and ENV-VAR-LIST are optional,
use OMITTED for START-PARM if it is not to be passed on
a CALL that passes ENV-VAR-LIST:

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-INIT OMITTED ENV-VAR-LIST.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 348.

Parameter values that are set by the application
FCAI-Map

Storage area (defined in EZAFTPKC for COBOL) used to save information
about the requests using the FTP client API.

REQUEST-TYPE
A 4-byte field that contains INIT.

START-PARM
An optional parameter that comprises a 2-byte length followed by a string
that contains parameters that are valid to enter on a z/OS FTP command.

PARM-LEN
A 2-byte binary field that contains the length of PARM-VAL.

PARM-VAL
Storage containing the parameters for the z/OS FTP command. See
the FTP subcommands information in z/OS Communications
Server: IP User's Guide and Commands for the parameters that are
valid when using the FTP command.

Requirement: Align START-PARM on at least a halfword boundary.

Tip: Start parameters that include a host name or IP address cause the client to
perform an implicit OPEN to connect to that host, which suspends the application
until the connection is complete. If this delay is undesirable during INIT, use a
subsequent SCMD OPEN instead of specifying a host in the start parameters.

ENV-VAR-LIST
An optional parameter that comprises a series of contiguous fullwords (4
bytes each) that are used to describe environment variables that are passed
on the creation of the FTP client.

See the following for information about FTP environment variables:
v Defining environment variables for the FTP server (optional) in z/OS

Communications Server: IP Configuration Guide
v FTP server environment variables in z/OS Communications Server: IP

Configuration Reference
v Environment variables in z/OS Communications Server: IP User's Guide

and Commands

Chapter 13. FTP Client Application Programming Interface (API) 367

Also see the z/OS UNIX System Services and z/OS Language
Environment® libraries of publications for information concerning
environment variables.

ENV-VAR-COUNT
Count of environment variables (n) to be passed. There can be 1–9
environment variables.

ENV-VAR1_LEN through ENV-VARn-LEN (maximum of nine)
The fullword length of each environment variable found in
ENV-VAR1 through ENV-VARn.

ENV-VAR1_P through ENV-VARn-P (maximum of nine)
The address of each environment variable found in ENV-VAR1
through ENV-VARn.

Rules:

v Each environment variable passed in the ENV-VAR-LIST must be a
NULL terminated string; that is, X'00' follows the last text character. Set
the corresponding ENV-VARn-LEN field to the length of the
environment variable text, plus 1 for the NULL terminator.

v Ensure that no duplicate environment variables are specified.
v Do not pass environment variable _CEE_RUNOPTS on INIT. The

environment variables are established too late in the spawn() process for
run-time options to be honored. See z/OS Language Environment
Programming Guide for information about using CEEDOPT or
CEEBXITA to specify run-time options for the FTP client process.

v Do not pass environment variables in the _CEE_ENVFILE file that are
required to be used in the spawn() process. The _CEE_ENVFILE variable
is processed after the spawn() processing is complete. Variables like
_BPX_JOBNAME should be specified as one of the nine environment
variables in the ENV-VAR-LIST

v Run-time options and environment variables that are specified on the
EXEC statement or in CEEUOPT for the application program are not
available to the created FTP client process.

v Align ENV-VAR-LIST on at least a fullword boundary.

Parameter values that are returned to the application
The results of the request are returned in the FCAI-Result field. See “Interpreting
results from an interface request” on page 407. See “FTP client API: Other output
that is returned to the application” on page 403 for a discussion of the output and
statistics returned by the request.

Guidelines for INIT results:

v If the INIT request returns FCAI-IE-CliProcessBroken, check FCAI-CEC for a
client error code that might have been returned to explain the failure.

v FCAI-Token is zeros when the interface fails to initialize.

Application tasks for the INIT request
This topic describes the steps of issuing the INIT request.

Before you begin

Create an FCAI control block for use by the interface.

368 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Procedure

Perform the following steps to issue the INIT request:
1. Optional: Specify start parameters for the FTP client.
2. Optional: Specify a list of environment variables to pass to the FTP client.
3. Initialize the FCAI.

a. Clear the entire block to 0.
b. Set the eyecatcher (or FCAI-Eyecatcher) to FCAI.
c. Set the size field (or FCAI-Size) to 256 or greater.
d. Set the version number (or FCAI-Version) to 1.

4. Set FCAI-ReqTimer to the desired value.
5. Set FCAI-TraceIt as desired for tracing. A request that initiates the interface

trace also uses FCAI-TraceID and FCAI-TraceSClass.
6. Issue the INIT request.
7. Check the result of the request.
8. Check the results from an implicit OPEN, if one was performed.
9. Optional: Retrieve the FTP client output with GETL.

Results

After the INIT request completes, you can issue a subsequent SCMD or TERM
request.

SCMD
The user program issues the SCMD request to send a subcommand to the FTP
client.

Example of the SCMD call instruction
WORKING-STORAGE SECTION.

COPY EZAFTPKC.
01 REQUEST-SCMD PIC X(4) VALUE IS ’SCMD’.
01 SCMD-MODE-W PIC X(1) VALUE IS ’W’.
01 SCMD-MODE-N PIC X(1) VALUE IS ’N’.
01 SUBCOMMAND.

05 SUBCOMMAND-LEN PIC 9(2) COMP-5 VALUE IS 13.
05 SUBCOMMAND-VAL PIC X(13) VALUE IS ’open hostname’.

PROCEDURE DIVISION.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-SCMD SUBCOMMAND
SCMD-MODE-W.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 348.

Parameter values that are set by the application
FCAI-Map

Storage area (defined in EZAFTPKC for COBOL) used to save information
about the requests using the FTP client API.

REQUEST-TYPE
A 4-byte field that contains SCMD.

Chapter 13. FTP Client Application Programming Interface (API) 369

SUBCOMMAND
A required parameter that comprises a 2-byte field, followed by a string
with a z/OS FTP subcommand. See the introductory material at the
beginning of this topic for a discussion of FTP subcommands and
commands.

SUBCOMMAND-LEN
A 2-byte binary field that contains the length of
SUBCOMMAND-VAL.

SUBCOMMAND-VAL
Storage that contains a z/OS FTP subcommand. Leading spaces are
not allowed; begin the subcommand in the first column of this
storage area. A null terminator is unnecessary but is accepted if
included. See FTP subcommands in the z/OS Communications
Server: IP User's Guide and Commands for the supported
subcommands and their parameters.

Rule: Align SUBCOMMAND on at least a halfword boundary.

MODE
An optional parameter that indicates whether the interface should wait for
the subcommand to complete before returning to the caller. If the
parameter is not present, the default is to wait. The parameter is a 1-byte
field that contains W for wait mode or N for no-wait mode.

An SCMD issued in no-wait mode returns to the caller as soon as the
interface sends the subcommand. Issue a POLL request to retrieve the
results from the subcommand. If you choose no-wait mode, you cannot
start a new SCMD request with this FCAI until you issue a POLL request
against this FCAI that indicates that the outstanding subcommand is
complete.

An SCMD issued in wait mode essentially polls the client for you until the
subcommand completes. The automatic polling operates similarly to the
progressive wait timer described in “FCAI_PollWait: Specifying a wait time
before POLL” on page 411. It polls initially after 1 second and then doubles
the wait time before each read to a maximum interval of 16 seconds until
data is returned or the subcommand completes.

If you choose wait mode, you can limit the length of time the interface
waits for completion by using FCAI-ReqTimer. See “FCAI_ReqTimer:
Controlling requests that retrieve results from the created z/OS FTP client
process” on page 410. If FCAI-ReqTimer causes the subcommand to be
interrupted, a POLL is required to complete and retrieve the results of the
subcommand before another subcommand can be issued.

Processing rules for SCMD QUIT:
v The MODE parameter is ignored for SCMD QUIT. The QUIT subcommand is

always issued in wait mode.
v The interface accepts a TERM and generates a successful SCMD QUIT even

when the interface does not accept an explicit SCMD QUIT request. See “TERM”
on page 380 and “Prompts from the client” on page 404 for more information.

v After SCMD QUIT has successfully completed, only GETL and TERM are
accepted for this FCAI.

v Failure to issue SCMD QUIT can strand the client process. See “TERM” on page
380 for tips on preventing stranded clients.

370 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v SCMD and POLL requests between SCMD QUIT and TERM return the interface
error FCAI_IE_CliProcessStopped.

Parameter values that are returned to the application
The results of the request are returned in the FCAI-Result field; see “Interpreting
results from an interface request” on page 407. See “FTP client API: Other output
that is returned to the application” on page 403 for a description of the output and
statistics that are returned by the request.

Guidelines for SCMD results:

v If FCAI-Result contains FCAI-Result-Status, additional processing is required by
the user program:
– If the FCAI-Status field is FCAI-Status-InProgress, the request was issued in

no-wait mode or the FCAI-ReqTimer value was exceeded. Issue a POLL
request to obtain the final results.

– If the FCAI-Status field is FCAI-Status-PromptPass, the request was accepted
but the next SCMD request must be a PASS subcommand. This status is
applicable for the USER subcommand.

– If the FCAI-Status field is FCAI-Status-PromptAcct, the request was accepted,
but the next SCMD request must be an ACCT subcommand. This status is
applicable for the USER, PASS, and CD subcommands.

– If FCAI-Status contains FCAI-Status-TraceFailed or higher, the interface trace
function failed on this request. Subtract FCAI-Status-TraceFailed from
FCAI-Status to obtain the remaining value for FCAI-Status. See
“FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting failures in the
interface trace function” on page 409.

v After an INIT that results in an implicit OPEN, FCAI-SCMD contains
FCAI-SCMD-OPEN, and FCAI-ReplyCode contains the last reply from the
server.

See “Prompts from the client” on page 404 for a discussion of how prompts are
handled when the z/OS FTP client is invoked from the FTP client API.

Application tasks for the SCMD request
This topic describes the steps of issuing the SCMD request.

Before you begin

Have an initialized interface defined by an FCAI and an active z/OS FTP client
process (not stopped or broken).

Procedure

Perform the following steps to issue the SCMD request:
1. Specify a MODE parameter (optional).
2. Specify a subcommand parameter string.
3. Set FCAI-ReqTimer to the desired value.
4. Set FCAI-TraceIt as desired for tracing. A request that initiates the interface

trace also uses FCAI-TraceID and FCAI-TraceSClass.
5. Issue the SCMD request.
6. Check the result of the request.
7. Issue one or more POLL requests to complete the subcommand, if necessary.
8. Check the result of the completed subcommand.

Chapter 13. FTP Client Application Programming Interface (API) 371

9. Retrieve the FTP client output with GETL (optional).

Results

After the SCMD request completes, you can issue a subsequent SCMD or TERM
request.

POLL
The user program issues the POLL request to complete and retrieve the results
from a prior SCMD request.

The POLL request is rejected if a prior subcommand is not in-progress. That is, a
prior SCMD or POLL request must have returned the status code
FCAI-Status-InProgress; otherwise, the current POLL request returns
FCAI-IE-NotInProgress.

Issuing an SCMD request in no-wait mode enables you to perform other program
functions while the subcommand is running. While you are performing these
functions, the FTP client might be writing a large amount of data to the interface.

Guideline: Avoid large intervals of time between POLL requests. Large time
intervals can cause a pipe overflow and lead to an error or a wait in the client
until the results from the subcommand are retrieved.

Each POLL request copies up to 32 KB of data from the client to the interface
buffer even if the subcommand has not yet completed. The actual amount that is
returned depends upon the size of the output, the timing of the request, and how
much space is available in the current part of the interface buffer.

See “GETL” on page 374 for a discussion of the interface buffer. See
“FCAI_PollWait: Specifying a wait time before POLL” on page 411 for more
information about managing POLL requests.

Example of the POLL call instruction
WORKING-STORAGE SECTION.

COPY EZAFTPKC.
01 REQUEST-POLL PIC X(4) VALUE IS ’POLL’.

PROCEDURE DIVISION.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-POLL.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 348.

Parameter values that are set by the application
FCAI-Map

Storage area (defined in EZAFTPKC for COBOL) used to save information
about the requests using the FTP client API.

REQUEST-TYPE
A 4-byte field that contains POLL.

372 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Parameter values that are returned to the application
The results of the request are returned in the FCAI-Result field. See “Interpreting
results from an interface request” on page 407. See “FTP client API: Other output
that is returned to the application” on page 403 for a discussion of the output and
statistics returned by the request.

Guidelines for POLL results:

v If FCAI-Result contains FCAI-Result-Status, additional processing is required by
the user program:
– If the FCAI-Status field is FCAI-Status-InProgress, a prior SCMD request

issued in no-wait mode or one that exceeded the FCAI-ReqTimer value is still
in-progress. Obtain the final results with another POLL request.

– If the FCAI-Status field is FCAI-Status-PromptPass, the prior request has now
completed but the next SCMD request must be a PASS subcommand. This
status is applicable for the USER subcommand.

– If the FCAI-Status field is FCAI-Status-PromptAcct, the prior request has now
completed but the next SCMD request must be an ACCT subcommand. This
status is applicable for the USER, PASS, and CD subcommands.

– If FCAI-Status contains FCAI-Status-TraceFailed or higher, the interface trace
function failed on this request. Subtract FCAI-Status-TraceFailed from
FCAI-Status to obtain the remaining value for FCAI-Status. See
“FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting failures in the
interface trace function” on page 409 for information about
FCAI-Status-TraceFailed.

v Aside from interface errors, POLL itself returns only FCAI-Status-InProgess. All
other results are those of the prior SCMD request.

v If the application issues POLL until FCAI-IE-NotInProgress is returned, the
results from the prior subcommand are lost. Issue POLL only until
FCAI-Status-InProgress is no longer returned.

Application tasks for the POLL request
This topic describes the steps of issuing the POLL request.

Before you begin

Have an initialized interface defined by an FCAI and an active z/OS FTP client
process (not stopped or broken). Ensure that a prior SCMD or POLL request
returned FCAI-Status-InProgress.

Procedure

Perform the following steps to issue the POLL request:
1. Set FCAI-PollWait to the desired value.
2. Set FCAI-TraceIt as desired for tracing. A request that initiates the interface

trace also uses FCAI-TraceID and FCAI-TraceSClass.
3. Issue the POLL request.
4. Check the result of the request.
5. Repeat the POLL request to complete the subcommand, if necessary.
6. Check the result of the completed subcommand.
7. Retrieve the FTP client output with GETL (optional).

Chapter 13. FTP Client Application Programming Interface (API) 373

Results

After the POLL request completes, you can issue a subsequent SCMD or TERM
request.

GETL
The user program issues the GETL request to find and copy lines of output that
are returned from the FTP client by an INIT, SCMD, or POLL request. The request
copies output from the client into a space that is acquired by the user and
described to the interface by a vector. The vector includes the address of the space,
the ALET for the space (or 0), and the length of the space. In the description that
follows, this space is referred to as the user's buffer.

The internal buffers maintained by the FTP client API are referred to collectively as
the interface buffer. The interface buffer is populated upon return from an INIT, an
SCMD issued in wait mode, or a POLL issued for an SCMD that did not complete.
The interface acquires the number of 32 KB interface buffer parts that are needed
to contain the output from the request.
v INIT and SCMD in wait mode acquire interface buffer parts automatically until

the request completes.
v POLL either fills the remainder of the current part of the interface buffer or

acquires a new part before reading from the client. The actual amount returned
for each POLL request varies depending on available output and current buffer
utilization.

v The interface retains and reuses all interface buffer parts until TERM is issued to
minimize acquiring and freeing storage. If the user program does not want to
retain acquired buffer parts, it should issue TERM to free them and then
optionally reinitialize the interface.

v An SCMD QUIT that is generated by TERM uses the interface buffer, but only to
allow the interface trace function to print the subcommand results. All interface
buffer parts are freed by TERM and output is not available to the user program
after that time.

See “FTP client API: Other output that is returned to the application” on page 403
for a discussion of the statistics that can be used in preparing to retrieve the output
(such as setting the size of your buffer).

GETL has an OPERATION parameter that specifies whether to FIND and retrieve
one line or to COPY many lines of output.

GETL has a TYPE parameter that specifies the type of lines to copy to the user's
buffer. Lines are classified into the following types: client messages, server replies,
DIR or LS subcommand output, and trace output.

Each line of output that is written to the user's buffer has a 3-byte prefix that
consists of a 1-byte ID and a 2-byte length field. The IDs are defined as follows:

ID Definition

M Message from the client

R Reply from the server

T Trace output that is generated as a result of activating FTP trace
and extended trace with DEBUG and DUMP subcommands

L Data from a DIR or LS subcommand

374 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

ID Definition

A last line marker is appended to the user's buffer upon completion of a successful COPY
request. It has a length of zero and one of the following IDs:

Y Last line of output for a request so far (The subcommand is not
complete or you ran out of room in the user's buffer. More
output will be or is already available to be retrieved.)

Z Last line of output for the request

There are two concepts about the output lines in the user's buffer and the interface
buffer that are important to understand. The first concept is the last line marker of
output in the user's buffer after a successful COPY operation. (A successful FIND
copies exactly one line without writing a last line marker.) The last line marker has
an ID of either Y or Z and a length field of x'0000.

When the last line marker ID is Y, partial output has been copied to the user's
buffer and the user program must now handle one or both of the following
conditions:
v A prior subcommand has not yet completed, and more results must be retrieved

with POLL.
v The COPY operation found more lines of output than can fit in the user's buffer.

Tip: A last line marker with an ID of Y does not guarantee that any more lines of
the type specified on the COPY were generated by the request.

When the last line marker ID is Z, the last line of output for the request has been
retrieved.

See “FTP client API: Other output that is returned to the application” on page 403
and “POLL” on page 372.

Rule: A GETL request that specifies the same user's buffer overwrites the contents
of that buffer; it does not append lines to the user's buffer.

Guideline: If the returned output must be preserved, move it or update the buffer
pointer before a subsequent GETL request. This does not have to be done when a
COPY immediately follows a FIND using the same criteria, as discussed in the
remainder of this topic.

The second concept is that of the current line in the interface buffer. Initially, the
current line is the first line of the interface buffer. The current line changes as you
successfully FIND and COPY lines of output, as follows:
v After you successfully FIND a line, that line is copied into the buffer addressed

by your vector and becomes the current line in the interface buffer.
– An immediate COPY of one or more lines includes the line that was found on

the preceding FIND when the TYPE parameter is the same on both
operations.

– A subsequent FIND (NEXT, FIRST, or LAST) advances the current line pointer
to the appropriate matching line and copies that line.

v When you successfully COPY lines, the current line pointer first advances to the
next matching line of the type specified on the COPY. At the end of the COPY
operation, the current line pointer advances to the location that immediately
follows the last copied line, which can be a line of any TYPE or the end of the
interface buffer.

Chapter 13. FTP Client Application Programming Interface (API) 375

v When the current line pointer advances past a line in the interface buffer, that
line can be located only by resetting the current line to a point at or before the
desired line with a FIND FIRST with TYPE A (any) or the TYPE that matches
the desired line.

v If FIND or COPY does not locate any matching lines, GETL returns
FCAI-Result-NoMatch in FCAI-Result. This result or any result other than
FCAI-Result-OK means that the current line pointer was unchanged by the
request.

See “Using the FIND and COPY operations” on page 378 for more information
about FIND and COPY.

Example of the GETL call instruction
WORKING-STORAGE SECTION.

COPY EZAFTPKC.
01 REQUEST-GETL PIC X(4) VALUE IS ’GETL’.
01 OPERATION PIC X(4).
01 TYPE PIC X(1).
01 SEQUENCE PIC X(1).
01 VECTOR.

05 BUFF-ADDR USAGE IS POINTER.
05 BUFF-ALET USAGE IS POINTER.
05 BUFF-LEN PIC 9(8) COMP-5.

01 BUFFER PIC X(100).

PROCEDURE DIVISION.

MOVE ’FIND’ TO OPERATION.
MOVE ’M’ TO TYPE.
MOVE ’F’ TO SEQUENCE.

SET BUFF-ADDR TO THE ADDRESS OF BUFFER.
MOVE ZEROS TO BUFF-ALET.
MOVE SIZE OF BUFFER TO BUFF-LEN.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-GETL OPERATION
TYPE SEQUENCE VECTOR.

MOVE ’COPY’ TO OPERATION.
MOVE ’M’ TO TYPE.

SET BUFF-ADDR TO THE ADDRESS OF BUFFER.
MOVE ZEROS TO BUFF-ALET.
MOVE SIZE OF BUFFER TO BUFF-LEN.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-GETL OPERATION
TYPE VECTOR.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 348.

Parameter values that are set by the application
FCAI-Map

Storage area (defined in EZAFTPKC for COBOL) used to save information
about the requests using the FTP client API.

REQUEST-TYPE
A 4-byte field that contains GETL.

376 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

OPERATION
A 4-byte field that contains the operation to be performed. The
OPERATION values are:

FIND Find an output line matching TYPE and copy it into the user's
buffer.

COPY Copy all remaining output lines matching TYPE into the user's
buffer.

TYPE A 1-byte field that indicates what type of output is requested by
OPERATION. The TYPE values are:

M Message from the client.

R Reply from the server.

L List data from a DIR or LS subcommand.

T Trace output from debug or dump.

A Any type of output line.

SEQUENCE (FIND operation only)
A 1-byte parameter that indicates which of the output lines of TYPE to
FIND. SEQUENCE values are:

F Find the first line of the requested TYPE.

N Find the next line of the requested TYPE.

L Find the last line of the requested TYPE.

Tip: The SEQUENCE parameter is not included on the call for a COPY
operation, which always begins with the first line that matches TYPE at or
after the current line.

VECTOR
A 3-word vector that describes the user's buffer that receives a copy of an
output line. VECTOR values are:

BUFF-ADDR
The address of the buffer used in the operation.

BUFF-ALET
The ALET of the buffer pointed to by BUFF-ADDR. This can be 0.
If not 0, the ALET must reside in the PASN-AL for the application
or be a public entry in the DU-AL. All programs that the
application invokes must have the authority to access the space.
See z/OS MVS Programming: Extended Addressability Guide for
information about using ALETs to access data spaces.

BUFF-LEN
The length of the buffer used in the operation. For a COPY
operation the interface reserves 4 bytes at the end of the buffer to
ensure that there is room for the Y or Z line.

Rule: Align VECTOR on at least a fullword boundary.

Parameter values that are returned to the application
The results of the request are returned in the FCAI-Result field. See “Interpreting
results from an interface request” on page 407.

Guidelines for GETL results:

Chapter 13. FTP Client Application Programming Interface (API) 377

v If FCAI-Result contains FCAI-Result-NoMatch:
– If OPERATION was FIND and SEQUENCE was FIRST or LAST, no lines of

the specified type currently exist in the interface buffer.
– If OPERATION was FIND and SEQUENCE was NEXT, or if OPERATION

was COPY, no lines of the specified type exist between the current line
pointer and the end of the interface buffer.

v FCAI-IE-BufferTooSmall indicates that the user's buffer will not hold the first (or
only) matching line that was found in the interface buffer.

Tip: FCAI-IE-TooManyParameters might indicate that a SEQUENCE parameter
was included for a COPY operation.

Application tasks for the GETL request
This topic describes the steps of issuing the GETL request.

Before you begin

Have an initialized interface defined by an FCAI.

Procedure

Perform the following steps to issue the GETL request:
1. Specify the desired operation (FIND or COPY).
2. Specify the desired line type.
3. Specify the desired sequence (for FIND).
4. Specify the buffer vector that describes the user's buffer.
5. Set FCAI-TraceIt as desired for tracing. A request that initiates the interface

trace also uses FCAI-TraceID and FCAI-TraceSClass.
6. Issue the GETL request.
7. Check the result of the request.
8. Issue one or more POLL requests to retrieve output for a subcommand that is

in-progress.
9. Issue another GETL request, optionally changing the operation, sequence, or

type of line.

Results

After the GETL request completes, you can issue a subsequent SCMD or TERM
request.

Using the FIND and COPY operations
The FIND operation syntax for COBOL is as follows:
CALL ’EZAFTPKS’
USING FCAI-Map REQUEST-GETL OPERATION TYPE SEQUENCE VECTOR.

A FIND operation copies one line from the interface buffer into the user's buffer
described by the vector. The FIND locates and copies the line indicated by the
sequence parameter [F (first), L (last), or N (next)] that matches the requested
TYPE.

The COPY operation syntax for COBOL is as follows:
CALL ’EZAFTPKS’
USING FCAI-Map REQUEST-GETL OPERATION TYPE VECTOR.

378 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

A COPY operation copies one or more lines from the interface buffer into the user's
buffer described by the vector. The COPY searches for a line at or after the current
line that matches the TYPE parameter. It copies from that line through the last line
of output in the interface buffer that matches TYPE.

The COPY stops when the user's buffer is full or when there are no more lines of
the requested type in the interface buffer. The last line marker is written into the
user's buffer after the last output line of the requested type (the interface reserves 4
bytes in the user's buffer to ensure that there is room for the marker).

If the FIND or COPY operation does not locate any matching lines, GETL returns
FCAI-Result-NoMatch in FCAI-Result and does not change the current line pointer.
The user's buffer contents are not predictable when this result is returned.

Tips:

v If you want to set the current line pointer to the top of the interface buffer, use a
GETL request with TYPE set to A (any type of output line) and SEQUENCE set
to F (first).

v GETL FIND and COPY cannot find output that has not yet been retrieved from
the client and copied to the interface buffer. When handling the results from an
incomplete subcommand, any POLL might append data to the interface buffer,
but the results are complete only after a POLL request does not return
FCAI-Status-InProgress.

Assembler language GETL example:
Assume that an SCMD was issued with the subcommand LS a*. The following
example shows the lines of output that are in the buffer at the end of the SCMD
request. (The lines have been numbered for this example.)
1 T 0026 CA0149 dirlist: entered for ls command
2 T 0017 CA0798 getList: entered
3 M 0018 >>> PORT 9,42,105,93,4,8
4 R 0014 200 Port request OK.
5 M 000B >>> NLST a*
6 R 0013 125 List started OK
7 T CA1275 rcvListData: entered
8 L 0001 a
9 L 0002 ab
10 R 0020 250 List completed successfully.
11 T 0022 CA1521 resetTS: value of rcode = 0
12 M 0018 Command(00-20-NLST-250):
13 Z 0000

The following fields are also defined in the user program:
GETL DC C’GETL’
FIND DC C’FIND’
COPY DC C’COPY’
FIRST DC C’F’
NEXT DC C’N’
LAST DC C’L’
*
MESSAGE DC C’M’
REPLY DC C’R’
LIST DC C’L’
ANY DC C’A’
*

DS 0F

BUFFVEC DS 0XL12

Chapter 13. FTP Client Application Programming Interface (API) 379

BUFFADDR DC A(BUFFER) THIS BUFFER IS LARGER THAN TOTAL OUTPUT RETURNED
DC F’0’

BUFFLENG DC A(L’BUFFER)
BUFFER DC CL’4096’

These calls retrieve the following output lines:
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,MESSAGE,FIRST,BUFFVEC)

copies line 3: M 0018 >>> PORT 9,42,105,93,4,8
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,MESSAGE,NEXT,BUFFVEC)

copies line 5: M 000B >>> NLST a*
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,MESSAGE,NEXT,BUFFVEC)

copies line 12: M 0018 Command(00-20-NLST-250):
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,MESSAGE,NEXT,BUFFVEC)

returns FCAI_Result_NoMatch
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,REPLY,LAST,BUFFVEC)

copies line 10: R 0020 250 List completed successfully.
CALL EZAFTPKS,(FCAI_Map,GETL,FIND,LIST,FIRST,BUFFVEC)

copies line 8: L 0001 a
CALL EZAFTPKS,(FCAI_Map,GETL,COPY,LIST,BUFFVEC)

copies line 8: L 0001 a
copies line 9: L 0002 ab
copies line 13: Z 0000

TERM
The user program issues the TERM request to terminate this instance of interface
use. A TERM request is accepted by the interface at any time.

For the most orderly termination of the interface, the client program should ensure
that no SCMDs are in-progress and then issue SCMD with the QUIT subcommand
before using the TERM request. To assist the caller with exceptional conditions,
TERM performs the following steps unless the client process is broken:
1. If the TERM request detects that a prior SCMD is in-progress, it generates up to

three POLL requests at 16-second intervals in an attempt to retrieve the results
from the client. Any generated POLL requests appear in the interface trace (if
active) with (Generated by TERM) appended to the request record along with
any results that are retrieved.

2. If the TERM request detects that a QUIT has not yet been issued to the client, it
generates an SCMD QUIT request. The generated SCMD QUIT request appears
in the interface trace (if active) with (Generated by TERM) appended to the
request record along with any results that are retrieved.

Rule: The caller can specify the number of seconds to wait by setting a
FCAI_ReqTimer value (or specify that no timer is to be used). See
“FCAI_ReqTimer: Controlling requests that retrieve results from the created
z/OS FTP client process” on page 410.

If the client process is broken, or the interface fails to complete a subcommand that
was in-progress, or a generated QUIT fails to complete successfully, then the
interface issues BPX1KIL with no signal to kill the client process. The reason for
the failure is reported on a prior request or in the interface trace.

When TERM completes, FCAI-Token is zeros and only an INIT request is accepted
by the interface using this FCAI.

Rule: Never update FCAI-Token or attempt to reinstate it after TERM. If
FCAI-Token is corrupted, you must terminate your application to free acquired
storage and stop the client process.

380 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Guidelines:

v To ensure that complete results are returned, always check for
FCAI-Status-InProgress upon return from an SCMD request and POLL to
complete the request if it did not complete. Although TERM generates POLLs to
the client, this does not guarantee that the prior subcommand will complete or
that all results will be returned. The three POLL requests can retrieve a
maximum of 96 KB. The actual amount that is retrieved depends upon the
timing of the request and current buffer utilization.

v Set FCAI-TraceIt to FCAI-TraceIt-Yes on TERM to see the results from any
generated POLLs or QUIT. The results are available only in the trace because
TERM frees the interface buffer.

v If an active FCAI is cleared and reused on an INIT request without first issuing
an SCMD QUIT or TERM, the FTP client process that was associated with it is
stranded. The client child process can persist until the parent process terminates.
Failure to issue TERM after SCMD QUIT retains acquired storage until the
parent task terminates. It is especially important in long-running application
processes to terminate instances of the interface that are no longer in use.

Example of the TERM call instruction
WORKING-STORAGE SECTION.

COPY EZAFTPKC.
01 REQUEST-TERM PIC X(4) VALUE IS ’TERM’.

PROCEDURE DIVISION.

CALL ’EZAFTPKS’ USING FCAI-Map REQUEST-TERM.

For equivalent PL/I and assembler language declarations, see “Converting
parameter descriptions” on page 348.

Parameter values that are set by the application
FCAI-Map

Storage area (defined in EZAFTPKC for COBOL) used to save information
about the requests using the FTP client API.

REQUEST-TYPE
A 4-byte field that contains TERM.

Parameter values that are returned to the application
The results of the request are returned in the FCAI-Result field. See “Interpreting
results from an interface request” on page 407.

Guidelines for TERM results:

v See the results from any generated POLL or SCMD QUIT requests in the
interface trace output (if active).

v FCAI-Result-OK means the interface terminated normally (whether or not
additional requests were automatically generated).

v FCAI-Result-CliProcessKill means that BPX1KIL was issued to end the client
process.

v FCAI-Result-Status means that FCAI-Status-TraceFailed was returned.
v FCAI-Status-TraceFailed can also be returned when FCAI-Result contains

FCAI-Result-CliProcessKill.

Chapter 13. FTP Client Application Programming Interface (API) 381

Application tasks for the TERM request
This topic describes the steps of issuing the TERM request.

Procedure

Perform the following steps to issue the TERM request:
1. Set FCAI-ReqTimer to the desired value (for a generated SCMD QUIT).
2. Set FCAI-TraceIt as desired for tracing. A request that initiates the interface

trace also uses FCAI-TraceID and FCAI-TraceSClass.
3. Issue the TERM request.
4. Check the result of the request.
5. See the interface trace output for the results of any generated POLL or SCMD

QUIT requests.

Results

After the TERM request completes, you can reinitialize the FCAI and issue a
subsequent INIT request.

FTP client API for C functions
For the C programming language, in-line static functions are provided in the
ftpcapi header file. These functions provide typecasting compiler checking and
tools to facilitate calling the interface from a C language program.

The following list shows in-line static functions:
v FAPI_INIT initializes the interface.
v FAPI_SCMD sends an FTP subcommand.
v FAPI_POLL checks the status of an outstanding subcommand.
v FAPI_GETL_COPY retrieves output related to a subcommand and copies to a

user buffer.
v FAPI_GETL_FIND retrieves output related to a subcommand and searches for a

line of a specific type of output.
v FAPI_TERM ends the interface.

FAPI_INIT
Use the FAPI_INIT function to initialize the FTP client API. See “Sending requests
to the FTP client API” on page 365 for more information about an INIT request.

FAPI_INIT accepts the following parameters:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

startparm
A pointer to a NULL terminated string that contains the parameters for the
z/OS FTP command. See the FTP command — Entering the FTP
environment information in z/OS Communications Server: IP User's Guide
and Commands for descriptions of valid FTP command parameters.

envVars
A pointer to an fcai_envvarlist_t structure that contains a count followed

382 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

by an array of up to nine pointers to NULL terminated strings. Each string
represents an environment variable definition.

Rule: If using the Trace Resolver facility, the trace should be activated by
specifying the RESOLVER_TRACE environment variable to collect the trace
information in a file or MVS dataset.

FAPI_INIT example:
#define OPENSTRING "-w 300 127.0.0.1 21 (trace"

fcai_map_t fcai;
fcai_envvarlist_t my_envvars;

my_envvars.envVarCount = 3;
my_envvars.envVarEnt[0] = "_CEE_DMPTARG=/etc";
my_envvars.envVarEnt[1] = "_BPX_JOBNAME=MYJOB";
my_envvars.envVarEnt[2] = "NLSPATH=/u/myuser/%N";

memset(&fcai, 0, sizeof(fcai));
fcai.FCAI_Eyecatcher = FCAI_EYECATCHER;
fcai.FCAI_Size = FCAI_NUMINTERFACEBYTES;
fcai.FCAI_Version = FCAI_VERSION;
rc = FAPI_INIT(&fcai, OPENSTRING, &my_envars);

FAPI_SCMD
Use the FAPI_SCMD function to issue the SCMD request to send a subcommand
to the FTP client API. See “Sending requests to the FTP client API” on page 365 for
more information about an SCMD request.

FAPI_SCMD accepts the following parameters:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

subcommand
A pointer to a NULL-terminated string that contains a z/OS FTP client
subcommand with its parameters.

mode A required character that indicates whether the interface should wait for
the subcommand to complete before returning to the caller. Valid values
are FAPI_MODE_WAIT or FAPI_MODE_NOWAIT.

FAPI_SCMD example:
/* Assume FAPI_INIT was successfully called with &fcai */
/* prior to calling FAPI_SCMD */
rc = FAPI_SCMD(&fcai, "USER user1", FAPI_MODE_WAIT);

FAPI_POLL
Use the FAPI_POLL function to issue the POLL request to complete and retrieve
the results from a prior FAPI_SCMD request. See “Sending requests to the FTP
client API” on page 365 for more information on a POLL request.

FAPI_POLL accepts the following parameter:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

Chapter 13. FTP Client Application Programming Interface (API) 383

FAPI_POLL example:
/* Assume FAPI_SCMD was successfully called with &fcai */
/* prior to calling FAPI_POLL */
rc = FAPI_POLL(&fcai);

FAPI_GETL_COPY
Use the FAPI_GETL_COPY function to issue the GETL COPY request to copy lines
of output that are returned from the FTP client by an FAPI_INIT, FAPI_SCMD, or
FAPI_POLL functions. See “Sending requests to the FTP client API” on page 365
for more information on a GETL request.

FAPI_GETL_COPY accepts the following parameters:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

type A character that indicates what type of output is requested by the copy.

Valid type values include:

Field constant defined in ftpcapi.h Value Meaning

FAPI_GETL_MESSAGE_LINE M Message from the client.

FAPI_GETL_REPLY_LINE R Reply from the server.

FAPI_GETL_TRACE_LINE T Trace output from debug or dump.

FAPI_GETL_LIST_LINE L List data from a DIR or LS subcommand.

FAPI_GETL_ANY_LINE A Any type of output line.

buffer_len
The length of the buffer used for the copy.

buffer
The address of the buffer used in the operation.

FAPI_GETL_COPY example:
/* Assume FAPI_INIT was successfully called with &fcai */
/* prior to calling FAPI_GETL_COPY */
char buffer[4096];
rc = FAPI_GETL_COPY(&fcai, FAPI_GETL_LIST_LINE,
sizeof(buffer), buffer);

FAPI_GETL_FIND
Use the FAPI_GETL_FIND function to issue the GETL FIND request to find one
line of output returned from the FTP client by an FAPI_INIT, FAPI_SCMD, or
FAPI_POLL. See “Sending requests to the FTP client API” on page 365 for more
information on a GETL request.

FAPI_GETL_FIND accepts the following parameters:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

type A character that indicates what type of output is requested by the copy.
Possible type values include:

384 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Field constant defined in ftpcapi.h Value Meaning

FAPI_GETL_MESSAGE_LINE M Message from the client.

FAPI_GETL_REPLY_LINE R Reply from the server.

FAPI_GETL_TRACE_LINE T Trace output from debug or dump.

FAPI_GETL_LIST_LINE L List data from a DIR or LS subcommand.

FAPI_GETL_ANY_LINE A Any type of output line.

buffer_len
The length of the buffer used for the copy.

buffer
The address of the buffer used in the operation.

sequence
A character that indicates which of the output lines of type should be
found. Valid sequence values include:

Field constant defined in ftpcapi.h Value Meaning

FAPI_GETL_FIND_FIRST F Find the first line of the requested type.

FAPI_GETL_FIND_NEXT N Find the next line of the requested type.

FAPI_GETL_FIND_LAST L Find the last line of the requested type.

FAPI_GETL_FIND example:
/* Assume FAPI_INIT was successfully called with &fcai */
/* prior to calling FAPI_GETL_FIND */
char buffer[4096];
rc = FAPI_GETL_FIND(&fcai, FAPI_GETL_LIST_LINE,
sizeof(buffer), buffer, FAPI_GETL_FIND_LAST);

FAPI_TERM
Use the FAPI_TERM function to terminate the FTP client API instance associated
with this FCAI_MAP. See “Sending requests to the FTP client API” on page 365 for
more information on a TERM request.

FAPI_TERM allows the following parameter:

FCAI_MAP
A pointer to an fcai_map_t structure used to save information about the
request using the FTP client API.

FAPI_TERM example:
/* Assume FAPI_INIT was successfully called with &fcai */
/* prior to calling FAPI_TERM */
rc = FAPI_TERM(&fcai);

FTP client API for REXX function
A REXX language program requires an intermediate routine to translate from the
string format used within REXX programs to the binary format used by the
EZAFTPKS program. An external function package is provided that serves as this
intermediary, facilitating calling the FTP client API from a REXX language
program.

Chapter 13. FTP Client Application Programming Interface (API) 385

The FTP client API for REXX is included as a default system function package, and
is included in the default parameter modules IRXTSPRM, IRXISPRM, and
IRXPARMS.

The FTP client API for REXX has been verified to run in the following
environments:
v TSO exec
v Batch environment
v ISPF
v UNIX shell

The FTP client API for REXX might run in additional environments, but it has not
been tested and verified to work in other environments.

Handling of SIGCHLD signals
The FTP client API creates a child process for the z/OS FTP client for each
successful INIT request. When running in a Posix environment, the SIGCHILD
signal is raised when the FTP client terminates. To avoid creating a zombie process
when the child process terminates, the SIGCHLD signal must be caught or ignored.

If the REXX program is running in a POSIX environment and does not have a
SIGCHLD signal handler when it invokes the first CREATE request, then the FTP
client API for REXX requests that the SIGCHLD signal be ignored. The REXX
parent program resets the signal handler to the default state only after every FTP
client instance that is used in the REXX program has ended. If the REXX program
has a SIGCHLD handler, no change is made by the FTP client API.

FTP client API for REXX trace
The FTP client API for REXX trace is used to debug problems in the FTP client API
for REXX function package. The interface cannot be used to debug errors in the
trace itself or any error that prevents the interface from accessing the trace data set.
The trace writes records for requests to the interface and the results of interface
requests.

Tip: The FTP client API for REXX trace is separate from the FTP client API trace. It
uses a different output file and has a different enabling mechanism. The FTP client
API for REXX trace is used to debug problems in the FTP client API for REXX
function package, while the FTP client API trace is used to debug problems in the
underlying EZAFTPKS interface and record activity and data that are returned to
the interface that might not otherwise be available to the application.

The FTP client API for REXX trace is activated by specifying the z/OS UNIX
FTP_REXX_TRACE_FILE environment variable or allocating the FTPRXTRC DD
name. The FTP client API for REXX first looks for the FTP_REXX_TRACE_FILE
environment variable (z/OS UNIX environment only) and then for the FTPRXTRC
DD allocation.

The FTP client API for REXX trace can be written to any of the following:
v JES SYSOUT
v An MVS sequential data set (a member of a PDS is not supported); the data set

must already exist or be allocated as new with DCB characteristics of an LRECL
value in the range 80 – 256 and a RECFM value of Fixed Block

386 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v A z/OS UNIX file. The file can be either an existing file or a file dynamically
allocated by the FTP client API for REXX when needed

Restriction: In order for the FTP client API for REXX to be able to write trace
records, the output data set or file must meet the following conditions:
v The data set or file must be a fixed block data set.
v For an MVS data set, the record format must be fixed.
v The data set or file record length must be in the range 8 – 256 bytes.
v The data set or file block size must be a multiple of the record length.
v The data set or file must not be block mode.

Data sets and files created by the FTP client API for REXX meet these conditions
by default. If a file or data set is created by some other means, then you must
ensure these conditions are met or no trace records will be written.

Specifying the FTP client API for REXX trace output location
Your environment determines the method you use to specify the FTP client API for
REXX trace output location.

Specifying the FTP client API for REXX trace output location: TSO
environment:
In the TSO environment, the location specified by the FTPRXTRC DD statement is
used as the FTP client API for REXX trace output location. Use the TSO
ALLOCATE command to associate FTPRXTRC with these outputs. Following is an
example:
ALLOC FILE(FTPRXTRC) DA(FTP.TRACE.OUT) NEW LRECL(80) RECFM(F B) TRACK SPACE(10 10)

See z/OS TSO/E Command Reference for more details about using the
ALLOCATE command.

Specifying the FTP client API for REXX trace output location: z/OS UNIX shell
environment:
In the z/OS UNIX shell environment, use one of the following to specify the FTP
client API for REXX trace output location.
v For a new z/OS UNIX file or an existing MVS data set, enter the following:

export FTP_REXX_TRACE_FILE=/tmp/myjob.ftpapi.trace
export FTP_REXX_TRACE_FILE="//appl.ftprxtrc"

Tip: When the specified MVS data set name is not fully qualified, the user ID is
added as the first qualifier for the data set. For example, if USER3 enters this
command, it is equivalent to the following:
export FTP_REXX_TRACE_FILE="//’USER3.APPL.FTPRXTRC’"

v For a non-qualified z/OS UNIX file (myjob.ftpapi.trace) with a current working
directory /u/user1/, the file used for tracing is /u/user1/myjob.ftpapi.trace.
Enter the following:
export FTP_REXX_TRACE_FILE=ftpapi.trace

v For a z/OS UNIX file or an MVS data set that is already allocated to a ddname,
enter the following:
export FTP_REXX_TRACE_FILE="//dd:ddname"

Restriction: When using the FTP_REXX_TRACE_FILE environment variable, the
maximum length for an MVS data set name or a z/OS UNIX file name is 64
characters. If the data set name or file name length exceeds 64 characters, then the
name is truncated. If the MVS data set is not qualified, the 64 character limit is

Chapter 13. FTP Client Application Programming Interface (API) 387

applied after the high-level qualifier is added. If the z/OS UNIX file path is a
relative path, then the 64 character limit is calculated after the current working
directory name is added.

Specifying the FTP client API for REXX trace output location: MVS batch job
environment:
In the MVS batch environment, an FTPRXTRC DD must be specified in the JCL for
trace output to be written. You can write trace output as follows using the JES
SYSOUT facility:
//FTPRXTRC DD SYSOUT=*

Specifying the FTP client API for REXX trace output location: z/OS UNIX
environment batch job:
When using the z/OS UNIX environment from a batch job, use one of the
following methods to specify the FTP client API for REXX trace output location:
v If the application exists in a file system, is invoked using the BPXBATSL utility,

and does not perform any fork calls, use the FTPRXTRC DD statement to specify
the output location as you would with an MVS batch job.

v In all other cases, the FTP_REXX_TRACE_FILE environment variable must be
set. When using BPXBATSL or BXPBATCH utilities, set this and any other
required environment variables using the STDENV DD statement as follows:
//STDENV DD JCL statement

Following is an example:
//STDENV DD DISP=SHR,DSN=USER3.APPL.ENVIRON

The STDENV data set can a fixed or variable (nospanned) record format type. It
can contain multiple environment variables, as shown in the following sample:
FTP_REXX_TRACE_FILE=//’USER3.APPL.RESTRACE’
_BPXK_SETIBMOPT_TRANSPORT=TCPCS

Guidelines:

– Environment variables must start in column 1, and the data set must not
contain any sequence numbers (sequence numbers would be treated as part
of the environment variable).

– For the FTP_REXX_TRACE_FILE environment variable, any blanks from a
fixed format STDENV data set are removed. Because this might not be true
for all variables, you should use a variable record format data set.

– For applications that fork, you should use an MVS data set. If you use a file
system file, a C03 ABEND might occur when the forked process ends.

Restriction: When using the FTP_REXX_TRACE_FILE environment variable, the
maximum length for the MVS data set name or the z/OS UNIX file name is 64
characters. If the data set name or file name length exceeds 64 characters, the
name is truncated. If the MVS data set is not qualified, the 64 character limit is
applied after the high-level qualifier is added. If the z/OS UNIX file path is a
relative path, then the 64 character limit is calculated after the current working
directory name is added.

See z/OS UNIX System Services Command Reference for additional considerations
when using the BPXBATCH or BPXBATSL utilities.

388 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FTP client API requests
All FTP client API for REXX requests use the same format:
result = ftpapi(stem, request_type, parm1, parm2, ...);

The first parameter is the name of the REXX stem that refers to a specific instance
of the FTP client environment. The second parameter identifies the API request
that is being made (for example INIT or SCMD). The remaining parameters are
used to pass data which is sometimes optional for the specific API request that is
being made.

Tip: When passing string literals, enclose them in single or double quotes.

All FTP client API for REXX return codes use a consistent format, as shown in
Table 19.

Table 19. FTP client API for REXX return codes

Code value Definition

<0 A negative return code indicates that the FTP client API for REXX
function failed to complete because of an error.

0 The call completed successfully and there is no additional status available.

>0 The call completed successfully and there is additional information
available.

The following requests are supported by the FTP client API for REXX:
v CREATE: Creates a new instance of the interface.
v INIT: Initializes the interface.
v SCMD: Sends an FTP subcommand.
v POLL: Checks the status of an outstanding subcommand.
v GETL_FIND: Retrieves output related to a subcommand and searches for a line

of a specific type of output.
v GETL_COPY: Retrieves output related to a subcommand and copies it to a user

buffer.
v SET_TRACE: Enables or disables the tracing of subsequent FTP client API calls

within the EZAFTPKS program.
v SET_REQUEST_TIMER: Sets the length of time that the FTP client API waits for

a INIT, SCMD, or TERM request to complete.
v GET_FCAI_MAP: Returns the complete contents of the FCAI_Map structure.
v TERM: Ends the interface.

CREATE request
Format

��
, ' ' , 'A' , 1000000

ftpapi (stem , 'create')
, trace_id , traceSClass , traceNum

��

Purpose

Creates a new instance of the FTP client API.

Chapter 13. FTP Client Application Programming Interface (API) 389

Parameters

stem
The name of a stem used to return the FTP client environment. This stem is
included as the first parameter on all subsequent FTP client API for REXX
calls.

'create'
Requests the creation of a new FTP client API stem. The string literal is not
case sensitive.

trace_id
The identifier to be used in trace records. The ID is a 3-character ID string that
is written as the first three characters of each trace record. If not specified, then
three blank characters (' ') are used. The string literal is case sensitive.

traceSClass
The SYSOUT class for the trace. Valid values are in the range A – Z and
0 – 9. The default value is A. The string literal is case sensitive.

traceNum
The number of trace records written to the REXX trace file before the file is
closed and then reopened. This value can be any decimal value in the range
1 – 1 000 000. The default is 1 000 000 records.

Results

Table 20. FTP client CREATE request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
FTP client API stem variable was not created.
The possible failure return codes are listed in
the Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

An error occurred in creating the stem
variable.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

≥0 The call completed successfully. The FTP
client API stem variable was successfully
created.

0 (FCAI_RESULT_OK) No additional information is available.

Examples
rc = ftpapi(’fcai.’, ’create’, ’PAZ’)

INIT request
Format

390 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

��

�

ftpapi (stem , 'init')
, initString

, envVar

��

Purpose

Initializes a new instance of the FTP client API.

Parameters

stem
The name of a stem used to return the FTP client environment. The stem must
have been passed on a prior successful CREATE function call.

'init'
Requests the initialization of an FTP client API environment. The string literal
is not case sensitive.

initString
Start parameters that are valid to enter on a z/OS FTP client command. The
string literal is case sensitive.

envVar
Zero to nine environment variables that can be passed to the FTP client API.
The string literals are case sensitive. See the following for information about
FTP environment variables:
v Defining environment variables for the FTP server (optional) in z/OS

Communications Server: IP Configuration Guide
v FTP server environment variables in z/OS Communications Server: IP

Configuration Reference
v Environment variables in z/OS Communications Server: IP User's Guide and

Commands

Also see the z/OS UNIX System Services library and z/OS Language
Environment library of publications for information concerning environment
variables.

Rules:

v Do not specify duplicate environment variables.
v Do not pass environment variable _CEE_RUNOPTS on an INIT request. The

environment variables are established too late in the spawn() process for
run-time options to be honored. See z/OS Language Environment
Programming Guide for information about using the CEEDOPT program or
the CEEBXITA exit to specify run-time options for the FTP client process.

v Do not pass environment variables like _BPX_JOBNAME in the
_CEE_ENVFILE file because the _CEE_ENVFILE file processing is too late in
the spawn() process to set the job name. Specify _BPX_JOBNAME as one of
the nine environment variables in the envVar list.

v If using the Trace Resolver facility, the trace should be activated by
specifying the RESOLVER_TRACE environment variable to collect the trace
information in a file or MVS dataset.

Chapter 13. FTP Client Application Programming Interface (API) 391

Results

Table 21. FTP client INIT request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
subcommand was not successfully executed.
The possible failure return codes are listed in
the Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

≥0 The call completed successfully. The FTP
client environment was initialized.

0 (FCAI_RESULT_OK) No additional information is available.

Examples
rc = ftpapi(’fcai.’, ’init’, ’-w 300 127.0.0.1 21’, ’_CEE_DMPTARG=/tmp’, ’_BPX_JOBNAME=MYJOB’)

SCMD request
Format

��
, 'W'

ftpapi (stem , 'scmd' , cmd)
, mode

��

Purpose

Send a subcommand to the FTP client.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'scmd'
Requests that a subcommand be sent to the FTP client. The string literal is not
case sensitive.

cmd
The z/OS FTP subcommand. The string literal is case sensitive.

mode
Indicates whether the interface should wait ('W') for the subcommand to
complete before returning to the caller, or return immediately ('N') regardless
of whether the subcommand has completed. The string literal is not case
sensitive.

392 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Results

Table 22. FTP client SCMD request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
subcommand was not successfully executed.
The possible failure return codes are listed in
the Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-18 (FCAI_TASK_TASKMISMATCH) The task is not the same as the INIT task.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

-32 (FCAI_TASK_CLIPROCESSKILL) A TERM request issued BPX1KIL to end the
client process.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) The prior request has completed
successfully; there are no restrictions on the
next subcommand.

1 (FCAI_RESULT_INPROGRESS) The prior request is still in-progress.

2 (FCAI_RESULT_PROMPTPASS) The prior request has completed successfully
but the next request must be a PASS
subcommand.

3 (FCAI_RESULT_PROMPTACCT) The prior request has completed successfully
but the next request must be an ACCT
subcommand.

Examples
rc = ftpapi(’fcai.’, ’scmd’, ’DIR /tmp/*’, ’N’)

POLL request
Format

��
, '0'

ftpapi (stem , 'poll')
, pollWait

��

Purpose

Completes and retrieves the results from a prior SCMD request.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must

Chapter 13. FTP Client Application Programming Interface (API) 393

have been passed on a prior successful INIT function call and the previous
request must have been an SCMD request with the nowait option.

'poll'
Requests that the program wait for a prior SCMD request to complete and
retrieve the results. The string literal is not case sensitive.

pollWait
Controls the length of time that the REXX program waits before it checks for
output. This parameter is equivalent to the FCAI_PollWait field in the
FCAI_MAP structure used by the C and callable FTP client APIs. Valid values
are any decimal value in the range 0 – 255.

Results

Table 23. FTP client POLL request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-18 (FCAI_TASK_TASKMISMATCH) The task is not the same as the INIT task.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

-32 (FCAI_TASK_CLIPROCESSKILL) A TERM request issued BPX1KIL to end the
client process.

≥0 The call completed successfully; the next
request can be any subcommand.

0 (FCAI_RESULT_OK) The prior request has completed
successfully; there are no restrictions on the
next subcommand.

1 (FCAI_RESULT_INPROGRESS) The prior request is still in-progress.

2 (FCAI_RESULT_PROMPTPASS) The prior request has completed successfully
but the next request must be a PASS
subcommand.

3 (FCAI_RESULT_PROMPTACCT) The prior request has completed successfully
but the next request must be an ACCT
subcommand.

Examples
rc = ftpapi(’fcai.’, ’poll’)

GETL_FIND request
Format

394 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

��
, 'A' , 'N'

ftpapi (stem , 'getl_find' , lines)
, type , sequence

��

Purpose

Finds and returns a line of output that was returned from the FTP client by an
INIT, SCMD, or POLL request.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'getl_find'
Requests the return of a single line of output that was returned from the FTP
client by an INIT, SCMD, or POLL request. The string literal is not case
sensitive.

lines
The stem where the output lines are to be copied. The results are:

lines.0
The number of output lines returned. This is 1 if the function result is 0,
and 0 if the function result is 4.

lines.id.1
If the lines.0 field is 1, this contains a 1-character line identifier. Possible
values are M, R, T, and L. These are described under the type parameter.

lines.1
If the lines.0 field is 1, this contains the contents of the output line.

type
A 1-character parameter that indicates what type of output is requested. The
string literal is not case sensitive. Possible values are:

M Message from the client

R Reply from the server

L List data from a DIR or LS subcommand

T Trace output from debug or dump routine

A Any type of output

sequence
A 1-character parameter that indicates which of the output lines specified by
the type parameter to find. The string literal is not case sensitive. Possible
values are:

F Find the first line of the requested type.

N Find the next line of the requested type.

L Find the last line of the requested type.

The default value is N.

Chapter 13. FTP Client Application Programming Interface (API) 395

Results

Table 24. FTP client GETL_FIND request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-18 (FCAI_TASK_TASKMISMATCH) The task is not the same as the INIT task.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

-32 (FCAI_TASK_CLIPROCESSKILL) A TERM request issued BPX1KIL to end the
client process.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) A matching output line was found and
returned in the lines stem variable.

4 (FCAI_RESULT_NOMATCH) The prior request has completed successfully
but no matching output line was found.

Examples
rc = ftpapi(’fcai.’, ’getl_find’, ’lines.’, ’L’)

GETL_COPY request
Format

��
, 'A'

ftpapi (stem , 'getl_copy' , lines)
, type

��

Purpose

Finds and returns all lines of the output that was returned from the FTP client by
an INIT, SCMD, or POLL request.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'getl_copy'
Requests the return of all remaining lines of output of type type that were
returned from the FTP client by an INIT, SCMD, or POLL request. The string
literal is not case sensitive.

396 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

lines
The stem where the output lines are to be copied. The results are:

lines.0
The number of output lines returned. This is ≥ 1 if the function result is 0,
and 0 if the function result is 4.

lines.id.i
The 1-character identifier for line i of output. Possible values are M, R, T,
and L. These are described under the type parameter.

lines.i
The contents of line i of output.

type
A 1-character parameter that indicates what type of output is requested. The
string literal is not case sensitive. Possible values are:

M Message from the client

R Reply from the server

L List data from a DIR or LS subcommand

T Trace output from debug or dump routine

A Any type of output

The default value is A.

Results

Table 25. FTP client GETL_COPY request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-18 (FCAI_TASK_TASKMISMATCH) The task is not the same as the INIT task.

-19 (FCAI_RESULT_REXXERROR) An error occurred in storing, fetching, or
dropping a REXX variable.

-32 (FCAI_TASK_CLIPROCESSKILL) A TERM request issued BPX1KIL to end the
client process.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) The matching output lines were found and
returned in the lines stem variable.

4 (FCAI_RESULT_NOMATCH) The prior request has completed successfully
but no matching output lines were found.

Chapter 13. FTP Client Application Programming Interface (API) 397

Examples
rc = ftpapi(’fcai.’, ’getl_copy’, ’lines.’, ’A’)

SET_TRACE request
Format

�� ftpapi (stem , 'set_trace' , traceit) ��

Purpose

Enables or disables the tracing of subsequent FTP client API calls. After each
subsequent call, you can examine the fcai.FCAI_TraceStatus variable to determine
whether the tracing of that specific call was successful.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'set_trace'
Indicates whether the trace should be enabled or disabled on subsequent FTP
client API calls. The string literal is not case sensitive.

traceit
Sets the status of the FTP client API trace. The string literal is not case
sensitive. Possible values are:

ON Begin tracing FTP client API calls.

OFF
Stop tracing FTP client API calls.

Results

Table 26. FTP client SET_TRACE request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) No additional information is provided.

Examples
rc = ftpapi(’fcai.’, ’set_trace’, ’ON’)

398 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

SET_REQUEST_TIMER request
Format

�� ftpapi (stem , 'set_request_timer' , reqtimer) ��

Purpose

Sets the length of time that the FTP client API waits for an INIT, SCMD, or TERM
request to complete.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'set_request_timer'
Requests that the request timer be set for subsequent INIT, SCMD, or TERM
requests. The string literal is not case sensitive.

reqtimer
The number of seconds to wait for the request to complete. Valid values are in
the range 0 – 256. The value corresponds to the FCAI_ReqTimer field used by
the C and callable FTP client APIs.

Results

Table 27. FTP client SET_REQUEST_TIMER request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) No additional information is provided.

Examples
rc = ftpapi(’fcai.’, ’set_request_timer’, 1)

GET_FCAI_MAP request
Format

�� ftpapi (stem , 'get_fcai_map' , fcaimap) ��

Purpose

Returns the contents of the full FCAI_Map structure.

Chapter 13. FTP Client Application Programming Interface (API) 399

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'get_fcai_map'
Requests the return of the full FCAI_Map structure. The string literal is not
case sensitive.

fcaimap
The name of the stem where the FCAI_Map structure should be placed. The
map elements shown in Table 28 can be returned.

Table 28. FCAI_Map structure elements

Element Description

fcaiMap.FCAI_EyeCatcher Eyecatcher='FCAI'

fcaiMap.FCAI_Size Size of the FCAI=256

fcaiMap.FCAI_Version Version of the FCAI=1

fcaiMap.FCAI_PollWait POLL wait timer in seconds

fcaiMap.FCAI_ReqTimer Request timer in seconds or 0 for none

fcaiMap.FCAI_TraceIt Trace indicator for this request

fcaiMap.FCAI_TraceID ID used in a trace record

fcaiMap.FCAI_TraceCAPI TRACECAPI value on FTP.DATA statement

fcaiMap.FCAI_TraceStatus Status of the trace

fcaiMap.FCAI_TraceSClass SYSOUT class for trace file

fcaiMap.FCAI_TraceName ddname of the trace file

fcaiMap.FCAI_Token Interface token

fcaiMap.FCAI_RequestID Last request processed by the EZAFTPKS
program (for example, 'SCMD')

fcaiMap.FCAI_Result Request result

fcaiMap.FCAI_IE Interface error

fcaiMap.FCAI_CEC Client error code (see FTP return codes in
z/OS Communications Server: IP User's
Guide and Commands)

fcaiMap.FCAI_ReplyCode Server reply code or 0 if no reply (see FTPD
reply codes in z/OS Communications
Server: IP and SNA Codes)

fcaiMap.FCAI_SCMD Subcommand code (see FTP subcommand
codes in z/OS Communications Server: IP
User's Guide and Commands)

fcaiMap.FCAI_ReturnCode Return code

fcaiMap.FCAI_ReasonCode Reason code

fcaiMap.FCAI_NumberLines Number of output lines returned by the
request

fcaiMap.FCAI_LongestLine Size of the longest line

fcaiMap.FCAI_SizeAll Size of all output lines

fcaiMap.FCAI_SizeMessages Size of all message lines

fcaiMap.FCAI_SizeReplies Size of all reply lines

400 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 28. FCAI_Map structure elements (continued)

Element Description

fcaiMap.FCAI_SizeList Size of all list lines

fcaiMap.FCAI_SizeTrace Size of all trace lines

fcaiMap.FCAI_PID Process ID of FTP client

Results

Table 29. FTP client GET_FCAI_MAP request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

>=0 The call completed successfully.

0 (FCAI_RESULT_OK) No additional information is provided.

Examples
rc=ftpapi(’fcai.’, ’get_fcai_map’, ’fcaiMap.’)

TERM request
Format

�� ftpapi (stem , 'term') ��

Purpose

The user program issues the TERM request to terminate this instance of interface
use. A TERM request is accepted by the interface at any time.

Rule: Each successful invocation of INIT should be terminated with a
corresponding invocation of TERM.

Parameters

stem
The name of a stem that represents the FTP client environment. The stem must
have been passed on a prior successful INIT function call.

'term'
Requests the termination of this instance of the FTP interface. The string literal
is not case sensitive.

Chapter 13. FTP Client Application Programming Interface (API) 401

Results

Table 30. FTP client TERM request return codes

Value Return codes Explanation

<0 The call did not complete successfully. The
possible failure return codes are listed in the
Return codes column.

-2 (FCAI_RESULT_IE) An interface error occurred. The interface
error code is stored in the stem.FCAI_IE stem
variable.

-3 (FCAI_RESULT_CEC) A client error occurred. The client error code
is stored in the stem.FCAI_CEC field stem
variable.

-17
(FCAI_RESULT_UNUSABLESTEM)

The stem variable is not usable.

-18 (FCAI_TASK_TASKMISMATCH) The task is not the same as the INIT task.

-19 (FCAI_RESULT_REXXERROR) An error occurred when storing, fetching, or
dropping a REXX variable.

-32 (FCAI_TASK_CLIPROCESSKILL) A TERM request issued BPX1KIL to end the
client process.

≥0 The call completed successfully.

0 (FCAI_RESULT_OK) No additional information is provided.

Examples
rc = ftpapi(’fcai.’, ’term’)

FTP client API for REXX trace return codes
Table 31 describes the return codes that can be stored in the
FCAI_TRACE_DATASET_RETCODE variable.

Table 31. FTP client API for REXX trace return codes

Code type Code Description

Success 0 No errors detected with the
FTP client API for REXX
trace

Data set allocation error 65537 (X'10001') Insufficient storage

Data set allocation error 65538 (X'10002') DD name not valid

Data set allocation error 65539 (X'10003') Data set in use

Data set allocation error 65540 (X'10004') Bad DSorg value

Data set allocation error 65542 (X'10006') No DD name returned by
DYNALLOC

Data set allocation error 65543 (X'10007') PDS is not supported

Data set allocation error 131072–196607
(X'20000'–X'2FFFF')

DYNALLOC failure. The
lower 16 bits contain the
SVC99ERROR value; see
z/OS MVS Diagnosis:
Reference

Open data set error 262145 (X'40001') Data set characteristics not
valid

402 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 31. FTP client API for REXX trace return codes (continued)

Code type Code Description

Open data set error 262146 (X'40002') OPEN failure

Data set deallocation error 524288 (X'80000') DYNALLOC failure

Write failure 786433 (X'C0001') SYNAD error

Write failure 786434 (X'C0002') End of data set

Output register information for the FTP client API
For the Cobol, C, assembler, and PL/I programming languages, when control
returns to the caller, the general purpose registers (GPRs) contain the following:

Register Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Used to contain a return code

Restriction: The REXX programming language does not use output registers to
return information to the REXX program. For information about REXX program
output, see “FTP client API for REXX function” on page 385.

When control returns to the caller, the access registers (ARs) contain:

Register Contents

0-1 Used as work registers by the system

2-15 Unchanged

If a caller depends on the contents of a register that is to be used by the system,
the caller must save the contents of that register before invoking the interface and
restore the contents after the system returns control.

FTP client API: Other output that is returned to the application
After a request drives processing in the client, the client sends output to the
interface. The interface retrieves this output automatically for INIT and SCMD
requests issued in wait mode (or an SCMD QUIT request generated by a TERM
request). An SCMD request that is issued in no-wait mode retrieves no output and
an SCMD request that fails to complete before FCAI_ReqTimer expires might or
might not retrieve partial output. The caller must retrieve the results for an SCMD
request that returns a value of FCAI_Status_InProgress with the POLL request. See
“FTP client API messages and replies” on page 406 for a discussion of the final
message, EZA2121I.

When the output is retrieved, the interface stores it in the interface buffer. This
output can be retrieved by the user program with a GETL request from the stem
variables set using a GET_FCAI_MAP request (see “GET_FCAI_MAP request” on
page 399). For example, for the request FtpApi("fcai.", "get_fcai_map", "fcaimap."),

Chapter 13. FTP Client Application Programming Interface (API) 403

the total number of lines of output are stored in the stem variable
fcaimap.FCAI_NumberLines. The output is composed of the following four types
of lines:
v Messages generated by the FTP client
v Replies sent from the FTP server
v List data from the FTP server for a DIR or LS subcommand
v Trace data for the FTP client

See “Example of the GETL call instruction” on page 376, which shows message,
reply, list, and trace output lines. See “FTP client API messages and replies” on
page 406 for additional information about the difference between messages and
replies.

The FCAI_PID value is updated after a successful INIT request and is cleared after
a TERM request. The following statistics in the FCAI are updated for each
complete INIT or SCMD request, and for each POLL request until the prior SCMD
request completes. A GETL request does not change the statistics because it
retrieves only the output that has already been copied to the interface buffer from
the client. A TERM request terminates the interface and frees the interface buffer; it
returns no output.

Field name Description

FCAI_NumberLines Total number of lines of output.

FCAI_LongestLine Size of the longest line of output. Use this value to acquire or
define a space into which a line of output can be copied.

FCAI_SizeAll Total size of all lines of output.

FCAI_SizeMessages Size of all lines of messages from the client.

FCAI_SizeReplies Size of all lines of replies from the server.

FCAI_SizeList Size of all lines of data from a DIR or LS subcommand.

FCAI_SizeTrace Size of all lines of trace data.

The output data is available for retrieval with a GETL request until the next SCMD
or TERM request is processed. The next SCMD request clears all status fields for
the new request and reuses the space allocated to the interface buffer. You should
use a GETL request with the COPY operation if you want to preserve the output.

Prompts from the client
Some z/OS FTP client subcommands cause the client to prompt the user for more
input. For example, processing the USER subcommand causes the client to prompt
for a password after sending a USER command to the FTP server. Prompt behavior
changes when the z/OS FTP client is invoked from the FTP client API.

As shown in “Parameter values that are returned to the application” on page 371,
some prompts affect status codes returned by the interface. See “Interpreting
results from an interface request” on page 407 for more information about status
codes. The following sections describe the current prompt situations for the FTP
client and how they are handled by the FTP client API.

Prompts not used by the FTP client API
v Prompt for IP address if not supplied as a parameter on the INIT request

404 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The FTP client prompts immediately if an IP address or host name was not
supplied at client start. The FTP client API does not pass this prompt to the user
program. The user program should use an SCMD request to send an OPEN
subcommand as soon as it wants a session with the FTP server.

v Prompt for a user ID after an OPEN subcommand
The FTP client prompts for a user ID for logging in after the connection is set up
with the server. The FTP client API does not pass this prompt to the user
program. The user program should use an SCMD request to send a USER
subcommand as soon as it wants to log into the FTP server. The user program
can provide the password and the user ID as parameters with the USER
subcommand.

v Prompt for subcommand after a PROXY subcommand
The FTP client prompts for a subcommand if the PROXY subcommand is
entered without a subcommand parameter. The FTP client API does not support
PROXY without a subcommand. If the client is invoked by the FTP client API
and receives PROXY without a subcommand, the request fails with FCAI-Result
= FCAI-Result-CEC and FCAI-CEC = FCAI-CEC-PROXY-ERR.

Requirement: Every PROXY subcommand that is issued to the FTP client API
must be in the following format: PROXY subcommand <optional parameters>. This
requirement includes the PASS subcommand, which must be entered as PROXY
PASS password (if the password was not included on the prior USER
subcommand, as in PROXY USER userid password). See the PROXy subcommand
information in z/OS Communications Server: IP User's Guide and Commands
for an explanation of the PROXY subcommand and its parameters.

v Prompt for confirmation for MGET, MPUT, and MDELETE subcommands
The FTP client prompts for confirmation for these subcommands if the PROMPT
subcommand has toggled to prompting. The FTP client API does not pass this
prompt to the user program. The subcommand is executed in no-prompt mode.

Prompts returned in FCAI-Status
v Prompt for password after a USER subcommand

The FTP client prompts for a password to complete a login if the password was
not passed with the USER subcommand. The FTP client API passes this prompt
to the user program by using the status FCAI-Status-PromptPass. The user
program should use an SCMD request to send a PASS subcommand as the next
subcommand. If any subcommand other than PASS is sent, the request fails with
FCAI-Result = FCAI-Result-IE and FCAI-IE = FCAI-PassPromptErr.

v Prompt for accounting information after a PASS or a CD (CWD) subcommand
Some FTP servers prompt the FTP client for accounting information after a PASS
or CWD command is processed. The FTP client API passes this prompt to the
user program by using the status FCAI-Status-PromptAcct. The user program
should use an SCMD request to send an ACCT subcommand as the next
subcommand. If any subcommand other than ACCT is sent, the request fails
with FCAI-Result = FCAI-Result-IE and FCAI-IE = FCAI-AcctPromptErr.

Tip: When a PASS or ACCT subcommand is expected, the interface refuses any
other SCMD request until the prompt is satisfied. The user program can issue a
GETL or TERM request without satisfying the prompt. A TERM request
generates a QUIT subcommand that is accepted and stops the client process.

Chapter 13. FTP Client Application Programming Interface (API) 405

FTP client API command prompt
Each subcommand that is sent to the FTP client ends with an output message that
is a prompt for the next subcommand. This message is the last of the messages
that are returned as output; it can be retrieved with the GETL request for the last
message. See “FTP client API messages and replies” for an example of EZA2121I,
which is the command prompt used by the FTP client API.

FTP client API messages and replies
Messages are information statements that are provided by the FTP client. Replies
are the responses to commands that are returned from the FTP server to the client.
Replies are described in FTPD reply codes in z/OS Communications Server: IP and
SNA Codes.

Messages are composed of a message ID followed by message text. FTP client
messages are described in z/OS Communications Server: IP Messages Volume 1
(EZA) and z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM). You
can use the message ID to look up the message in these volumes. However, the
message IDs are not written to output unless the client is executing in verbose
mode.

Following is an example that uses the verbose subcommand in an interactive
environment. The FTP client API processes the subcommand on an SCMD request
as previously described. Note that the verbose subcommand acts as a toggle.
verbose
EZA2859I Message IDs are displayed when running in z/OS UNIX
EZA1460I Command:
verbose
Message IDs are not displayed when running in z/OS UNIX
Command:

EZA2859I and EZA1460I (the first token that is displayed when executing in
verbose mode) are message IDs. The phrases that follow the message ID are
message text. Notice that after the verbose command is executed the second time
to toggle verbose off, the message texts appear with no message ID. See the
Verbose subcommand information in z/OS Communications Server: IP User's
Guide and Commands for more information about entering and exiting verbose
mode.

The FTP client API does not use the EZA1460I Command: message. Instead, it uses a
new message with additional status information about the subcommand that
completed. The syntax is:
EZA2121I Command (ee-ss-cccc-rrr):

where:
v ee is the 2-digit decimal client error code for the subcommand (00 if no error)
v ss is the 2-digit decimal subcommand code (the field is blank on INIT when an

implicit OPEN was not performed)
v cccc is the final 4-character FTP command sent to the server by the subcommand

(all blanks if no command was sent)
v rrr is the last 3-character server reply to the final FTP command (all blanks if no

reply was received)

Replies are composed of a 3-digit numeric reply code followed by text. The
significance of the reply prefix is described in RFC 959, File Transfer Protocol (see

406 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix J, “Related protocol specifications,” on page 1075 for information about
accessing RFCs); replies used by the z/OS FTP server are described in FTPD reply
codes in z/OS Communications Server: IP and SNA Codes. Unlike message
numbers, reply codes are never suppressed. Your program can usually disregard
the text and inspect the reply code to determine whether the server processed the
FTP command successfully. The one exception is when an FTP client sends the
SITE command to a z/OS FTP server. The z/OS FTP server SITE reply is always
200 (implying success), even when one or more errors occurred when processing
the SITE command, as in the following example:
site bogus
>>> SITE bogus
200-Unrecognized parameter ’bogus’ on SITE command.
200 SITE command was accepted
Command(00-34-SITE-200):

The following sample output from the CD subcommand shows messages
EZA1701I and EZA2121I from the FTP client and the reply 250 from the FTP
server. Note that the CD subcommand causes the client to send the CWD
command to the server.
CD /u/user33/
EZA1701I >>> CWD /u/user33/
250 HFS directory /u/user33/ is the current working directory
EZA2121I Command(00-07-CWD -250):
verbose
Message IDs are not displayed when running in z/OS UNIX
Command(00-71- -):
CD /u/user33/
>>> CWD /u/user33/
250 HFS directory /u/user33/ is the current working directory
Command(00-07-CWD -250):

Interpreting results from an interface request
The results of a request to the FTP Client Application Interface are reported to the
user program in the FCAI control block. See “FTP Client Application Interface
(FCAI) control block” on page 350.

FCAI request completion values
The following list describes how to interpret the contents of FCAI_Result and how
to use the secondary results fields.

If FCAI_Result
contains . . .

Then . . . Explanation

FCAI_Result_OK no further action is
required.

The request is complete with no
additional status or errors to report.

FCAI_Result_Status check the FCAI_Status
field for additional status
information.

The interface uses the status field to
report prompts from the client, to
report an indication that the last
request is still in-progress, and to
report an error in the interface trace
function.

Chapter 13. FTP Client Application Programming Interface (API) 407

If FCAI_Result
contains . . .

Then . . . Explanation

FCAI_Result_IE check the FCAI_IE field
for error information.

The request returned an interface error,
which indicates that the interface was
unable to process the request for some
reason. That reason might be a
parameter on the call that was not
valid, a failure in a service routine
(such as GETMAIN), or termination of
the client process.

FCAI_Result_CEC check the FCAI_CEC field
for the error code that
was returned by the
client. You can optionally
issue GETL to retrieve
diagnostic information
(see “GETL” on page 374).

The request completed with an FTP
Client Error Code. For information
about Client Error Codes and
diagnosing errors in the client and
server, see FTP return codes in the
z/OS Communications Server: IP
User's Guide and Commands and
Diagnosing FTP problems in the z/OS
Communications Server: IP Diagnosis
Guide.

Other values returned in FCAI_Result are listed along with their descriptions in “FTP Client
Application Interface (FCAI) control block” on page 350.

Tips:

1. The value in FCAI_Result is returned to the caller in the return code register.
Additionally, callers in COBOL, C, and PL/I can access the return code value in
the FCAI_ReturnCode field and the reason code value in the FCAI_ReasonCode
field.

2. The result code FCAI_Result_UnusableFCAI is returned only in the return code
register.

3. Always verify that the return code register is set to 0 before inspecting the
FCAI.

For all requests that communicate with the FTP server, the field FCAI_ReplyCode
reports the last reply that was received from the final server command sent to the
FTP server by the client for the request. The FCAI_ReplyCode field is a binary
field with a length of 2. For example, a 250 reply from the server is recorded in the
field as X'00FA'. A value of all zeros indicates that the client did not communicate
with the FTP server. The following conditions apply to the FCAI_ReplyCode field.
v GETL and TERM requests do not populate the FCAI_ReplyCode field.
v An INIT request populates this field only if an implicit OPEN was performed.
v SCMD requests for locally processed subcommands such as LOCSITE and

LPWD do not communicate with the FTP server. Those subcommands, and
subcommands that fail before sending a command to the server, do not populate
this field.

v A POLL request might or might not populate this field, depending on the prior
subcommand that was in-progress.

Requests that initiate a subcommand in the z/OS FTP client return a value in the
FCAI_SCMD field. This field is set by all SCMD requests and by the INIT request
when start parameters that were passed on the request generate an implicit OPEN
subcommand.

408 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FCAI_ReturnCode and FCAI_ReasonCode values are set when certain services fail.
See “FTP Client Application Interface (FCAI) control block” on page 350 and
“Programming notes for the FTP client API” for more information.

Considerations when evaluating request completion values
v The request completion values FCAI_CEC and FCAI_ReplyCode are available

when the request completes. An FCAI_SCMD value is available when the
subcommand completes but might also be set by a POLL request prior to
completion of the subcommand. See “POLL” on page 372 and the MODE
parameter definition in “SCMD” on page 369 for more information about the
completion of subcommands.

v After a valid PROXY subcommand, the FCAI_SCMD value that is returned and
the value in message EZA2121I reflect the client subcommand that was passed
as a parameter with PROXY. The server command (if any) that was sent to the
PROXY server appears in message EZA2121I. For example, PROXY DIR returns
the subcommand code for DIR in FCAI_SCMD. Message EZA2121I displays the
DIR subcommand code and the LIST server command.

v If a failure occurs in the interface trace function while processing the request,
FCAI_Status_TraceFailed is added to any other status value that is returned in
FCAI_Status. FCAI_Result contains FCAI_Result_Status unless there was a
concurrent error on the request. See “FCAI_Status_TraceFailed and
FCAI_TraceStatus: Reporting failures in the interface trace function” for more
information.

v When a failure occurs in the interface with the client, all subsequent requests
except GETL and TERM return FCAI_IE_CliProcessBroken.

v When the client processes a QUIT subcommand, all subsequent requests except
GETL and TERM return FCAI_IE_CliProcessStopped.

v Prior to a successful INIT, any request other than INIT returns
FCAI_IE_NoTokenAddr.

v FCAI_Result_CliProcessKill is an informational code returned only by a TERM
request. See “TERM” on page 380.

Programming notes for the FTP client API
The following sections contain additional information about the following:
v FCAI_Status_TraceFailed
v FCAI_TraceStatus
v FCAI_IE_LengthInvalid
v FCAI_ReqTimer
v FCAI_PollWait
v FCAI_IE_InternalErr

There is also a discussion of exceptional conditions in the z/OS FTP client process.

FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting
failures in the interface trace function

v A failure in the interface trace function is not treated as a severe error; if
possible, processing continues for the request.

v The interface trace function is disabled when it encounters an error and cannot
be restarted for this instance of use of the interface.

Chapter 13. FTP Client Application Programming Interface (API) 409

v The additional information described in Table 13 on page 353 is available only
immediately after the request that returns FCAI_Status_TraceFailed. A concurrent
error on the request can overwrite the additional information fields.

v When a request returns FCAI_Status_TraceFailed and sets a reason of
FCAI_TraceStatus_AllocErr (error in dynamic allocation), the additional
information can be interpreted as follows:
– The return code, upon completion of the call to the interface, does not contain

the return code from dynamic allocation. The return code from dynamic
allocation is not reported except as noted in the following item.

– The FCAI_ReturnCode field contains S99ERROR or the number 8.
If the FCAI_ReturnCode field contains the value 8, the dynamic allocation
return code was 8. This return code means an installation validation routine
failed the request and S99ERROR is not available.

– The FCAI_ReasonCode field contains S99ERSN for DFSMS failures. For all
other cases, it contains S99INFO.
- S99ERSN is reported in FCAI_ReasonCode for all S99ERROR values that

begin with X'97'.
- S99INFO can be returned when no error was reported on the allocation. In

those cases, the FCAI_ReasonCode field contains the S99INFO value even
though no other results fields are set.

- S99INFO can be (and often is) 0 when an error is reported. Only certain
conditions set S99INFO.

v FCAI_Result contains FCAI_Result_Status when the trace encounters a failure
unless a concurrent error sets FCAI_Result to a higher value.

v The request that disables the interface trace function adds
FCAI_Status_TraceFailed to any other value that is returned in FCAI_Status.
When FCAI_Status_TraceFailed is subtracted from FCAI_Status, the result is one
of the FCAI_Status values or 0. The result that remains in FCAI_Status is
described in Table 15 on page 354.

v FCAI_TraceStatus always reflects the current status of the interface trace function
and, if applicable, the reason it was disabled. FCAI_TraceStatus field values are
described in Table 13 on page 353.

FCAI_IE_LengthInvalid: Improper lengths passed to the
interface

v On an INIT request, a length value less than 0 was passed for the optional start
parameters. The value 0 is accepted and bypasses sending start parameters.

v On an INIT request, the list of environment variables contained a negative count
word or length.

v On a GETL request, a length value less than or equal to 0 was passed in the
buffer vector.

Tip: Values greater than zero but insufficient to hold the first line of selected
output return FCAI_IE_BufferTooSmall.

v On an SCMD request, the subcommand string length value is less than or equal
to 0. A subcommand string is required on the request.

FCAI_ReqTimer: Controlling requests that retrieve results
from the created z/OS FTP client process

v FCAI_ReqTimer is used to limit the time the interface attempts to retrieve results
from INIT and SCMD requests issued in wait mode, and TERM that

410 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

automatically generates SCMD QUIT. (POLL reads data from the client but
accepts only what has been written and returns immediately; GETL does not
read from the client.)

v FCAI_ReqTimer is an unsigned, 1-byte hexadecimal value in the range 1-255 that
indicates the number of seconds to wait for the request to complete. The value 0
means not to use a timer on the request (wait until completion).
– FCAI_ReqTimer is approximate.
– FCAI_ReqTimer is not related to performance. Using a low value does not

improve response time on the request. It is intended only to prevent the
interface from polling a non-responsive client process indefinitely.

– FCAI_ReqTimer is ignored by POLL, GETL, SCMD issued in no-wait mode,
and TERM that does not generate a QUIT subcommand.

v If the interface detects that the client process is no longer there, it returns
FCAI_IE_CliProcessBroken on any request except TERM requests. When
FCAI_ReqTimer expires, the client process is still there but was unable to return
all the results in the time limit that was specified. The application must
determine how to respond when FCAI_ReqTimer expires.

v Timer expiration during INIT returns FCAI_Result_IE in FCAI_Result and
FCAI_IE_ReqTimerExpired in FCAI_IE. INIT is the only request that returns this
interface error. The error indicates that the interface failed to initialize.

v Timer expiration during a QUIT generated by TERM causes TERM to return
FCAI_Result_CliProcessKill.

v Timer expiration on an SCMD issued in wait mode returns FCAI_Result_Status
in FCAI_Result and FCAI_Status_InProgress in FCAI_Status. At that point the
behavior of the interface is the same as if the SCMD had been issued in no-wait
mode. See “SCMD” on page 369 and “POLL” on page 372 for more information
about no-wait processing.

FCAI_PollWait: Specifying a wait time before POLL
To assist the application in managing POLL requests, the FTP client API
automatically pauses before it reads from the pipe to the client process. This wait
suspends the interface and the application and it protects the application from
sending POLL requests at a rate that degrades performance.

FCAI_PollWait is used as follows:
v The value 0 (the default setting) in FCAI_PollWait instructs a POLL request to

wait 1 second prior to reading the pipe from the client.
v A value greater than 0 enables a progressive wait timer and sets the maximum

number of seconds that will be used. The field accepts a value in the range
0–255 seconds (4.25 minutes), but a value of 32 seconds or less is recommended
for most subcommands.

v The current timer value is stored internally in the interface and persists between
POLL requests that are issued for the same prior subcommand. If a progressive
timer has not been enabled, the current timer value is always 1 second. A
progressive wait timer begins at 1 second and doubles after each POLL until the
maximum setting is reached or exceeded. If exceeded, the timer value is set to
the value that was supplied by the user.

v The application can enable or disable the progressive timer and increase or
decrease the maximum value to use on any POLL, regardless of the current
timer value. The interface checks prior to each POLL to ensure that the timer
does not exceed the specified maximum (the value 0 sets the maximum to 1
second).

Chapter 13. FTP Client Application Programming Interface (API) 411

v The current timer value resets to 1 second after a POLL receives data from the
pipe. This enables the user to retrieve all available output efficiently and
removes much of the application's burden of managing a progressive timer. If a
progressive timer has been requested, it begins to progress again as no data is
returned (unless all output has been retrieved).

v The application is responsible for sending each POLL request. POLL requests are
not generated automatically by the interface. The PollWait interval is in addition
to any wait done in the application program.

FCAI_IE_InternalErr: Unanticipated exceptional conditions in
the interface

Examples of conditions that return FCAI_IE_InternalErr are:
v A linked interface buffer part was expected but none was found.
v A length field that was not valid was detected in the interface buffer.
v A computation during buffer navigation unexpectedly resulted in a negative

value.

Conditions of this type indicate a logic error, storage overlay, or some other
unrecoverable error in the interface. The interface accepts only a TERM request
after the error.

To diagnose the error, dump all storage in the application address space as soon as
the error code is returned. Contact the IBM support center for assistance if needed.

Guideline: If the application remains active after the storage dump, issue TERM to
kill the client process and then terminate the application.

Exceptional conditions in the z/OS FTP client
v The following failures in the FTP client are considered fatal by the FTP client

API.
– If the FTP client process experiences an abnormal termination, the next

request that attempts to read from the client detects the condition and returns
FCAI_IE_CliProcessBroken.

– If an error is encountered when creating the FTP client, establishing pipes to
the client, or communicating with the client, the interface error that describes
the condition is returned to the application.

If you need assistance in diagnosing these failures, contact the IBM support
center.

v If the FTP client stops responding to the interface during INIT or SCMD
processing (including a QUIT subcommand generated by TERM) and
FCAI_ReqTimer is 0 (wait until completion), the application waits indefinitely
for the client. Dump all the storage in the address spaces for the interface and
the created FTP client process, cancel the application, and kill the FTP client
process if necessary. Contact the IBM support center if you need assistance.

v When a request returns FCAI_Status_InProgress because it exceeded the
FCAI_ReqTimer value, the application must ascertain whether this is an error
condition and how to proceed.

v If a signal is raised by a service invoked by the FTP client process, it is generally
handled within the FTP client and reported to the application by a Client Error
Code when appropriate.

v If a signal is raised on behalf of the client (that is, when the child process ends),
neither the client nor the FTP client API blocks or handles the signal.

412 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v If the interface must issue BPX1KIL to kill the FTP client process during TERM,
FCAI_Result_CliProcessKill is returned to inform the application. No further
action is required.

Using the FTP client API trace
The FTP client API trace is used to debug problems in the interface or record
activity and data that are returned to the interface that might not otherwise be
available to the application (see “TERM” on page 380). The interface trace cannot
be used to debug errors in the trace itself or any error that prevents the interface
from accessing the trace data set. The trace writes records for interface events,
which include requests to the interface, the results of interface requests, and output
from the client. Client output includes client messages, server replies, list data, and
DEBUG and DUMP trace data that is received from the client.

The FTP client API trace is controlled by a statement that is coded in the
FTP.DATA file for the FTP client. The statement is named TRACECAPI and is
described in z/OS Communications Server: IP Configuration Reference.

Tip: The FTP client API trace does not include trace records for the FTP client API
for REXX function package. See “FTP client API for REXX function” on page 385
for information about trace records for the FTP client API for REXX function
package.

Rule: If using the Trace Resolver facility, the trace should be activated by
specifying the RESOLVER_TRACE environment variable to collect the trace
information in a file or MVS dataset.

The following table lists the settings accepted for TRACECAPI.

If the statement is coded
with a value of

Then . . . Notes

ALL all interface events are traced. n/a

NONE no events are traced. n/a

CONDITIONAL events are traced only when
requested by the user
program. This is the default.

The user program can request
that events be traced by
setting the FCAI_TraceIt field.
FCAI_Traceit_Yes indicates
that events are traced by the
interface; FCAI_Traceit_No
indicates that events are not
traced.

The settings in the following two fields in the FCAI are applicable when the
interface trace is initialized (the interface trace is initialized by the first request that
requests tracing):
v FCAI_TraceSClass

The interface trace is written to a spool file of the SYSOUT class supplied in
FCAI_TraceSClass. Valid values are in the range A––Z and 0––9. The default
value is A. The first request that is traced allocates and opens the spool file.
When the trace file is opened, its ddname is placed in FCAI_TraceName. After
the file is opened, it stays open until a TERM request is processed.

v FCAI_TraceID

Chapter 13. FTP Client Application Programming Interface (API) 413

The user program can request that an ID be placed at the start of each trace
record. This is done by putting a 3-byte character ID string in the field
FCAI_TraceID. This value is written as the first three characters of each trace
record. The trace ID is placed on each record to uniquely identify records from
the same process. Trace records from different processes are written to different
spool files. The ID ensures that records retain their identity when aggregated.
The following example shows the trace records if FCAI_TraceID=TRC:
TRC INIT>-a never
TRC INIT<00000000 00000000 00000000 00000000
TRC SCMD>open 9.42.105.93 6321|W

At the top of the trace output and every 64 lines thereafter, the interface writes a
header record to provide information about the trace records being written. The
header record contains the FCAI_TraceID, the updated date and time, the decimal
value of process ID (pid) of the created z/OS client, and the decimal value of the
TCB address for the user program's task. The following is a sample header record:

ID-PAW Date-02/26/2004 Time-21:16:31 Process ID-0000000067108873 TCB Address-000000008256584

The following example uses a sample trace for a very simple session with the FTP
client API to show the format of the trace. The lines are numbered for the
discussion of the trace; that is, the numbers do not appear in an actual trace. This
trace shows requests, request results, and also client messages, server replies, and
debug traces entries. The FCAI_TraceID value is 0, so each trace record is preceded
by three blank characters (not reflected in this example). Also, the trace header
records are not shown in the example.
1 PAW INIT>-a never |_CEE_DMPTARG=/etc
2 INIT<00000000 00000000 00000000 00000000
3 SCMD>open 9.42.105.93 6321|W
4 Connecting to: 9.42.105.93 port: 6321.
5 220-FTPDJG1 IBM FTP CS V1R6 at MVS164, 14:44:15 on 2007.
6 220 Connection will not timeout.
7 Command(00-10- -220):
8 SCMD<00000000 0A000000 00000000 00000000
9 SCMD>user user33
10 >>> USER user33
11 331 Send password please.
12 Command(00-19-USER-331):
13 SCMD<01020000 13000000 00000000 00000000
14 SCMD>pass ******
15 >>> PASS
16 230 USER33 is logged on. Working directory is "/u/user33".
17 Command(00-26-PASS-230):
18 SCMD<00000000 1A000000 00000000 00000000
19 SCMD>debug fsc
20 Active client traces - FSC(1)
21 Command(00-11- -):
22 SCMD<00000000 0B000000 00000000 00000000
23 SCMD>get a abc111 (repl|W
24 CG0226 get: F=1 p=FSA ARTWT=00001
25 CG3531 rcvFile: entered
26 MR1278 set_filename: entered with pathname abc111
27 CG1359 hfs_rcvFile: entered
28 MF0750 seq_open_file: recfm is NONE
29 MF1068 seq_open_file: OSBN -> wb,recfm=*,NOSEEK

for /u/user33/abc111
30 MF1216 seq_open_file: stream 166412C4 has maxreclen 0
31 >>> PORT 9,42,105,93,4,25
32 200 Port request OK.
33 >>> RETR a
34 125 Sending data set /u/user33/a

414 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

35 CU2009 write_smf_record: entered with type 16.
36 CU1474 write_smf_record_119: entered with type 16.
37 TI1120 write_stream: O=0 HGPES=10000 BCTE=0000 RLB=0/0/0
38 MF0632 seq_close_file: file closed
39 250 Transfer completed successfully.
40 200 bytes transferred in 0.010 seconds. Transfer rate

20.00 Kbytes/sec
41 CU2009 write_smf_record: entered with type 16.
42 CU1474 write_smf_record_119: entered with type 16.
43 CU2279 write_smf_record: length of smfrecord: 240
44 Command(00-16-RETR-250):
45 SCMD<00000000 10000000 00000000 00000000
46 SCMD>QUIT|W (Generated by TERM)
47 >>> QUIT
48 221 Quit command received. Goodbye.
49 SCMD<00000000 13000000 00000000 00000000
50 TERM>
51 TERM<00000000 00000000 00000000 00000000

Line 1: This is the INIT request to the interface. The character >
shows the direction of the flow. The character | is used to
separate the start options "-a never" from the environment
variable "_CEE_DMPTARG=/etc" that was passed on the spawn. Each
parameter passed to the FTP client in the start options is
separated from what follows in the trace by a null. Nulls should
not be inserted into the start options by the application program
(an ending null is permissible). The nulls in the trace are a
result of the parsing mechanism that the interface uses to build
the argument list for the spawn of the client.

Line 2: This is the result of the request from the interface. The
character < shows the direction of flow. The four words of
output are the "Request Completion Values" from the FCAI.
The values are in hexadecimal and do not display as shown
here. The 00 in byte 0 indicates successful initialization
of the interface.

Line 3: This is the first subcommand. The subcommand string is displayed.
If a mode parameter is entered, it is displayed following the
character |. The character | is used to separate parameters in
all of the request records. In this example, the user program
entered a W for wait mode.

Line 4: This is a client message.
Line 5: This is the first line of the 220 server reply.
Line 6: This is the last line of the 220 server reply.
Line 7: This is the client message that indicates the end of the

subcommand. The result is 00 (no errors) for the open (subcommand
code decimal 10). The client subcommand caused a connect to the
server but no server command actually flowed -- so the command
field has four blanks. However, the last reply from the server
was the 220 reply.

Line 8: These are the completion results for the open subcommand. The
results in byte 0 are 00 (OK). The x’0A’ in the second word
is the open subcommand code in hexadecimal.

Line 9: Another subcommand. This time the user program did not pass a mode
parameter (default mode is wait).

Line 10: This line shows the client message indicating a command to the
server.

Line 11: This line shows the server reply which requests a password.
Line 12: This line shows as result of 00 (no errors) for the user

subcommand (code 19). The last server command was USER and
the last reply was 331.

Line 13: This line contains the completion results for the user subcommand.
The x’01’ in byte 0 indicates that there is additional status.
The x’02’ in byte 1 indicates that the user program is prompted
for a pass subcommand.

Line 14: This is the pass subcommand. ****** is displayed to keep the
actual password out of the trace.

Line 15: This line shows the client message indicating a command to the

Chapter 13. FTP Client Application Programming Interface (API) 415

server.
Line 16: This line shows the server reply.
Line 17: This line shows a result of 00 (OK) for the pass subcommand

(code 26). The last server command was PASS and the last reply
was 230 -- the user program is logged in.

Line 18: This line shows the completion results for the pass subcommand.
Line 19: This line shows a subcommand to activate one of the client traces.
Line 24: This line is a client trace entry.
Line 45: This line shows a result of 00 (no errors) for the get subcommand

(code 16). The last server command was RETR and the last reply
was 250 -- the file transfer completed successfully.

Line 46: This line shows a quit subcommand that was generated by a request to
terminate the interface. The user program failed to issue a QUIT to stop
the client so TERM automatically generated a QUIT on behalf of the
application.

Line 50: This line shows a request to end the interface to the Client
API.

Line 51: The interface has ended.

The following example shows a portion of a trace after logging in and before the
interface ends; this example shows some of the errors that can be reported by the
trace.
1 OOPS>
2 OOPS<02000200 00000000 00000000 00000000
3 SCMD>
4 SCMD<02000300 00000000 00000000 00000000
5 GETL>D
6 GETL<02004000 00000000 00000000 00000000
7 GETL>FIND|J
8 GETL<02004100 00000000 00000000 00000000
9 POLL>
10 POLL<02003000 00000000 00000000 00000000
11 SCMD>get ! abc111 (rep|
12 >>> PORT 9,42,105,93,4,17
13 200 Port request OK.
14 >>> RETR !
15 501 Invalid data set name "!". Use MVS Dsname conventions.
16 Command(02-16-RETR-501):
17 SCMD<03000002 10000000 00000000 00000000
18 SCMD>get a ’user33.aaaaaaaaaaaaaaaaa’|
19 Invalid local file identifier
20 Command(18-16- -):
21 SCMD<03000012 10000000 00000000 00000000

Line 1: This is a request type that is unknown to the interface.
Line 2: The results in byte 0 are 02 (interface error) with an explanation

in byte 2 of 02 (unknown request).
Line 3: The SCMD request has no parameters.
Line 4: The results in byte 0 are 02 (interface error) with an explanation

in byte 2 of 03 (parameter missing).
Line 5: The GETL request has an unknown operation value.
Line 6: The results in byte 0 are 02 (interface error) with an explanation

in byte 2 of 40 (decimal 64) (unknown operation)
Line 7: The GETL request has an unknown type value for the Find operation.
Line 8: The results in byte 0 are 02 (interface error) with an explanation

in byte 2 of 41 (decimal 65) (unknown type)
Line 9: This is a POLL request when a prior subcommand is not in

progress.
Line 10: The results in byte 0 are 02 (interface error) with an explanation

in byte 2 of 30 (decimal 48) (request not in progress)
Line 11: This SCMD request has a get with a bad remote file identifier.

Commands are sent to the server (see lines 12 to 15).
Line 16: This line shows a result of 02 (server error) for the get

subcommand (code 16). The last server command was RETR and the
last reply was 501 -- an error reply.

Line 17: This line contains the completion results for the get subcommand.

416 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The result in byte 0 is 03 (FTP error). The client error code in
byte 3indicates that the FTP server detected the error.

Line 18: This SCMD request has a get with a bad local file identifier. No
command is sent to the server.

Line 20: This line shows a result of 18 (file access error) for the get
subcommand (code 16). Since no command was sent to the server,
the last server command and last reply are blanks.

Line 21: This line contains the completion results for the get subcommand.
The result in byte 0 is 03 (the FTP client returned an error).
The client error code in byte 3 indicates that the FTP client
could not access a local file.

FTP client API sample programs
The following sample programs for the FTP client API are available in the
SEZAINST data set:

Program Description

EZAFTPAW Assembler language FTP client API sample
program

EZAFTPAX COBOL language FTP client API sample
program

EZAFTPAY PL/I language FTP client API sample
program

EZAFTPIR FTP client API for REXX sample program

The FTPCAPIC FTP client API for C sample program is found in
/usr/lpp/tcpip/samples/ftpcapic.c. The FTPCAPIJ FTP client API for Java sample
program is found in /usr/lpp/tcpip/samples/ftpcapij.java.

Chapter 13. FTP Client Application Programming Interface (API) 417

418 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 14. Network management interfaces

z/OS Communications Server provides information about network operations by
supporting the following functions:
v Systems Management Facilities (SMF) records
v Programming interfaces that are called network management interfaces (NMIs)

For more information about the SMF record support, see “SMF records” on page
584.

Network monitor and management applications can use the network management
interfaces to programmatically obtain information about both TCP/IP and VTAM
processing.

The z/OS Communications Server TCP/IP NMIs provide the following
capabilities:
v Programmatically obtain copies of TCP/IP packet, OSAENTA, and data trace

buffers, in real time, based on global stack trace filters.
v Programmatically obtain TCP/IP packet and data trace records in real-time,

based on filters that are set by the network management application.
v Format or filter the TCP/IP packet trace, OSAENTA packet trace, or data trace

records that are collected.
v Obtain the following information:

– Activation and deactivation events that are buffered for TCP connections in
SMF format

– Event information that is buffered for the FTP and TN3270 clients and servers
in SMF format

– Event information that is buffered for IP security in SMF format; information
is provided from the IKE daemon and from the TCP/IP stack

– Detailed information and statistics for IP filtering and IPSec security
associations on local TCP/IP stacks

– Detailed information and statistics for IP filtering and IPSec security
associations on remote network security services (NSS) clients when using the
NSS server

– TCP/IP profile information and profile change information, which is buffered;
this information is provided in SMF event records

– TN3270E Telnet server profile information that is provided in SMF event
records

– CSSMTP information that is provided in SMF event records
– Event information that is buffered for dynamic virtual IP addresses (DVIPAs)

and sysplex distributor targets in SMF format
v Control the following filters and associations:

– IP filters and IPSec security associations on local TCP/IP stacks
– IP filters and IPSec security associations on remote NSS clients when using

the NSS server; see z/OS Communications Server: IP Configuration Guide for
more information about network security services.

v Monitor the following functions by using a callable API:
– TCP connection and UDP endpoint activity

© Copyright IBM Corp. 2000, 2015 419

– TCP/IP storage usage
– TN3270E Telnet server connection performance
– TCP/IP sysplex networking data
– TCP/IP stack profile statement settings
– TCP/IP interface attributes, statistics, and global stack statistics
– TN3270E Telnet server profile statement settings

v Drop one or multiple TCP connections or UDP endpoints.

The z/OS Communications Server VTAM NMIs provide the following functions:
v The ability to collect Enterprise Extender (EE) summary and connection data
v The ability to collect HPR endpoint data
v Communication Storage Manager (CSM) storage statistics

Some of the information that is provided by these interfaces can be obtained from
other types of documented interfaces that are provided by z/OS Communications
Server such as SNMP, command display output, and VTAM exits. TCP/IP packet
trace collection and formatting interfaces provide access to packet trace data that
was not previously available through an authorized, real-time z/OS
Communications Server interface. Some of the event information in SMF format is
currently available through traditional SMF services, and can be collected by using
an SMF user exit to monitor SMF records.

The interfaces that are described in this topic provide an alternative for collecting
some of the TCP/IP SMF records and are expected to perform efficiently. Most of
the data that is provided by the network management interface for monitoring
TCP/UDP endpoints and TCP/IP storage described in “TCP/IP callable NMI
(EZBNMIFR)” on page 600 can be collected from supported SNMP MIBs. Storage
usage information is available through displays and the VTAM Performance
Monitor Interface (PMI). When used correctly, the interfaces documented in this
document provide well-defined and efficient APIs to be used for obtaining
management information related to the IP and SNA (VTAM) components of z/OS
Communications Server. They also allow for easy application migration to
subsequent z/OS Communications Server releases. They are targeted for use by
responsible network management applications.

The following describe the programming interfaces for these functions in detail,
and provide the information required to develop network management
applications that use them. These interfaces have the following characteristics:
v Use a client/server model or a called interface
v Require all network management clients to be run locally on the same z/OS

image as the Communications Server
v Are provided for C/C++ and assembler, except as otherwise indicated

In this topic, the term TCP/IP represents the IP component of z/OS
Communications Server and the term VTAM represents the SNA component of
z/OS Communications Server.

Local IPSec NMI
The z/OS Communications Server IKE daemon provides the IPSec network
management interface (NMI). The IPSec NMI is an AF_UNIX socket interface
through which network management applications can manage IP filtering and
IPSec on local TCP/IP stacks. Use this interface for network management

420 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

applications that expect to maintain agents on each individual z/OS system or use
it in any environments where z/OS network security services (NSS) is not enabled.
If your applications use a centralized management and monitoring approach, you
should consider using the NSS management interface that is described in
“Network security services (NSS) network management NMI” on page 478.

This interface enables applications to obtain the following types of data regarding
the local TCP/IP stacks and the IKE daemon:
v Information about which TCP/IP stacks are configured for integrated

IPSec/VPN
v Summary statistics for IKE, IPSec, and IP filtering activity for a particular

TCP/IP stack
v Detailed information about IP filters for a particular TCP/IP stack
v Detailed information about IPSec and IKE security associations (SAs) for a

particular TCP/IP stack
v Port translation information for NAT traversal
v Information about which IP interfaces are active for a given TCP/IP stack
v Information about NSS clients that are active in the local IKE daemon

In addition, network management applications can perform the following functions
to control IP filtering and IPSec over the same AF_UNIX socket:
v Activate and deactivate manual and dynamic tunnels
v Refresh dynamic tunnels
v Switch between default IP filters and policy-based IP filters

With the IPSec network management interface, a client network management
application makes requests and performs management actions by sending
messages over an AF_UNIX stream socket connection to the IKE daemon. The
requested data is returned to the application directly over the AF_UNIX
connection.

Tip: If you are processing IPSec SMF records, there are some structures that were
designed to be analogous to IPSec NMI structures. If you have code to process
these structures, you might not need to write new parsing code. The section names
are indicated in the individual SMF records and are described in detail in
Appendix E, “Type 119 SMF records,” on page 743.

The terms phase 1 and phase 2 refer to different types of security associations
(SAs) that the z/OS IKE daemon can negotiate with its peers. Although the specific
terminology for these types of security associations differs between the IKE version
1 and IKE version 2 protocols, the terms phase 1 and phase 2 refers to both
versions. IKE terminology includes the following definitions:

Phase 1 security association (SA)
Refers to IKE version 1 phase 1 SAs and IKE version 2 IKE SAs. When a
specific version is intended, that version is identified in this document.

Phase 2 security association (SA)
Refers to IKE version 1 phase 2 SAs and IKE version 2 child SAs. When a
specific version is intended, that version is identified in this document.

Local IPSec NMI: Configuring the interface
The z/OS system administrator can restrict access to the IKE network management
interface as follows:

Chapter 14. Network management interfaces 421

v Access to the stack monitoring functions (those that request information only
about specific stacks) within this interface is controlled by defining the
SERVAUTH resource name EZB.NETMGMT.sysname.tcpipname.IPSEC.DISPLAY in
the SERVAUTH class (where the sysname value represents the MVS system name
where the interface is being invoked, and the tcpipname value is the name of the
TCP/IP stack).

v Access to the stack control functions (those that take some action on a specific
stack) is controlled through the
EZB.NETMGMT.sysname.tcpipname.IPSEC.CONTROL resource.

v Access to IKE daemon-level monitoring functions (those that request information
at the daemon level) is controlled through the
EZB.NETMGMT.sysname.sysname.IKED.DISPLAY resource.

For applications that use the interface, the MVS user ID should be permitted to the
defined resource. If the resource is not defined, then only superusers or users
permitted to the BPX.SUPERUSER resource in the FACILITY class are permitted to
access the interface.

Additionally, permitted client applications must have permission to enter the
/var/sock directory and to write to the /var/sock/ipsecmgmt socket.

Guideline: If you are developing a feature for a product that is to be used by
other parties, include instructions in your documentation that indicating that
administrators must define and give appropriate permission to the given security
resource to use that feature; if the resource is not defined, indicating administrators
must run your program as superuser.

Requirements:

v The IKED OMVS user ID must have write access to the /var/sock directory (or
else have permission to create this directory).

v z/OS Communications Server IKE daemon and Policy Agent must be active on
the system where data is being collected.

Local IPSec NMI: Connecting to the server
For an application to use this interface, it must connect to the AF_UNIX stream
socket provided by the IKE daemon for this interface. The socket path name is
/var/sock/ipsecmgmt. You can use the Language Environment C/C++ API or the
UNIX System Services BPX Callable Assembler services to create AF_UNIX sockets
and connect to this service.

When an application connects to the socket, the IKE daemon sends an initialization
message to the client application. When the IKE daemon closes a client connection
(reasons for doing so include severe errors in the format of data requests sent by
the application to the IKE daemon, or IKE daemon termination), the IKE daemon
attempts to send a termination message to the client before closing the connection.
Both the initialization and termination messages conform to the general response
message structure used by the IKE daemon to send data to the application (see
“IPSec NMI request/response format” on page 423).

The initialization message contains only a message header (see “IPSec NMI
initialization and termination messages” on page 475). The version number
reported in the message header indicates the maximum version of the interface
supported by the IKE daemon. After the initialization message has been received
by the client, the client can send requests for IPSec management data to the server.

422 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Result: The IKE daemon does not send an INIT message to the client application
until it has successfully connected to the Policy Agent.

The termination message also contains only a message header (see “IPSec NMI
initialization and termination messages” on page 475). The message header
contains a return code and a reason code that indicates the reason for terminating
the connection.

IPSec NMI request/response format
This interface exchanges messages over an AF_UNIX socket using a
request-response model. The client application builds and sends an NMI request
over the socket. The request specifies the action or the type of information
requested and might contain optional input parameters. The IKE daemon then
provides a response message over the socket that contains the results of the
request, including the requested data if this is a monitoring request. The client
application must then read this response data from the socket. A severe formatting
error in the client application's NMI request might result in the IKE daemon
sending a termination record and closing the connection.

The IPSec network management interface provides the formatted response data
directly to the client application over the AF_UNIX connection.

Rule: All EBCDIC data is right-padded with blank characters and uses codepage
IBM-1047 encoding.

IPSec NMI request and response data structures
The network management interface for monitoring IP filtering and IPSec provides
data structures for C, C++, and assembler programs to access the interface. The C
and C++ structures are contained in the ezbnmsec.h and ezbnmiv2.h files, which
are installed in the z/OS UNIX /usr/include directory, and contained as members
EZBNMSEC and EZBNMIV2 of the SEZANMAC data set. The assembler macro is
installed as member EZBNMSEA of the SEZANMAC data set.

IPSec NMI request and response message format
NMI request and response messages share a common format. An IPSec NMI
message consists of a message header followed by zero or more records. The
message header is defined by the NMsecMessageHdr structure.

Table 32. NMsecMessageHdr structure

Field Offset Length Format Description

NMsMIdent 0 4 bytes EBCDIC Message header identifier; set to
NMsec_MSGIDENT (EBCDIC 'NMsM').

NMsMHdrLength 4 4 bytes Binary Length of the message header. See the
NMsMMsgLength field for the length of
entire message.

NMsMVersion 8 2 bytes Binary NMI version. Only version 2 is currently
supported by this interface
(NMsec_VERSION2).

NMsMType 10 2 bytes Binary Message type. For a request, this
indicates the type of request being made.
For a response, this indicates the type of
response data, and is identical to the
request type. See “IPSec NMI request
messages” on page 428 for a description
of the request types.

Chapter 14. Network management interfaces 423

Table 32. NMsecMessageHdr structure (continued)

Field Offset Length Format Description

NMsMCorrelator 12 16 bytes Binary User-defined field for correlating NMI
requests with responses. The interface
echoes the correlator for a given request
on the corresponding response.

NMsMRsvd1 28 4 bytes Binary Reserved; set to 0.

NMsMRc 32 4 bytes Binary Return code. The client must set this field
to 0 in a request message. For a reply,
this field is 0 for a successful reply, or a
nonzero value for an error (see “Network
security services NMI return and reason
codes” on page 484).

NMsMRsn 36 4 bytes Binary Reason code. The client must set this
field to 0 in a request message. For a
reply, if the NMsMRc field indicates an
error, this field might provide additional
information about the error (see
“Network security services NMI return
and reason codes” on page 484).

NMsMMsgLength 40 4 bytes Binary Length of entire message, including the
message header.

NMsMTime 44 4 bytes Binary Timestamp. The server ignores this field
in a request message. For a reply, this
value indicates the UNIX timestamp for
the server. This might be correlated with
timestamps in result fields.

NMsMRsvd2 48 20 bytes Binary Reserved; set to 0.

NMsMInRec 68 8 bytes Binary Input record descriptor. This field is set
by the client application for request
messages and describes which records, if
any, are present on the request. This
descriptor is described by the
NMsecInRecDesc structure. See Table 33
on page 425 for details.

NMsMRsvd3 76 8 bytes Binary Reserved; set to 0.

NMsMOutRec 84 16 bytes Binary Output record descriptor. The client
application should set this field to 0 on
input. The server completes the field with
information describing the records that
contain the result data. This descriptor is
described by the NMsecOutRecDesc
structure. See Table 34 on page 425 for
details.

424 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 32. NMsecMessageHdr structure (continued)

Field Offset Length Format Description

NMsMOutRec2 100 16 bytes Binary Secondary output record descriptor. This
descriptor identifies zero or more
secondary result records for a given
request. For example, a request might
provide a single record containing global
configuration information.

The client application should set this field
to 0 on input. The server completes this
field with information describing the
secondary result records. Secondary
result records are provided only for
certain requests; such requests describe
the layout of the corresponding
secondary result records.

This field is described by the
NMsecOutRecDesc structure. See Table 34
for details.

NMsMTarget 116 24 bytes EBCDIC The target for routing the request. Most
request types apply to a single TCP/IP
stack. The target field must contain the
job name for that TCP/IP stack,
right-padded with blanks.
Rule: If the request applies to all stacks
(this is valid only for the
NMsec_GET_STACKINFO request), then
this field must be filled with blanks.
Result: The server echoes the client's
target string on a reply message.

Input record descriptor

Table 33. Input record descriptor

Field Offset Length Format Description

NMsIROffset 0 4 bytes Binary Offset to the first input record,
measured in bytes from the start of
the message.

NMsIRRsvd1 4 2 bytes Binary Reserved; set to 0.

NMsIRNumber 6 2 bytes Binary Number of input records present in
message.

Result: These fields are set to 0 on a reply message sent by the server.

Output record descriptor

Table 34. Output record descriptor

Field Offset Length Format Description

NMsOROffset 0 4 bytes Binary Offset to first output record, measured
in bytes from the start of the message.

Chapter 14. Network management interfaces 425

Table 34. Output record descriptor (continued)

Field Offset Length Format Description

NMsORTotal 4 4 bytes Binary Number of output records that would
have been generated in the absence of
input filters. If the request did not have
input filters, or if input filters were not
applicable for the request, the value of
this field is the same as the
NMsORNumber field value.

NMsORNumber 8 4 bytes Binary Number of output records present in
message.

NMsORRsvd1 12 4 bytes Binary Reserved; set to 0.

The message header is followed by zero or more records. Records can vary in
length. Each record consists of a record header, followed by one or more section
descriptors that describe the sections within the record, followed by one or more
sections that contain the actual record data. Conceptually, the layout of a message
and its records is as shown in Figure 9.

The record header is described by the NMsecRecordHdr structure.

Table 35. NMsecRecordHdr structure

Field Offset Length Format Description

NMsRIdent 0 4 bytes EBCDIC Record header identifier; set to
NMsec_RECIDENT (EBCDIC 'NMsR').

NMsRLength 4 4 bytes Binary Total record length, including record
header, section descriptors and data.

NMsRNumCascadeSecDesc 8 2 bytes Binary Number of cascading section
descriptors present in this record.

Header

Message Record

Input and output record descriptors

Record 1

Record 2

Record 3

Record n

Header

Section descriptor 1

Section descriptor 2

Section descriptor n

Section 1A

Section 1B

Section 2

Section n

Figure 9. Message header and records

426 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 35. NMsecRecordHdr structure (continued)

Field Offset Length Format Description

NMsRNumSecDesc 10 2 bytes Binary Number of section descriptors present
in this record.

A record's section descriptors immediately follow the record header. Standard
section descriptors are described by the NMsecSecDesc structure.

Table 36. NMsecSecDesc structure

Field Offset Length Format Description

NMsSOffset 0 4 bytes Binary Offset from the start of record to the first
section referenced by this section descriptor.

NMsSLength 4 4 bytes Binary Length of each section referenced by this
section descriptor.

NMsSNumber 8 4 bytes Binary Number of sections referenced by this
section descriptor (can be 0).

Each standard section descriptor describes a set of sections present in the record.
Each descriptor indicates the offset to the first such section from the start of the
record (not from the start of the message), the length of each section in the set, and
the number of sections in the set. The number of sections can be zero. If there is
more than one section, then the sections identified by a given descriptor are
uniform in length. In Figure 9 on page 426, sections 1A and 1B are both described
by section descriptor 1 and have the same length, and section 2 does not need to
be present if the length or count of section 2 is 0.

A special kind of section descriptor called a cascading section descriptor indicates
the offset and length of a section that contains a set of records of a different type.
A section that contains these kinds of records is called a cascading record container
section. The NMsCSRecords field of a cascading section descriptor indicates how
many records are contained within the cascading record container section. These
cascading constructs enable records of one type to be nested within another record.
Cascading section descriptors appear after all standard descriptors. The record type
determines the number of each type of descriptor. Cascading descriptors are
described by the NMsecCascadingSecDesc structure.

Table 37. NMsecCascadingSecDesc structure

Field Offset Length Format Description

NMsCSOffset 0 4 bytes Binary Offset from the start of record to
the cascading record container
section referenced by this
cascading section descriptor

NMsCSLength 4 4 bytes Binary Length of the cascading record
container section referenced by
this cascading section descriptor
(can be 0)

NMsCSRecords 8 4 bytes Binary Number of records within the
referenced cascading record
container section (can be 0)

Following the section descriptors are the record's sections, whose location and
number are described by the set of section descriptors. The format of the sections
is determined by the message type for the message. For example, the first section
descriptor might identify a single section containing statistical data, while the
second section descriptor might identify a section containing a variable-length IKE
identity. In Figure 9 on page 426, sections 1A and 1B might always have the same

Chapter 14. Network management interfaces 427

length, but the length of section 2 in one record can differ from the length of
section 2 in another record. Section 2 is not always present in every record, but
section descriptor 2 is always present.

The records for a message can differ in length because some data is present or
absent, or because there is variable-length data. However, all records in a message
have the same type and format for the data that is present in those records. In
other words, for a given message, all records have the same number of section
descriptors, and the sections referenced by each descriptor have the same semantic
content. However, data for any given section in each record within a message
might or might not be present (data not present would be indicated by a section
count value 0 in the associated section descriptor).

The size of any given structure that is contained in a section can increase from one
release to the next, but the format of the data from the earlier release does not
change. If new data is added to a section for a given release, it is added at the end
of the section so that existing data mappings continue to resolve correctly without
recompiling applications. To ensure that applications are compatible with future
releases, if applications check the validity of a section's length, they should always
test for a length that is greater than or equal to the expected length.

Result: If a message contains records (described by the NMsMOutRec field) and
secondary records (described by the NMsMOutRec2 field), then the records and
secondary records are not necessarily of the same type and format. See “IPSec NMI
request messages” for details about the format the records and secondary records
for each request.

IPSec NMI request messages
Client applications send request messages to the server. Request records contain
the input parameters for the request. Input records for monitoring requests are
called filter records or input filters. Control requests have a variety of input record
formats. The following message types are supported by the server.
v Monitoring requests.

Access to each of these functions is controlled using the
EZB.NETMGMT.sysname.tcpipname.IPSEC.DISPLAY resource definition in the
SERVAUTH class, unless otherwise noted.
Each number in parentheses represents the value of the given request type
constant, which is to be stored in the request message's NMsMType field.
– NMsec_GET_STACKINFO (2) - Obtain IP security and defensive filtering

configuration information for a given TCP/IP stack, or optionally obtain this
information for all active TCP/IP stacks.

Rule: To obtain configuration information for a specific TCP/IP stack, set the
NMsMTarget field in the request message header to be the same as the value
for the stack's job name. To obtain configuration information for all TCP/IP
stacks, set the NMsMTarget field in the request message header to blanks.

– NMsec_GET_SUMMARY (3) - Retrieve summary IKE, IPSec, and IP filtering
data from and for a particular stack.

– NMsec_GET_IPFLTCURR (4) - Retrieve detailed information from a particular
stack about the currently active IP filters. These filters can be either the
default IP security filters (filters that originate from the TCP/IP profile) or the
policy IP security filters (filters that originate from Policy Agent). Any
defensive filters that are installed are also included.

428 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

– NMsec_GET_IPFLTDEFAULT (5) - Retrieve detailed information from a
particular stack about the default IP security filters (filters that originate from
the TCP/IP profile).

Result: The default IP security filters are returned, regardless of whether they
comprise the currently active filter set that is in use by the stack.

– NMsec_GET_IPFLTPOLICY (6) - Retrieve detailed information from a
particular stack about the policy IP security filters (filters that originate from
Policy Agent).

Results:

- The policy IP security filters are returned regardless of whether they are the
currently active filter set in use by the stack.

- If Policy Agent has not installed IP security filters in the stack, then a
message that contains no filters is returned.

– NMsec_GET_PORTTRAN (7) - Retrieve IPv4 NAT traversal port translation
information from a particular stack.

– NMsec_GET_IPTUNMANUAL (8) - Retrieve detailed information about
manual tunnels from a particular stack.

– NMsec_GET_IPTUNDYNSTACK (9) - Retrieve detailed information about
dynamic tunnels (phase 2 tunnels) from a particular stack.

– NMsec_GET_IPTUNDYNIKE (10) - Retrieve detailed IKE-related information
about dynamic tunnels (phase 2 tunnels) for a particular stack.

– NMsec_GET_IKETUN (11) - Retrieve detailed information about IKE tunnels
(phase 1 tunnels) for a particular stack.

– NMsec_GET_IKETUNCASCADE (12) - Retrieve detailed information about
IKE tunnels for a particular stack, along with information about the
associated dynamic tunnels (phase 2 tunnels) for each IKE tunnel.

– NMsec_GET_IPINTERFACES (13) - Retrieve the list of IP interfaces that
belong to a particular stack.

– NMsec_GET_IKENSINFO (14) - Retrieve network security services
information for the IKE daemon.

Rules:

- Access to this function is controlled using the
EZB.NETMGMT.sysname.sysname.IKED.DISPLAY resource definition in the
SERVAUTH class.

- Set the NMsMTarget field in the request message header to blanks for this
request.

v Control requests.
Access to each of these functions is controlled using the
EZB.NETMGMT.sysname.tcpipname.IPSEC.CONTROL resource definition in the
SERVAUTH class
– NMsec_ACTIVATE_IPTUNMANUAL (1001) - Activate a manual tunnel.
– NMsec_ACTIVATE_IPTUNDYN (1002) - Activate a dynamic IPSec tunnel.
– NMsec_DEACTIVATE_IPTUNMANUAL (1003) - Deactivate a manual tunnel.
– NMsec_DEACTIVATE_IPTUNDYN (1004) - Deactivate a dynamic IPSec

tunnel.
– NMsec_DEACTIVATE_IKETUN (1005) - Deactivate an IKE tunnel.
– NMsec_REFRESH_IPTUNDYN (1006) - Refresh a dynamic IPSec tunnel.

Chapter 14. Network management interfaces 429

– NMsec_REFRESH_IKETUN (1007) - Refresh an IKE tunnel.
– NMsec_LOAD_POLICY (1008) - Switch between default IP filters and

policy-based IP filters.

IPSec NMI monitoring request format

Monitoring requests that allow request records (not all of them do) call their
request records filter records or input filters. If no input filters are provided, then
all applicable data is returned over the interface. However, if input filters are
provided, then the returned data is limited based on the input filters. Some
requests do not support input filters (see Table 38). Each input filter is specified by
the client application in a separate record in the request message. Up to twenty
input filter elements can be specified. Each input filter specifies one or more
attribute to be restricted in the results returned over the interface. The attributes
filtered by a single filter are combined with a logical AND; that is, all of the
attributes must match a response record in order for that record to be returned
over the interface. Multiple filters are combined with a logical OR; a response
record needs to match only one input filter for that record to be returned over the
interface.

Table 38 shows which input filter specifications are valid for each request type. The
filter specifications are described in detail in subsequent sections.

Table 38. Valid input filter specifications for request types

Filter specification
STACK
INFO SUMMARY

IPFLTCURR,
IPFLTDEFAULT,
IPFLTPOLICY

PORT
TRAN

IPTUN
MANUAL

IPTUN
DYNSTACK

IPTUN
DYNIKE

IKETUN,
IKETUN
CASCADE

IP
INTER
FACES

IKENS
INFO

CLIENT
INFO

NMsFltSrcAddr4

NMsFltSrcAddr6

x x x

NMsFltDstAddr4

NMsFltDstAddr6

x x x x

NMsFltProtocol x x x x

NMsFltSrcPort x x x

NMsFltDstPort x x x x

NMsFltLclEndpt4
NMsFltLclEndpt6

x x x x

NMsFltRmtEndpt4
NMsFltRmtEndpt6

x x x x

NMsFltTunnelID x x x x x

NMsFltObjName x (filter name) x (VPN
action)

x (VPN
action)

x (VPN
action)

x (Key
exchange
rule)

NMsFltObjGroupName x (filter group
name)

NMsFltAssocName x (VPN action) x (Dyn VPN
rule)

x (Dyn
VPN
rule)

NMsFltFlagIPFltType x

NMsFltSAState x x x x

NMsFltSWSAShadow x x

NMsFltFlagDiscipline x

NMI monitoring request format

NMsecMessageHdr

NMsecRecordHdr NMsecSecDesc NMsecInFilter

Input filter records (0-20)

Figure 10. NMI monitoring request format

430 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Restriction: The NMsFltFlagDiscipline filter, which is part of the network security
services NMI, can be used only with the NMsec_GET_CLIENTINFO request to the
NSS server. See “Network security services NMI response messages” on page 481.

The client should provide each input filter element in a record in the request
message. Each record should contain a record header, a single section descriptor
identifying the input filter, and the input filter structure. The input filter is
described by the NMsecInFilter structure. The input filter consists of a bit mask
that indicates which filtering attributes are specified, followed by fields that specify
the actual attribute values that are to be filtered. The layout of the structure is
shown in Table 39, where bit 0 represents the high-order bit of a byte.

Table 39. NMsecInFilter structure

Field Offset Length Format Description

NMsFltFlagIPv6 0, bit 0 1 bit Binary IPv6 indicator. If set, addresses in input filter are
IPv6, otherwise, addresses are IPv4.

NMsFltFlagSrcAddr 0, bit 1 1 bit Binary Source address indicator. If set, the input filter
specifies a source address for filtering.

NMsFltFlagDstAddr 0, bit 2 1 bit Binary Destination address indicator. If set, the input filter
specifies a destination address for filtering.

NMsFltFlagProto 0, bit 3 1 bit Binary Protocol indicator. If set, the input filter specifies
an IP protocol number for filtering.

NMsFltFlagSrcPort 0, bit 4 1 bit Binary Source port indicator. If set, the input filter
specifies a source port number for filtering.

NMsFltFlagDstPort 0, bit 5 1 bit Binary Destination port indicator. If set, the input filter
specifies a destination port number for filtering.

NMsFltFlagLclEndpt 0, bit 6 1 bit Binary Local security endpoint indicator. If set, the input
filter specifies a local security endpoint address for
filtering.

NMsFltFlagRmtEndpt 0, bit 7 1 bit Binary Remote security endpoint indicator. If set, the
input filter specifies a remote security endpoint
address for filtering.

NMsFltFlagTunnelID 1, bit 0 1 bit Binary Tunnel ID indicator. If set, the input filter specifies
a tunnel ID for filtering.

NMsFltFlagObjName 1, bit 1 1 bit Binary Object name indicator. If set, the input filter
specifies an object name for filtering.

NMsFltFlagObjGrpName 1, bit 2 1 bit Binary Object group name indicator. If set, the input filter
specifies an object group name for filtering.

NMsFltFlagAssocName 1, bit 3 1 bit Binary Associated object name indicator. If set, the input
filter specifies an associated object name for
filtering.

NMsFltFlagSAState 1, bit 4 1 bit Binary Security association state indicator. If set, the input
filter specifies a security association state for
filtering.

NMsFltFlagShadow 1, bit 5 1 bit Binary Shadow indicator. If set, the input filter specifies
an SWSA shadow disposition for filtering.

NMsFltFlagIPFltType 1, bit 6 1 bit Binary IP filter type mask. If set for an IP filter request,
the NMsIPFltTypexxx bits indicate the types of IP
filters that match the input filter. If not set, the
NMsIPFltTypexxx bits are ignored and IP filters of
any type match. Details about IP filter mask types
are listed in this table.

NMsFltFlagDiscipline 1, bit 7 1 bit Binary Discipline indicator. If set, the input filter specifies
a discipline for filtering.

NMsFltRsvd1 1, bit 8 16 bits Binary Reserved bits. Must be set to 0.

Chapter 14. Network management interfaces 431

Table 39. NMsecInFilter structure (continued)

Field Offset Length Format Description

NMsFltSrcAddr4 4 4 bytes Binary IPv4 or IPv6 source address selector. For an IP
filter request the following apply:

v If the IP filter represents outbound traffic, this
input filter matches the IP filter if the IP filter
contains this address within its source IP
address specification.

v If the IP filter represents inbound traffic, this
input filter matches the IP filter if the IP filter
contains this address within its destination IP
address specification.

For a dynamic IP tunnel request, this input filter
matches the dynamic IP tunnel if the dynamic
tunnel contains this address within its source IP
address specification for tunnel data.

NMsFltSrcAddr6 4 16 bytes Binary

NMsFltDstAddr4 20 4 bytes Binary IPv4 or IPv6 destination address selector. For an IP
filter request the following apply:

v If the IP filter represents outbound traffic, this
input filter matches the IP filter if the IP filter
contains this address within its destination IP
address specification.

v If the IP filter represents inbound traffic, this
input filter matches the IP filter if the IP filter
contains this address within its source IP
address specification.

For a dynamic IP tunnel request, this input filter
matches the dynamic IP tunnel if the dynamic
tunnel contains this address within its destination
IP address specification for tunnel data.

NMsFltDstAddr6 20 16 bytes Binary

NMsFltProtocol 36 1 byte Binary Protocol selector. For IP filter requests, port
translation requests, and dynamic IP tunnel
requests, this field limits the results based on the
IP protocol number (corresponding to the IP
protocol number in the IPv4 or IPv6 header). This
input filter matches the result data if the result
data contains this protocol within its IP protocol
specification.

NMsFltRsvd2 37 1 byte Binary Reserved field. Must be set to 0.

NMsFltSrcPort 38 2 bytes Binary Source port selector. For an IP filter request the
following apply:

v If the IP filter represents outbound traffic, this
input filter matches the IP filter if the IP filter
contains this port within its source port
specification.

v If the IP filter represents inbound traffic, this
input filter matches the IP filter if the IP filter
contains this port within its destination port
specification.

For a dynamic IP tunnel request, this input filter
matches the dynamic IP tunnel if the dynamic
tunnel contains this port within its source port
specification for tunnel data.

432 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 39. NMsecInFilter structure (continued)

Field Offset Length Format Description

NMsFltDstPort 40 2 bytes Binary Destination port selector. For an IP filter request
the following apply:

v If the IP filter represents outbound traffic, this
input filter matches the IP filter if the IP filter
contains this port within its destination port
specification.

v If the IP filter represents inbound traffic, this
input filter matches the IP filter if the IP filter
contains this port within its source port
specification.

For a dynamic IP tunnel request, this input filter
matches the dynamic IP tunnel if the dynamic
tunnel contains this port within its destination port
specification for tunnel data. For a port translation
request, this input filter matches the port
translation entry if the translated source port
matches this port.

NMsFltRsvd3 42 2 bytes Binary Reserved field. Must be set to 0.

NMsFltLclEndpt4 44 4 bytes Binary Local security endpoint selector. For all IP and IKE
tunnels, manual or dynamic, this input filter
matches the tunnel if the tunnel's local security
endpoint IP address is the same as this address.

NMsFltLclEndpt6 44 16 bytes Binary

NMsFltRmtEndpt4 60 4 bytes Binary Remote security endpoint selector. For all IP and
IKE tunnels, manual or dynamic, this input filter
matches the tunnel if the tunnel's remote security
endpoint IP address is the same as this address.

NMsFltRmtEndpt6 60 16 bytes Binary

NMsFltTunnelID 76 48 bytes EBCDIC Tunnel ID selector. For all IKE and IP tunnels,
manual or dynamic, this input filter matches the
tunnel if the tunnel's tunnel ID matches this
EBCDIC string. For IP filter requests, this input
filter matches any IP filter associated with a
manual or dynamic IP tunnel that has this tunnel
ID.

NMsFltObjName 124 48 bytes EBCDIC Object name selector. For an IP filter request, this
field limits the results based on the filter name.
For IKE tunnels, this field limits the results based
on the KeyExchangeRule name. For IP tunnels,
this field limits the results based on the
IPDynVpnAction or IPManVpnAction name.

NMsFltObjGroupName 172 48 bytes EBCDIC Group name selector. For an IP filter request, this
field limits the results based on the filter group
name.

NMsFltAssocName 220 48 bytes EBCDIC Associated object name selector. For an IP filter
request, this field limits the results based on the
IPDynVpnAction or IPManVpnAction name. For
IP tunnels, this field limits the results based on the
LocalDynVpnRule name.

NMsFltIPFltTypeGeneric 268, bit 0 1 bit Binary Generic IP filter mask. If set for an IP filter
request, this input filter matches generic PERMIT
and DENY IP security filters and defensive filters.
If not set, generic IP security filters and defensive
filters are not matched.

NMsFltIPFltTypeManual 268, bit 1 1 bit Binary Manual IP filter mask. If set for an IP filter
request, this input filter matches IP filters
referencing manual IP tunnels. If not set, manual
IP filters are not matched.

Chapter 14. Network management interfaces 433

Table 39. NMsecInFilter structure (continued)

Field Offset Length Format Description

NMsFltIPFltTypeDynAnchor 268, bit 2 1 bit Binary Dynamic anchor IP filter mask. If set for an IP
filter request, this input filter matches IP filters
that serve as anchors for dynamic IP tunnels. If
not set, dynamic anchor IP filters are not matched.

NMsFltIPFltTypeDynamic 268, bit 3 1 bit Binary Dynamic IP filter mask. If set for an IP filter
request, this input filter matches dynamic IP filters
for dynamic IP tunnels. If not set, dynamic IP
filters are not matched.

NMsFltIPFltTypeNATTAnchor 268, bit 4 1 bit Binary NATT anchor IP filter mask. If set for an IP filter
request, this input filter matches IP filters that
serve as anchors for NAT traversal IP tunnels. If
not set, NATT anchor IP filters are not matched.

NMsFltIPFltTypeNATTDyn 268, bit 5 1 bit Binary NATT dynamic IP filter mask. If set for an IP filter
request, this input filter matches dynamic IP filters
for NAT traversal IP tunnels. If not set, NATT
dynamic IP filters are not matched.

NMsFltIPFltTypeNRF 268, bit 6 1 bit Binary NATT resolution filter mask. If set for an IP filter
request, this input filter matches NATT resolution
filters for NAT traversal IP tunnels. If not set,
NATT resolution filters are not matched.

NMsFltRsvd4 268, bit 7 1 bit Binary Reserved bit. Must be set to 0.

NMsFltDisciplineIPSec 269, bit 0 1 bit Binary Discipline filter mask. If set for an NSS client info
request, this input filter matches NSS clients that
are registered for the IPSec discipline.

NMsFltDisciplineXMLApp 269, bit 1 1 bit Binary Discipline filter mask. If set for an NSS client info
request, this input filter matches NSS clients that
are registered for the XMLAppliance discipline.

NMsFltDisciplineRsvd 269, bit 2 6 bits Binary Reserved bits. Must be set to 0.

NMsFltSAState 270 1 byte Binary SA state selector. For an IP or IKE tunnel request,
this field limits the results based on the security
association (SA) state. Valid state values are as
follows:

NMsec_SASTATE_INACTIVE (1)
Tunnel is inactive

NMsec_SASTATE_PENDING (2)
Tunnel is awaiting negotiation

NMsec_SASTATE_INCOMPLETE (3)
Tunnel is in negotiation

NMsec_SASTATE_ACTIVE (4)
Tunnel is active

NMsec_SASTATE_EXPIRED (5)
Tunnel is expired

NMsec_SASTATE_HALF_CLOSED (6)
Dynamic tunnel is no longer being used
by the local endpoint but the delete
process has not been acknowledged by
the remote endpoint. Applies to IKEv2
tunnels only.

434 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 39. NMsecInFilter structure (continued)

Field Offset Length Format Description

NMsFltSWSAShadow 271 1 byte Binary SWSA shadow indicator. This is applicable for IP
filters and for dynamic IP tunnels. Valid values are
as follows:

NMsec_SHADOW (1)
Match objects that are SWSA shadow
objects originating from a remote
distributor only.

NMsec_NONSHADOW (0)
Match objects that are not SWSA shadow
objects only.

IPSec NMI control request formats
Control request record formats vary with each request type.
v The following section, NMsecTunnel, is used across several record types.
v All EBCDIC fields are blank-padded and they are not NUL-terminated.

Table 40. NMsecTunnel field descriptions

Field Offset Length Format Description

NMsTunName 0 48 bytes EBCDIC The name that is associated with the tunnel. This name
comes from a Policy Agent configuration file.

v For manual tunnels, this is an IpManVpnActionName
name.

v For dynamic IPSec tunnels, this is a
LocalDynVpnRuleName name.

v For IKE tunnels, this is a KeyExchangeRuleName
name.

This field must be set to blanks when a tunnel name is
not specified.

NMsTunTunnelID 48 48 bytes EBCDIC The tunnel ID that is associated with this tunnel. This
field is used for any refresh and deactivation requests.
This field must be set to blanks when a tunnel ID is not
specified.

Chapter 14. Network management interfaces 435

Table 40. NMsecTunnel field descriptions (continued)

Field Offset Length Format Description

NMsTunStatus 96 1 byte Binary Tunnel Status. This field is set to 0 on a request message.
On a response this field is set to the status of the tunnel's
state change. Valid state values are as follows:

NMsec_TUNSTATUS_NOTFOUND (1)
The requested tunnel was not found.

NMsec_TUNSTATUS_STATEUPDATED (2)
The tunnel's state was updated.

NMsec_TUNSTATUS_STATEALREADYSET (3)
The tunnel's state was already set to the state
requested.

NMsec_TUNSTATUS_NOKER (5)
Applicable only to dynamic tunnel activation,
this status indicates that there is no
KeyExchangeRule rule corresponding to the
requested LocalDynVpnRule rule.

NMsec_TUNSTATUS_NOFILTER (6)
Applicable only to dynamic tunnel activation,
this status indicates that there is no dynamic
IPSec IpFilterRule rule corresponding to the
requested LocalDynVpnRule rule.

NMsec_TUNSTATUS_NODATAOFFER (7)
Applicable only to dynamic tunnel activation,
this status indicates that the IpDataOffers
defined on the dynamic IPSec IpFilterRule,
corresponding to the requested
LocalDynVpnRule, could not be used.

NMsTunRsvd1 97 3 bytes Binary Reserved. Must be set to 0.

NMsec_ACTIVATE_IPTUNMANUAL

Activates one or more manual tunnels. The request format contains zero or one
record with one fixed-length section that contains one or more NMsecTunnel
instances (described in Table 40 on page 435). Each NMsecTunnel instance
identifies a manual tunnel to activate. If the Request Record is not present then all
manual tunnels are activated.

Restriction: Manual tunnel activation requests for multiple tunnels must contain
uniform tunnel specifications, either tunnel IDs or tunnel names.

NMsec_ACTIVATE_IPTUNDYN

NMsec_ACTIVATE_IPTUNMANUAL request format

NMsecMessageHdr

NMsecRecordHdr NMsecSecDesc NMsecTunnel (1-)n

Request records (0 or 1)

Figure 11. NMsec_ACTIVATE_IPTUNMANUAL request form

436 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Activates a dynamic IPSec tunnel. Each record has one section, NMsecTunnel
(described in Table 40 on page 435). The NMsecTunnel section identifies the
dynamic tunnel that is to be activated.

NMsec_DEACTIVATE_IPTUNMANUAL

Deactivates one or more manual tunnels. The request format contains zero or one
record with one fixed-length section that contains one or more NMsecTunnel
instances (described in Table 40 on page 435). Each NMsecTunnel instance
identifies a manual tunnel to deactivate. If the request record is not present then all
manual tunnels are deactivated.

Restriction: Manual tunnel deactivation requests for multiple tunnels must contain
uniform tunnel specifications, either tunnel IDs or tunnel names.

NMsec_DEACTIVATE_IPTUNDYN

Deactivates one or all dynamic tunnels. The request format contains zero or one
record with one section, NMsecTunnel (described in Table 40 on page 435). The
NMsecTunnel section identifies the dynamic tunnel to be deactivated. If the
Request Record is not present then all dynamic tunnels are deactivated.

NMsec_DEACTIVATE_IKETUN

NMsec_ACTIVATE_IPTUNDYN request format

NMsecMessageHdr

NMsecRecordHdr NMsecSecDesc NMsecTunnel

Request records (exactly 1)

Figure 12. NMsec_ACTIVATE_IPTUNDYN request format

NMsec_DEACTIVATE_IPTUNMANUAL request format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecTunnel (1-)n

Request records (0 or 1)

Figure 13. NMsec_DEACTIVATE_IPTUNMANUAL request format

NMsec_DEACTIVATE_IPTUNDYN request format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecTunnel

Request records (0 or 1)

Figure 14. NMsec_DEACTIVATE_IPTUNDYN request format

Chapter 14. Network management interfaces 437

Deactivates one or all IKE tunnels. The request format contains zero or one record
with one section, NMsecTunnel, (described in Table 40 on page 435). The
NMsecTunnel section identifies the IKE tunnel to be deactivated. If the Request
Record is not present then all IKE tunnels are deactivated.

NMsec_REFRESH_IPTUNDYN

Refreshes a dynamic IPSec tunnel. Contains a single record that has one section,
NMsecTunnel (described in Table 40 on page 435). The NMsecTunnel section
identifies the dynamic tunnel to be refreshed.

NMsec_REFRESH_IKETUN

Refreshes an IKE tunnel. Contains a single record that has one section,
NMsecTunnel (described in Table 40 on page 435). The NMsecTunnel section
identifies the IKE tunnel to be refreshed.

NMsec_LOAD_POLICY
Switches between default IP filters and policy-based IP filters. The call indicates
whether the default policy or configured policy should be loaded. After this call
completes, the client will have initiated the policy load operation.

Selecting the NMsec_FLT_DEFAULT option causes the stack to use the default IP
filter rules. Default IP filter rules consist of the IP filter rules that are specified by
the TCPIP profile, if any, and an implicit DENY-ALL rule. While the profile IP
filters are in effect, manual, dynamic, and IKE tunnels still exist, but they are not
used. These tunnels might expire or be deactivated. Tunnel refreshes might not
occur and new dynamic tunnels might not be activated.

NMsec_DEACTIVATE_IKETUN request format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecTunnel

Request records (0 or 1)

Figure 15. NMsec_DEACTIVATE_IKETUN request format

NMsec_REFRESH_IPTUNDYN request format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecTunnel

Request records (exactly 1)

Figure 16. NMsec_REFRESH_IPTUNDYN request format

NMsec_REFRESH_IKETUN request format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecTunnel

Request records (exactly 1)

Figure 17. NMsec_REFRESH_IKETUN request format

438 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Switching between default and configured policy is useful when there is a need to
quickly restrict system access to a very small subset of allowable traffic. This might
occur when a system is under some sort of security attack or just before going into
a maintenance state.

Selecting the NMsec_FLT_POLICY option causes the stack to use the policy IP
filter rules as supplied from a policy configuration file or server. If no policy IP
filters were previously defined to the stack, the stack continues to use the default
IP filter rules until the policy configuration file is installed by the Policy Agent. If
policy IP filter rules were previously defined to the stack, those policy IP filters
become effective again. Tunnel activity can resume, including refreshes and new
activations. The IKE daemon attempts to perform all configured autoactivations.

The active policy definitions (default or configured) are remembered across
activations of the stack and system IPLs.

Each record has one section, NMsecPolicySource, which contains the following
data.

Table 41. NMsecPolicySource data

Field Offset Length Format Description

NMsPolSrcSource 0 1 byte Binary Indicates which policy should be loaded
or reloaded. The field can have one of
the following values:

NMsec_FLT_POLICY (1)

NMsec_FLT_DEFAULT (0)

NMsPolSrcRsvd1 1 3 bytes Binary Reserved. Set to zeros.

IPSec NMI response messages
Response messages contain zero or more response records. The layout of each
record depends on the message type. The fields in the response records for each
request type are described in the following sections. Some section layouts are
shared between several record types.

All EBCDIC fields are blank-padded and are not NUL-terminated.

NMsec_GET_STACKINFO

Each record returned identifies a single stack that is active on the system. Each
record has the following sections:
v One section, NMsecStack, describes attributes of the stack.

NMsec_GET_STACKINFO response format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecStack

Response records (1 per stack)

Figure 18. NMsec_GET_STACKINFO response format

Chapter 14. Network management interfaces 439

Table 42. NMsecStack structure

Field Offset Length Format Description

NMsStackIPSecurity 0, bit 0 1 bit Binary If set, IP security is enabled for
this stack.

NMsStackIPv6Security 0, bit 1 1 bit Binary If set, IPv6 IP security is enabled
for this stack.

NMsStackDVIPSec 0, bit 2 1 bit Binary If set, sysplex-wide security
associations (DVIPSEC) is
enabled for this stack.

NMsStackLogging 0, bit 3 1 bit Binary If set, filter logging is enabled
for this stack.

NMsStackPreDecap 0, bit 4 1 bit Binary If set, pre-decapsulation filtering
is enabled for this stack.

NMsStackFilterSet 0, bit 5 1 bit Binary Current filter set indicator.
Possible values are:

NMsec_FLT_DEFAULT (0)
Default filters are
currently in effect. The
default filters originate
from the TCP/IP
profile.

NMsec_FLT_POLICY (1)
Policy filters are
currently in effect. The
policy filters originate
in the Policy Agent
configuration.

NMsStackFIPS140 0, bit 6 1 bit Binary FIPS 140 mode indicator. If this
field is set, cryptographic
operations for this stack are
performed by using
cryptographic algorithms and
modules that are designed to
meet the FIPS 140 requirements;
otherwise, cryptographic
algorithms and modules that do
not meet the FIPS 140
requirements might be used.

NMsStackRsvd1 0, bit 7 25 bits Binary Reserved bits.

NMsStackName 4 24 bytes EBCDIC The job name of the TCP/IP
stack.

NMsStackNATKeepAlive 28 4 bytes Binary NAT keepalive interval, in
seconds, used to regulate
sending NAT keepalive
messages for a NAT traversal
tunnel when a NAT device is
detected in front of the local
host.

NMsStackFilterCount 32 4 bytes Binary Number of configured filters in
the current filter set. This
number does not include any
dynamic filters.

440 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 42. NMsecStack structure (continued)

Field Offset Length Format Description

NMsStackDefFltCount 36 4 bytes Binary Number of defensive filters that
are currently installed in the
TCP/IP stack.

NMsStackDefFltMode 40 1 byte Binary Defensive filtering mode.
Possible values are:

NMsec_DEFFLT_INACTIVE (0)
Defensive filtering is
inactive for the stack.

NMsec_DEFFLT_ACTIVE (1)
Defensive filtering is active
for the stack. The filter
mode of block or simulate
that is specified in the
individual defensive filters
is honored.

NMsec_DEFFLT_SIMULATE (2)
Defensive filtering is active
for the stack. The filter
mode, simulate, overrides
the mode that is specified in
the individual defensive
filters.

NMsStackRsvd2 41 3 bytes Binary Reserved bytes.

v Zero to ten NMsecStackExclAddr sections that contain the defensive filtering
exclusion list.

Table 43. NMsecStackExclAddr structure

Field Offset Length Format Description

NMsStackExclAddrFlagIsSingle 0, bit 0 1 bit Binary Single exclusion address indicator. If
set, the exclusion address is
indicated by the
NMsStackExclAddr4 or
NMsStackExclAddr6 field.

NMsStackExclAddrFlagIsPrefix 0, bit 1 1 bit Binary Prefixed exclusion address indicator.
If set, the exclusion address is
indicated by the
NMsStackExclAddr4 or
NMsStackExclAddr6 field, and the
exclusion address prefix length is
indicated by the
NMsStackExclAddrPrefix field.

NMsStackExclAddrFlagIPv6 0, bit 2 1 bit Binary IPv6 indicator. If set, exclusion
addresses are IPv6; otherwise they
are IPv4.

NMsStackExclAddrRsvd1 0, bit 3 5 bits Binary Reserved bits.

NMsStackExclAddrRsvd2 1 2 bytes Binary Reserved.

NMsStackExclAddrPrefix 3 1 byte Binary If the NMsStackExclAddrIsPrefix
field is set, this value is the length of
the defensive filter exclusion address
prefix, in bits.

Chapter 14. Network management interfaces 441

Table 43. NMsecStackExclAddr structure (continued)

Field Offset Length Format Description

NMsStackExclAddr4 4 4 bytes Binary If the
NMsStackExclAddrFlagIsSingle field
is set, this value is a defensive filter
IPv4 or IPv6 exclusion address. If the
NMsStackExclAddrFlagIsPrefix field
is set, this value is a defensive filter
IPv4 or IPv6 exclusion address base

NMsStackExclAddr6 4 16 bytes Binary

NMsec_GET_SUMMARY

For the requested stack, one record is returned, which indicates statistical data.
This record has a single section, NMsecStatistics, that contains the following data.

Table 44. NMsecStatistics structure

Field Offset Length Format Description

NMsStatP1Active 0 4 bytes Binary Current number of active IKE
tunnels.

NMsStatP1InProgress 4 4 bytes Binary Current number of IKE tunnels
in-progress, either pending or in
negotiation.

NMsStatP1Expired 8 4 bytes Binary Current number of expired IKE
tunnels.

This is a current count (not
cumulative). Expired IKE tunnels
are retained until all associated
dynamic tunnels have expired.

NMsStatP1LclActSuccess 12 8 bytes Binary Cumulative number of successful
IKE tunnel activations that were
initiated locally for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1RmtActSuccess 20 8 bytes Binary Cumulative number of successful
IKE tunnel activations that were
initiated remotely for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsec_GET_SUMMARY r formatesponse

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecStatistics

Response records (exactly 1)

Figure 19. NMsec_GET_SUMMARY response format

442 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 44. NMsecStatistics structure (continued)

Field Offset Length Format Description

NMsStatP1LclActFailure 28 8 bytes Binary Cumulative number of failed IKE
tunnel activations that were
initiated locally for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1RmtActFailure 36 8 bytes Binary Cumulative number of failed IKE
tunnel activations that were
initiated remotely for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1Retransmit 44 8 bytes Binary Cumulative number of
retransmitted key exchange (phase
1) messages sent for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1Replay 52 8 bytes Binary Cumulative number of replayed key
exchange (phase 1) messages
received for this stack over the life
of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1Invalid 60 8 bytes Binary Cumulative number of key
exchange (phase 1) messages that
are not valid that have been
received for this stack over the life
of the IKE daemon. This number
does not include message
authentication failures.

This data is cumulative even across
stack restarts.

NMsStatP1AuthFail 68 8 bytes Binary Cumulative number of key
exchange (phase 1) message
authentication failures for this stack
over the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP2Active 76 4 bytes Binary Current number of active dynamic
tunnels known to the TCP/IP stack.
This number does not include
SWSA shadow tunnels or manual
tunnels.

NMsStatP2ActiveShadow 80 4 bytes Binary Current number of active dynamic
SWSA shadow tunnels known to
the TCP/IP stack.

Chapter 14. Network management interfaces 443

Table 44. NMsecStatistics structure (continued)

Field Offset Length Format Description

NMsStatP2InProgress 84 4 bytes Binary Current number of dynamic tunnels
in progress, either pending or in
negotiation.

NMsStatP2Expired 88 4 bytes Binary Current number of expired dynamic
tunnels known to the TCP/IP stack.
This includes both non-shadow and
shadow tunnels.

NMsStatP2ActSuccess 92 8 bytes Binary Cumulative number of successful
dynamic tunnel activations for this
stack over the life of the IKE
daemon.

This data is cumulative even across
stack restarts.

NMsStatP2ActFailure 100 8 bytes Binary Cumulative number of failed
dynamic tunnel activations for this
stack over the life of the IKE
daemon.

This data is cumulative even across
stack restarts.

NMsStatP2Retransmit 108 8 bytes Binary Cumulative number of
retransmitted QUICKMODE (phase
2) messages sent for this stack over
the life of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP2Replay 116 8 bytes Binary Cumulative number of replayed
QUICKMODE (phase 2) messages
received for this stack over the life
of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP2Invalid 124 8 bytes Binary Cumulative number of
QUICKMODE (phase 2) messages
that were not valid that were
received for this stack over the life
of the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP1BytesOut 132 8 bytes Binary Cumulative number of outbound
bytes of IKE traffic protected by IKE
tunnels for this stack over the life of
the IKE daemon.

This data is cumulative even across
stack restarts.

444 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 44. NMsecStatistics structure (continued)

Field Offset Length Format Description

NMsStatP1BytesIn 140 8 bytes Binary Cumulative number of inbound
bytes of IKE traffic protected by IKE
tunnels for this stack over the life of
the IKE daemon.

This data is cumulative even across
stack restarts.

NMsStatP2BytesOut 148 8 bytes Binary Cumulative number of outbound
bytes of IP traffic protected by
dynamic and manual tunnels for
this stack over the life of the
TCP/IP stack.

NMsStatP2BytesIn 156 8 bytes Binary Cumulative number of inbound
bytes of IP traffic protected by
dynamic and manual tunnels for
this stack over the life of the
TCP/IP stack.

NMsStatFilterDeny 164 8 bytes Binary Cumulative number of packets
denied as the result of IP filter
action DENY for this stack over the
life of the TCP/IP stack.

NMsStatFilterMismatch 172 8 bytes Binary Cumulative number of packets
denied as the result of mismatch
with filter action for this stack over
the life of the TCP/IP stack.

NMsStatFilterMatch 180 8 bytes Binary Cumulative number of packets
matching an IP filter over the life of
the TCP/IP stack. This includes
generic (permit and deny) filters,
IPSec filters, and defensive filters.

NMsec_GET_IPFLTCURR, NMsec_GET_IPFLTDEFAULT, and
NMsec_GET_IPFLTPOLICY

For the requested stack, zero or more records, which represent IP filters, are
returned. Each record that is returned identifies a single IP filter and contains two
sections that describe the data. Filters are presented in an ordered sequence.
Generic IP filters (permit or deny), manual tunnel filters, and dynamic anchor
filters are presented in the order in which they are configured. Dynamic anchor
filters are presented immediately before the dynamic and NATT anchor filters that
are associated with them. NATT anchor filters are presented immediately before
the NATT dynamic filters that are associated with them. NAT traversal resolution
filters (NRFs) for a NATT anchor filter are presented immediately after the NATT
dynamic filters for that NATT anchor filter. Defensive filters are presented based

Figure 20. NMsec_GET_IPFLTCURR, NMsec_GET_IPFLTDEFAULT, and
NMsec_GET_IPFLTPOLICY response format

Chapter 14. Network management interfaces 445

on the order in which they were added to the stack, most recent to least recent.
Some IP filters might be absent from the result list because of input filters
provided on the request message.
v One section, NMsecIPFilter, describes the basic properties of an IP filter. This

section contains the following data.

Table 45. NMsecIPFilter structure

Field Offset Length Format Description

NMsIPFltName 0 48 bytes EBCDIC Filter rule name.

Bytes 41-48 of the filter rule name consist of the filter
rule name extension, which is a numeric extension
used to distinguish between distinct filter rules that
result from the same configured filter rule.

NMsIPFltGroupName 48 48 bytes EBCDIC Filter rule group name or blank if there is no filter
group.

NMsIPFltLSAName 96 48 bytes EBCDIC Local start action name or blank if there is no local
start action.

NMsIPFltVPNActionName 144 48 bytes EBCDIC VPN action name or blank if there is no VPN action.

NMsIPFltTunnelID 192 48 bytes EBCDIC Associated tunnel ID or blank if there is no associated
tunnel.

NMsIPFltFlagIPv6 240, bit 0 1 bit Binary IPv6 indicator. If set, IP addresses for traffic and
security endpoints are IPv6; otherwise they are IPv4.

NMsIPFltFlagOnDemand 240, bit 1 1 bit Binary On-demand indicator. If set for a dynamic anchor
filter, a dynamic filter, a NAT traversal anchor filter,
or a NAT traversal dynamic filter, this value indicates
that on-demand activations are permitted for this
traffic specification.

NMsIPFltFlagShadow 240, bit 2 1 bit Binary SWSA shadow indicator. If set for a dynamic filter,
this value indicates that the filter originated from a
distributing stack.

NMsIPFltFlagSrcIsSingle 240, bit 3 1 bit Binary Single source address indicator. If set, the source
address is indicated by the NMsIPFltSrcAddr4 or
NMsIPFltSrcAddr6 field.

NMsIPFltFlagSrcIsPrefix 240, bit 4 1 bit Binary Prefixed source address indicator. If set, the source
address is indicated by the NMsIPFltSrcAddr4 or
NMsIPFltSrcAddr6 field, and the source address
prefix is indicated by the NMsIPFltSrcAddrPrefix
field.

NMsIPFltFlagSrcIsRange 240, bit 5 1 bit Binary Ranged source address indicator. If set, the source
address range is indicated by the NMsIPFltSrcAddr4
and NMsIPFltSrcAddrRange4 fields, or the
NMsIPFltSrcAddr6 and NMsIPFltSrcAddrRange6
fields.

NMsIPFltFlagDstIsSingle 240, bit 6 1 bit Binary Single destination address indicator. If set, the
destination address is indicated by the
NMsIPFltDstAddr4 or NMsIPFltDstAddr6 field.

NMsIPFltFlagDstIsPrefix 240, bit 7 1 bit Binary Prefixed destination address indicator. If set, the
destination address is indicated by the
NMsIPFltDstAddr4 or NMsIPFltDstAddr6 field, and
the destination address prefix is indicated by the
NMsIPFltDstAddrPrefix field.

NMsIPFltFlagDstIsRange 241, bit 0 1 bit Binary Ranged destination address indicator. If set, the
destination address range is indicated by the
NMsIPFltDstAddr4 and NMsIPFltDstAddrRange4
fields, or the NMsIPFltDstAddr6 and
NMsIPFltDstAddrRange6 fields.

NMsIPFltFlagProtoDef 241, bit 1 1 bit Binary Protocol indicator. If set, the filter protocol is
indicated by the NMsIPFltProtocol field, otherwise,
the filter applies to all protocols.

446 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 45. NMsecIPFilter structure (continued)

Field Offset Length Format Description

NMsIPFltFlagSrcPortDef 241, bit 2 1 bit Binary Source port indicator. If set, the source port range is
indicated by the NMsIPFltSrcPort and
NMsIPFltSrcPortRange fields; otherwise, the filter
applies to all source ports. This indicator is not valid
and has the value 0 if the filter protocol is not TCP or
UDP.

NMsIPFltFlagDstPortDef 241, bit 3 1 bit Binary Destination port indicator. If set, the destination port
range is indicated by the NMsIPFltDstPort and
NMsIPFltDstPortRange fields; otherwise, the filter
applies to all destination ports. This indicator is not
valid and has the value 0 if the filter protocol is not
TCP or UDP.

NMsIPFltFlagICMPTypeDef 241, bit 4 1 bit Binary ICMP type indicator. If set, the ICMP type is indicated
by the NMsIPFltICMPType field; otherwise, the filter
applies to all ICMP types. This indicator is not valid
and has the value 0 if the filter protocol is not ICMP
or ICMPv6.

NMsIPFltFlagICMPCodeDef 241, bit 5 1 bit Binary ICMP code indicator. If set, the ICMP code is
indicated by the NMsIPFltICMPCode field; otherwise,
the filter applies to all ICMP codes. This indicator is
not valid and has the value 0 if the filter protocol is
not ICMP or ICMPv6.

NMsIPFltFlagOSPFTypeDef 241, bit 6 1 bit Binary OSPF type indicator. If set, the OSPF type is indicated
by the NMsIPFltOSPFType field; otherwise, the filter
applies to all OSPF types. This indicator is not valid
and has the value 0 if the filter protocol is not OSPF.

NMsIPFltFlagSrcAddrPktGran 241, bit 7 1 bit Binary Source address granularity indicator. If set for a
dynamic anchor filter, on-demand activations use the
packet source address; otherwise, they use the filter
source address specification.

NMsIPFltFlagDstAddrPktGran 242, bit 0 1 bit Binary Destination address granularity indicator. If set for a
dynamic anchor filter, on-demand activations use the
packet destination address; otherwise, they use the
filter destination address specification.

NMsIPFltFlagProtoPktGran 242, bit 1 1 bit Binary Protocol granularity indicator. If set for a dynamic
anchor filter, on-demand activations use packet
protocol; otherwise, they use the filter protocol.

NMsIPFltFlagSrcPortPktGran 242, bit 2 1 bit Binary Source port granularity indicator. If set for a dynamic
anchor filter, on-demand activations use a packet
source port; otherwise they use the filter source port
specification, when possible.

NMsIPFltFlagDstPortPktGran 242, bit 3 1 bit Binary Destination port granularity indicator. If set for a
dynamic anchor filter, on-demand activations use
packet destination port; otherwise, they use the filter
destination port specification, when possible.

NMsIPFltFlagNATDetect 242, bit 4 1 bit Binary NAT indicator. If set for a dynamic filter, a NAT has
been detected in front of the IPSec peer.

NMsIPFltFlagNAPTDetect 242, bit 5 1 bit Binary NAPT indicator. If set for a dynamic filter, a NAPT
has been detected in front of the IPSec peer. It is
possible that a NAPT exists but that it is detected
only as a NAT.

NMsIPFltFlagGWDetect 242, bit 6 1 bit Binary NAT traversal gateway indicator. If set for a dynamic
filter, the tunnel uses UDP encapsulation and the peer
is acting as an IPSec gateway.

NMsIPFltFlagLogPermit 242, bit 7 1 bit Binary LogPermit indicator. If set, permitted packets that
match this filter are logged.

NMsIPFltFlagLogDeny 243, bit 0 1 bit Binary LogDeny indicator. If set, denied packets that match
this filter are logged.

Chapter 14. Network management interfaces 447

Table 45. NMsecIPFilter structure (continued)

Field Offset Length Format Description

NMsIPFltFlagMIPv6TypeDef 243, bit 1 1 bit Binary MIPv6 type indicator. If set, MIPv6 type is indicated
by NMsIPFltMIPv6Type; otherwise, the filter applies
to all MIPv6 types. This indicator is not valid and has
the value 0 if the filter protocol is not MIPv6.

NMsIPFltFlagProtoOpaque 243, bit 2 1 bit Binary Opaque protocol indicator. If set, the filter matches
packets that have an indeterminate protocol.

NMsIPFltFlagDiscardICMP 243, bit 3 1 bit Binary ICMP error indicator. If set and packets are discarded
as a result of this filter rule, ICMP or ICMPv6
destination unreachable messages are sent to the
packet origin, which indicates that the packet was
administratively prohibited.

NMsIPFltFlagFragmentsOnly 243, bit 4 1 bit Binary Fragment indicator. If set, the filter matches
fragmented packets. If clear, the filter matches both
fragmented and non-fragmented packets.

NMsIPFltDefensiveGlobal 243, bit 5 1 bit Binary Defensive global indicator. If set for a defensive filter,
the filter has a global scope. Not set for non-defensive
filters.

NMsIPFltFlagTransOpaque 243, bit 6 1 bit Binary Opaque transport selector indicator. If set, the filter
matches packets that have indeterminate transport
layer selectors (for example, port, type, or code).

NMsIPFltFlagMIPv6TypePktGran 243, bit 7 1 bit Binary MIPv6 type granularity indicator. If set for a dynamic
anchor filter, on-demand activations use packet MIPv6
type value; otherwise, they use the filter MIPv6 type
specification, when possible.

NMsIPFltType 244 1 byte Binary IP filter type. The field can have one of the following
values:

NMsec_IPFLT_GENERIC (1)

NMsec_IPFLT_MANUAL (2)

NMsec_IPFLT_DYNANCHOR (3)

NMsec_IPFLT_DYNAMIC (4)

NMsec_IPFLT_NATTANCHOR (5)

NMsec_IPFLT_NATTDYN (6)

NMsec_IPFLT_NRF (7)

NMsec_IPFLT_DEFENSIVE (8)

NMsIPFltState 245 1 byte Binary IP filter state. The field can have one of the following
values:

NMsec_IPFLT_INACTIVE (0)
Filter is inactive as a result of a time
condition.

NMsec_IPFLT_ACTIVE (1)
Filter is active.

NMsIPFltAction 246 1 byte Binary IP filter action. The field can have one of the
following values:

NMsec_IPFLT_PERMIT (1)

NMsec_IPFLT_DENY (2)

NMsec_IPFLT_IPSEC (3)

NMsec_IPFLT_DEFENSIVE_SIMULATE (4)

NMsIPFltScope 247 1 byte Binary IP filter scope. The field can have one of the following
values:

NMsec_IPFLT_LOCAL (1)

NMsec_IPFLT_ROUTED (2)

NMsec_IPFLT_SCOPEALL (3)

448 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 45. NMsecIPFilter structure (continued)

Field Offset Length Format Description

NMsIPFltDirection 248 1 byte Binary IP filter direction. The field can have one of the
following values:

NMsec_IPFLT_INBOUND (1)

NMsec_IPFLT_OUTBOUND (2)

NMsIPFltSecurityClass 249 1 byte Binary IP filter security class. Valid values are in the range
0-255. The value 0 matches all security classes.

NMsIPFltTCPConnect 250 1 byte Binary TCP connect qualifier. The field can have one of the
following values:

NMsec_IPFLT_CONNECT_NONE (0)

NMsec_IPFLT_CONNECT_INBOUND (1)

NMsec_IPFLT_CONNECT_OUTBOUND (2)

NMsIPFltFlagICMPTypePktGran 251, bit 0 1 bit Binary ICMP type granularity indicator. If set for a dynamic
anchor filter, on-demand activations use packet ICMP
type value; otherwise, they use the filter ICMP type
specification, when possible.

NMsIPFltFlagICMPCodePktGran 251, bit 1 1 bit Binary ICMP code granularity indicator. If set for a dynamic
anchor filter, on-demand activations use packet ICMP
code value; otherwise, they use the filter ICMP code
specification, when possible.

NMsIPFltFlagICMPv6TypePktGran 251, bit 2 1 bit Binary ICMPv6 type granularity indicator. If set for a
dynamic anchor filter, on-demand activations use
packet ICMPv6 type value; otherwise, they use the
filter ICMPv6 type specification, when possible.

NMsIPFltFlagICMPv6CodePktGran 251, bit 3 1 bit Binary ICMPv6 code granularity indicator. If set for a
dynamic anchor filter, on-demand activations use
packet ICMPv6 code value; otherwise, they use the
filter ICMPv6 code specification, when possible.

NMsIPFltRsvd2 251, bit 4 4 bits Binary Reserved

NMsIPFltProtocol 252 1 byte Binary IP filter protocol number, if the NMsIPFltFlagProtoDef
field is set. This value corresponds to the IP protocol
number in the IPv4 or IPv6 header.

NMsIPFltICMPType 253 1 byte Binary ICMP type, if the NMsIPFltFlagICMPTypeDef field is
set.

NMsIPFltICMPCode 254 1 byte Binary ICMP code, if the NMsIPFltFlagICMPCodeDef field is
set.

NMsIPFltOSPFType 255 1 byte Binary OSPF type, if the NMsIPFltFlagOSPFTypeDef field is
set.

NMsIPFltSrcPort 256 2 bytes Binary Low end of IP filter source port range, if the
NMsIPFltFlagSrcPortDef field is set.

NMsIPFltSrcPortRange 258 2 bytes Binary High end of IP filter source port range, if the
NMsIPFltFlagSrcPortDef field is set.

NMsIPFltDstPort 260 2 bytes Binary Low end of IP filter destination port range, if
NMsIPFltFlagDstPortDef field is set.

NMsIPFltDstPortRange 262 2 bytes Binary High end of IP filter destination port range, if the
NMsIPFltFlagDstPortDef field is set.

NMsIPFltSrcAddr4 264 4 bytes Binary The field can have one of the following values:

v If the NMsIPFltFlagSrcIsSingle field is set, the
filter's IPv4 or IPv6 source address

v If the NMsIPFltFlagSrcIsPrefix field is set, the
filter's IPv4 or IPv6 source address base

v If the NMsIPFltFlagSrcIsRange field is set, the low
end of the filter's IPv4 or IPv6 source address range

NMsIPFltSrcAddr6 264 16 bytes Binary

NMsIPFltSrcAddrRange4 280 4 bytes Binary If the NMsIPFltFlagSrcIsRange field is set, the high
end of the filter's IPv4 or IPv6 source address range.NMsIPFltSrcAddrRange6 280 16 bytes Binary

Chapter 14. Network management interfaces 449

Table 45. NMsecIPFilter structure (continued)

Field Offset Length Format Description

NMsIPFltDstAddr4 296 4 bytes Binary The field can have one of the following values:

v If the NMsIPFltFlagDstIsSingle field is set, the
filter's IPv4 or IPv6 destination address

v If the NMsIPFltFlagDstIsPrefix field is set, the
filter's IPv4 or IPv6 destination address base

v If the NMsIPFltFlagDstIsRange field is set, the low
end of the filter's IPv4 or IPv6 destination address
range

NMsIPFltDstAddr6 296 16 bytes Binary

NMsIPFltDstAddrRange4 312 4 bytes Binary If the NMsIPFltFlagDstIsRange field is set, the high
end of the filter's IPv4 or IPv6 destination address
range.

NMsIPFltDstAddrRange6 312 16 bytes Binary

NMsIPFltSrcAddrPrefix 328 1 byte Binary If the NMsIPFltFlagSrcIsPrefix field is set, the length
of the filter's source address prefix, in bits.

NMsIPFltDstAddrPrefix 329 1 byte Binary If the NMsIPFltFlagDstIsPrefix field is set, the length
of the filter's destination address prefix, in bits.

NMsIPFltRsvd3 330 1 byte Binary Reserved.

NMsIPFltNATTClientIDType 331 1 byte Binary The NATT client ID (client traffic selector) is present
only when the peer is behind a NAT and a gateway,
and the peer supplied a client ID. The field can have
one of the following values:

NMsec_IPFLT_IDNONE (0)
No client ID. Either this is not a dynamic
filter; the peer for this filter's tunnel is not
behind a NAT and a gateway; or no client
ID was provided.

NMsec_IPFLT_IDIP (1)
Client ID is an IPv4 address.

NMsec_IPFLT_IDRANGE (2)
Client ID is an IPv4 address range.

NMsec_IPFLT_IDPREFIX (3)
Client ID is an IPv4 address prefix.

NMsec_IPFLT_IDOTHER (4)
Client ID is another type, represented as an
MD5 hash of the ID data.

NMsIPFltNATTClientIDIP 332 4 bytes Binary If NATT client ID (client traffic selector) type is
NMsec_IPFLT_IDIP, NMsec_IPFLT_IDRANGE, or
NMsec_IPFLT_IDPREFIX, this field is the base IPv4
address for the client ID.

NMsIPFltNATTClientIDHash 332 16 bytes Binary If NATT client ID (client traffic selector) type is
NMsec_IPFLT_IDOTHER, this field is the MD5 hash
of the client's ID.

NMsIPFltNATTClientIDIP2 348 4 bytes Binary If NATT client ID (client traffic selector) type is
NMsec_IPFLT_IDRANGE, this field is the high end of
the IPv4 client ID address range.

NMsIPFltNATTClientIDPrefix 348 4 bytes Binary If NATT client ID (client traffic selector) type is
NMsec_IPFLT_IDPREFIX, this field is the prefix
length of the IPv4 client ID, in bits.

NMsIPFltRsvd4 348 16 bytes Binary Reserved.

NMsIPFltNATTPeerPort 364 2 bytes Binary If this is a dynamic filter for UDP-encapsulated
NAT-traversal traffic, this field is the UDP port for the
IKE peer; otherwise the value is 0.

NMsIPFltNATTNRFOrigPort 366 2 bytes Binary If this is a NAT traversal resolution filter, this field is
the original remote port for the TCP or UDP traffic;
otherwise the value is 0.

450 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 45. NMsecIPFilter structure (continued)

Field Offset Length Format Description

NMsIPFltMismatch 368 8 bytes Binary The cumulative number of packets denied as a result
of a mismatch with this filter's action over the life of
the TCP/IP stack.

NMsIPFltMatch 376 8 bytes Binary The cumulative number of packets that matched this
filter's condition and action over the life of the
TCP/IP stack.

NMsIPFltCreateTime 384 4 bytes Binary For a statically defined filter that originates from the
Policy Agent configuration, this field contains the
UNIX time stamp that indicates when the filter was
first defined to the current instance of the TCP/IP
stack. For a filter that originates from the TCP/IP
profile, this field contains the UNIX time stamp that
indicates when the profile filter configuration was last
replaced. For all dynamically defined filters, the value
in this field is 0. For a defensive filter, this field
contains the UNIX time stamp that indicates when the
defensive filter was created.

NMsIPFltUpdateTime 388 4 bytes Binary For a statically defined filter that originates from the
Policy Agent configuration, this field contains the
UNIX time stamp that indicates when the filter's
attributes were last updated in the current instance of
the TCP/IP stack. For a filter that originates from the
TCP/IP profile, this field contains the UNIX time
stamp that indicates when the profile filter
configuration was last replaced. For all dynamically
defined filters, the value in this field is 0. For a
defensive filter, this field contains the UNIX time
stamp that indicates when the defensive filter's
attributes were last updated.

NMsIPFltMIPv6Type 392 1 byte Binary MIPv6 type, if NMsIPFltFlagMIPv6TypeDef is set.

NMsIPFltTypeRange 393 1 byte Binary High end of ICMP, ICMPv6, or MIPv6 type range, if
the corresponding flag is set.

NMsIPFltCodeRange 394 1 byte Binary High end of ICMP or ICMPv6 code range, if the
corresponding flag is set.

NMsIPFltRemoteIdType 395 1 byte Binary ISAKMP identity type for the remote security
endpoint identity, as defined in RFC 2407.

ISAKMP peers exchange and verify their identities as
part of the IKE tunnel (phase 1) negotiation. These
identities can be associated with anchor filters,
dynamic filters, or NATT dynamic filters, and are
used for filtering purposes.

This field has the value 0 if the remote IKE identity is
not present or if it is not applicable.

NMsIPFltLifetimeExpire 396 8 bytes Binary For a defensive filter, this field indicates the time at
which the filter expires, in UNIX format; otherwise
this field has the value 0 for all non-defensive filters.

NMsIPFltLogLimit 404 2bytes Binary
v For a defensive filter, this field indicates whether

logging of defensive filter match messages is
limited or not.

– A value of 0 indicates that logging for this
defensive filter is not limited.

– A value of 1 - 9999 indicates the limit of the
average rate of defensive filter match messages
generated in a 5-minute interval for packets
matching this defensive filter.

v For all other filter types, this field has a value of 0.

Chapter 14. Network management interfaces 451

v One variable-length section contains the contents of the filter's remote IKE
identity. Regardless of the type of the identity, the identity is expressed as an
EBCDIC string. An IP address is returned in printable form. A key ID is
returned as an EBCDIC string of hex values. For a dynamic anchor filter, this
represents the identity or wildcarded identities that are permitted for remote
communication on this filter. For a dynamic or NATT dynamic filter, this
represents the actual remote IKE identity if remote identity filtering is in use. For
all other filters, this section is empty. This section is also empty for SWSA
shadow filters.

Each of the IP filter requests also returns a single secondary output record
(described by the NMsMOutRec2 output record descriptor). This record describes
global IP filtering configuration information that is currently in effect for the
TCP/IP stack. This global result record contains a single section. This section
consists of an NMsecStack structure, which is described
“NMsec_GET_STACKINFO” on page 439 for the NMsec_GET_STACKINFO
request.

NMsec_GET_PORTTRAN

For the requested stack, zero or more records are returned representing NAT
traversal port translation entries. Each record that is returned contains a single
section, NMsecPortTrans, which contains the following data.

Table 46. NMsec_GET_PORTTRAN structure

Field Offset Length Format Description

NMsPortTransRemoteAddr 0 4 bytes Binary IPv4 public remote address for
peer

NMsPortTransRemoteInner 4 4 bytes Binary IPv4 private remote address for
peer

NMsPortTransProtocol 8 1 byte Binary Protocol for port translation
entry, either IPPROTO_TCP or
IPPROTO_UDP

NMsPortTransRsvd1 9 24 bits Binary Reserved bits

NMsPortTransOrigPort 12 2 bytes Binary Original remote port for
connection

NMsPortTransNewPort 14 2 bytes Binary Translated remote port; the port
by which the connection is now
known to this TCP/IP stack

NMsec_GET_IPTUNMANUAL

NMsec_GET_PORTTRAN response format

NMsecMessageHdr
NMsecRecordHdr NMsecSecDesc NMsecPortTrans

Response records (1 for each translation entry)

Figure 21. NMsec_GET_PORTTRAN response format

452 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

For the requested stack, zero or more records are returned representing manual IP
tunnels. Tunnels are presented in an unordered sequence. Each record returned
contains two sections:
v The NMsecIPTunnel section describes the basic properties of an IP tunnel. This

section contains the following data.

Note: This structure is reused for dynamic tunnels, so some possible field values
are applicable only to dynamic tunnels.

Table 47. NMsecIPTunnel structure

Field Offset Length Format Description

NMsIPTunID 0 48 bytes EBCDIC Tunnel ID

NMsIPTunVPNAction 48 48 bytes EBCDIC Tunnel VPN action name

NMsIPTunFlagIPv6 96, bit 0 1 bit Binary IPv6 indicator. If set, security endpoint and data
endpoint addresses are IPv6; otherwise they are
IPv4

NMsIPTunFIPS140 96, bit 1 1 bit Binary FIPS 140 mode indicator. If this field is set,
cryptographic operations for this tunnel are
performed using cryptographic algorithms and
modules that are designed to meet the FIPS 140
requirements; otherwise, cryptographic algorithms
and modules that do not meet the FIPS 140
requirements might be used.

NMsIPTunRsvd1 96, bit 2 30 bits Binary Reserved bits.

NMsIPTunType 100 1 byte Binary Tunnel type. The field can have one of the
following values:

NMsec_IPTUN_MANUAL (1)
Manual IP tunnel

NMsec_IPTUN_STACK (2)
Dynamic IP tunnel, as known to the
TCP/IP stack

NMsec_IPTUN_IKE (3)
Dynamic IP tunnel, as known to IKE

NMsec_GET_IPTUNMANUAL response format

NMsecMessageHdr

Response records (1 for each tunnel)

NMsecRecordHdr NMsecSecDesc (2) NMsecIPTunnel NMsecIPManualTunnel

Figure 22. NMsec_GET_IPTUNMANUAL response format

Chapter 14. Network management interfaces 453

Table 47. NMsecIPTunnel structure (continued)

Field Offset Length Format Description

NMsIPTunState 101 1 byte Binary Tunnel state. The field can have one of the
following values:

NMsec_SASTATE_INACTIVE (1)
Manual tunnel inactive

NMsec_SASTATE_PENDING (2)
Dynamic tunnel is awaiting negotiation

NMsec_SASTATE_INCOMPLETE (3)
Dynamic tunnel is in negotiation

NMsec_SASTATE_ACTIVE (4)
Manual or dynamic tunnel is active

NMsec_SASTATE_EXPIRED (5)
Dynamic tunnel is expired

NMsec_SASTATE_HALF_CLOSED (6)
Dynamic tunnel is no longer being used
by the local endpoint but the delete
process has not been acknowledged by
the remote endpoint. Applies to IKEv2
tunnels only.

NMsIPTunRsvd2 102 2 bytes Binary Reserved

NMsIPTunLclEndpt4 104 4 bytes Binary If this is an IPv4 tunnel, this field is the local
security endpoint address

NMsIPTunLclEndpt6 104 16 bytes Binary If this is an IPv6 tunnel, this field is the local
security endpoint address

NMsIPTunRmtEndpt4 120 4 bytes Binary If this is an IPv4 tunnel, this field is the remote
security endpoint address

NMsIPTunRmtEndpt6 120 16 bytes Binary If this is an IPv6 tunnel, this field is the remote
security endpoint address

NMsIPTunEncapMode 136 1 byte Binary Tunnel encapsulation mode. The field can have one
of the following values:

NMsec_IPTUN_TUNNELMODE (1)

NMsec_IPTUN_TRANSPORTMODE (2)

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

NMsIPTunAuthProto 137 1 byte Binary Tunnel authentication protocol. The field can have
one of the following values:

IPPROTO_AH (51)

IPPROTO_ESP (50)

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

454 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 47. NMsecIPTunnel structure (continued)

Field Offset Length Format Description

NMsIPTunAuthAlg 138 1 byte Binary Tunnel authentication algorithm. This field is not
defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE. The
NMsIPTunAuthAlg field can have one of the
following values:

NMsec_AUTH_NULL (0)
The tunnel uses NULL authentication, or
obtains authentication using a
combined-mode encryption algorithm.
Also see the definition of the
NMsIPTunEncryptAlg field.

NMsec_AUTH_HMAC_MD5 (38)
The tunnel uses HMAC-MD5
authentication with Integrity Check
Value (ICV) truncation to 96 bits.

NMsec_AUTH_HMAC_SHA1 (39)
The tunnel uses HMAC-SHA1
authentication with ICV truncation to 96
bits.

NMsec_AUTH_HMAC_SHA2_256_128 (7)
The tunnel uses HMAC-SHA2-256
authentication with ICV truncation to
128 bits.

NMsec_AUTH_HMAC_SHA2_384_192 (13)
The tunnel uses HMAC-SHA2-384
authentication with ICV truncation to
192 bits.

NMsec_AUTH_HMAC_SHA2_512_256 (14)
The tunnel uses HMAC-SHA2-512
authentication with ICV truncation to
256 bits.

NMsec_AUTH_AES128_XCBC_96 (9)
The tunnel uses AES128-XCBC
authentication with ICV truncation to 96
bits.

NMsec_AUTH_AES_GMAC_128 (4)
The tunnel uses AES-GMAC
authentication with a key length of 128
bits.

NMsec_AUTH_AES_GMAC_256 (6)
The tunnel uses AES-GMAC
authentication with a key length of 256
bits.

Chapter 14. Network management interfaces 455

Table 47. NMsecIPTunnel structure (continued)

Field Offset Length Format Description

NMsIPTunEncryptAlg 139 1 byte Binary Tunnel encryption algorithm. This field is not
defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE. The
NMsIPTunEncryptAlg field can have one of the
following values:

NMsec_ENCR_NONE (0)

NMsec_ENCR_NULL (11)

NMsec_ENCR_DES (18)

NMsec_ENCR_3DES (3)

NMsec_ENCR_AES_CBC (12)
AES encryption algorithm in Cipher
Block Chaining (CBC) mode. Also see the
definition of the
NMsIPTunEncryptKeyLength field,
which identifies the key length in use.

NMsec_ENCR_AES_GCM_16 (20)
AES encryption algorithm in
Galois/Counter Mode (GCM) using a
16-octet IV. Also see the definition of the
NMsIPTunEncryptKeyLength field,
which identifies the key length in use.

NMsIPTunInbAuthSPI 140 4 bytes Binary Tunnel inbound authentication SPI.

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

NMsIPTunOutbAuthSPI 144 4 bytes Binary Tunnel outbound authentication SPI.

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

NMsIPTunInbEncryptSPI 148 4 bytes Binary Tunnel inbound encryption SPI.

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

NMsIPTunOutbEncryptSPI 152 4 bytes Binary Tunnel outbound encryption SPI.

This field is not defined if the tunnel state is
NMsec_SASTATE_PENDING or
NMsec_SASTATE_INCOMPLETE.

NMsIPTunStartTime 156 4 bytes Binary Tunnel start time.

Indicates the time at which the tunnel was
activated or refreshed, in UNIX format.

NMsIPTunEncryptKeyLength 160 4 bytes Binary Encryption key length, in bits for variable-length
algorithms. This value is 0 for encryption
algorithms that have a fixed key length, such as
DES and 3DES, and is a nonzero value for
encryption algorithms that have a variable key
length, such as AES-CBC and AES-GCM.
Result: Example values are 128 and 256.

v The NMsecIPManualTunnel section describes the attributes that are specific to a
manual IP tunnel. This section contains the following data.

456 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 48. NMsecIPManualTunnel structure

Field Offset Length Format Description

NMsIPManTunOutPkt 0 8 bytes Binary Outbound packet count for this
tunnel

NMsIPManTunInPkt 8 8 bytes Binary Inbound packet count for this
tunnel

NMsIPManTunOutBytes 16 8 bytes Binary Outbound byte count for this
tunnel, representing the number of
outbound data bytes protected by
the tunnel

NMsIPManTunInBytes 24 8 bytes Binary Inbound byte count for this tunnel,
representing the number of inbound
data bytes protected by the tunnel

NMsIPManTunClearDF 32, bit
0

1 bit Binary Don't-fragment bit clear indicator. If
this bit is set, the IPv4 tunnel mode
tunnel clears the DF bit in the outer
IP header. If neither the
NMsIPManTunClearDF or
NMsIPManTunSetDF value is set,
the IPv4 tunnel mode tunnel passes
through the DF bit from the inner IP
header to the outer IP header. This
field is not applicable and is always
0 for IPv6 or transport mode
tunnels.

NMsIPManTunSetDF 32, bit
1

1 bit Binary Don't-fragment bit set indicator. If
this bit is set, IPv4 the tunnel mode
tunnel sets the DF bit in the outer IP
header. If neither the
NMsIPManTunClearDF or
NMsIPManTunSetDF value is set,
the IPv4 tunnel mode tunnel passes
the DF bit through from the inner IP
header to the outer IP header. This
field is not applicable and is always
0 for IPv6 or transport mode
tunnels.

NMsIPManTunClearDSCP 32, bit
2

1 bit Binary DSCP clear indicator. If this bit is
set, tunnel mode tunnel clears the
DSCP bit in the outer IP header. If
the value of this bit is 0, the tunnel
mode tunnel copies the DSCP field
from the inner IP header to the
outer IP header. This field is not
applicable is always 0 for transport
mode tunnels.

NMsIPManTunRsvd1 32, bit
3

29 bits Binary Reserved bits

NMsec_GET_IPTUNDYNSTACK

Chapter 14. Network management interfaces 457

For the requested stack, zero or more records are returned representing dynamic IP
tunnels known to the TCP/IP stack. Depending on the input filters provided on
the request, the tunnels can include SWSA shadow tunnels. SWSA shadow tunnels
originate from a distributing stack and not from the local stack. Tunnels are
presented in an unordered sequence, except that instances of a particular tunnel
family (all sharing the same tunnel ID) are ordered from most recently activated to
least recently activated.

Each record contains the following sections:
v The NMsecIPTunnel section describes the basic properties of an IP tunnel. The

layout of this section is described in Table 47 on page 453.
v The NMsecIPDynTunnel section describes the basic properties of a dynamic IP

tunnel. This section contains the following data.

Table 49. NMsecIPDynTunnel structure

Field Offset Length Format Description

NMsIPDynUDPEncap 0, bit 0 1 bit Binary UDP encapsulation indicator. If set, the
tunnel uses UDP encapsulation mode.

NMsIPDynLclNAT 0, bit 1 1 bit Binary Local NAT indicator. If set, a NAT has
been detected in front of the local security
endpoint.

NMsIPDynRmtNAT 0, bit 2 1 bit Binary Remote NAT indicator. If set, a NAT has
been detected in front of the remote
security endpoint.

NMsIPDynRmtNAPT 0, bit 3 1 bit Binary Remote NAPT indicator. If set, a NAPT
has been detected in front of the remote
security endpoint. It is possible that a
NAPT might exist but might be detected
only as a NAT.

NMsIPDynRmtGW 0, bit 4 1 bit Binary Remote NAT traversal gateway indicator.
If set, the tunnel uses UDP encapsulation
and the remote security endpoint is acting
as an IPSec gateway.

NMsIPDynRmtZOS 0, bit 5 1 bit Binary Remote z/OS indicator. If set, the remote
peer has been detected to be z/OS. It is
possible that the remote peer might be
running z/OS but not detected as such, if
NAT traversal is not enabled.

NMsIPDynCanInitP2 0, bit 6 1 bit Binary Dynamic tunnel (phase 2) initiation
indicator. If set, the local security
endpoint can initiate dynamic tunnel
negotiations with the remote security
endpoint. Otherwise, the remote security
endpoint must initiate dynamic tunnel
negotiations. Either side can initiate
refreshes.

NMsIPDynSrcIsSingle 0, bit 7 1 bit Binary Single source address indicator. If set,
traffic source address is indicated by the
NMsIPDynSrcAddr4 or
NMsIPDynSrcAddr6 fields.

NMsec_GET_IPTUNDYNSTACK response format

NMsecMessageHdr

Response records (1 for each tunnel)

NMsecRecordHdr NMsecSecDesc (3) NMsecIPTunnel NMsecIpDynTunnel NMsecIpDynamicStack

Figure 23. NMsec_GET_IPTUNDYNSTACK response format

458 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 49. NMsecIPDynTunnel structure (continued)

Field Offset Length Format Description

NMsIPDynSrcIsPrefix 1, bit 0 1 bit Binary Prefixed source address indicator. If set,
traffic source address is indicated by the
NMsIPDynSrcAddr4 or
NMsIPDynSrcAddr6, fields and the source
address prefix is indicated by the
NMsIPDynSrcAddrPrefix field.

NMsIPDynSrcIsRange 1, bit 1 1 bit Binary Ranged source address indicator. If set,
traffic source address range is indicated
by the NMsIPDynSrcAddr4 and
NMsIPDynSrcAddrRange4 fields, or by
the NMsIPDynSrcAddr6 and
NMsIPDynSrcAddrRange6 fields.

NMsIPDynDstIsSingle 1, bit 2 1 bit Binary Single destination address indicator. If set,
traffic destination address is indicated by
the NMsIPDynDstAddr4 or
NMsIPDynDstAddr6 fields.

NMsIPDynDstIsPrefix 1, bit 3 1 bit Binary Prefixed destination address indicator. If
set, traffic destination address is indicated
by the NMsIPDynDstAddr4 or
NMsIPDynDstAddr6 fields, and
destination address prefix is indicated by
the NMsIPDynDstAddrPrefix field.

NMsIPDynDstIsRange 1, bit 4 1 bit Binary Ranged destination address indicator. If
set, traffic destination address range is
indicated by the NMsIPDynDstAddr4 and
NMsIPDynDstAddrRange4 fields, or by
the NMsIPDynDstAddr6 and
NMsIPDynDstAddrRange6 fields.

NMsIPDynTransportOpaque 1, bit 5 1 bit Binary Opaque transport selector indicator. If set,
the dynamic tunnel is protecting data
traffic in which the upper layer selectors,
source and destination ports, ICMP or
ICMPv6 type, and code or IPv6 Mobility
header type are not available as a result of
fragmentation.

NMsIPDynRsvd1 1, bit 6 18 bits Binary Reserved bits.

NMsIPDynVPNRule 4 48 bytes EBCDIC Dynamic VPN rule name for this tunnel;
otherwise, blank if there is no local
dynamic VPN rule.

NMsIPDynP1TunnelID 52 48 bytes EBCDIC Tunnel ID for this tunnel's parent IKE
(phase 1) tunnel.

As a result of refreshes, this tunnel ID
might represent multiple related IKE
tunnels.

NMsIPDynLifesize 100 8 bytes Binary Tunnel lifesize. If not 0, indicates the
negotiated lifesize value limit for the
tunnel, in bytes.

NMsIPDynLifesizeRefresh 108 8 bytes Binary Tunnel lifesize refresh. If not 0, indicates
the lifesize value at which the tunnel is
refreshed, in bytes.

NMsIPDynLifetimeExpire 116 4 bytes Binary Tunnel lifetime. Indicates the negotiated
time at which the tunnel expires, in UNIX
format.

NMsIPDynLifetimeRefresh 120 4 bytes Binary Tunnel lifetime refresh. Indicates the time
at which the tunnel is refreshed, in UNIX
format.

Chapter 14. Network management interfaces 459

Table 49. NMsecIPDynTunnel structure (continued)

Field Offset Length Format Description

NMsIPDynVPNLifeExpire 124 4 bytes Binary Tunnel VPN lifetime expires. If not 0,
indicates the time at which the tunnel
family ceases to be refreshed, in UNIX
format.

This field retains its original value for a
refreshed tunnel.

NMsIPDynActMethod 128 1 byte Binary Tunnel activation method. The field can
have one of the following values:

NMsec_DYNTUN_USER (1)
User activation (from the
command line).

NMsec_DYNTUN_REMOTE (2)
Remote activation from IPSec
peer.

NMsec_DYNTUN_ONDEMAND (3)
On-demand activation caused
by IP traffic.

NMsec_DYNTUN_TAKEOVER (5)
SWSA activation as a result of a
DVIPA takeover.

NMsec_DYNTUN_AUTOACT (6)
Auto-activation.

This field retains its original value for a
refreshed tunnel

NMsIPDynRsvd2 129 24 bits Binary Reserved bits.

NMsIPDynRmtUDPPort 132 2 bytes Binary If the tunnel uses UDP-encapsulation
mode, the IKE UDP port of the remote
security endpoint; otherwise, 0.

NMsIPDynRsvd3 134 2 bytes Binary Reserved bits.

NMsIPDynSrcNATOA 136 4 bytes Binary Source NAT original IP address. NAT
original IP addresses are exchanged only
for certain UDP-encapsulated tunnels.
During NAT traversal negotiations, the
IKE peer sends the source IP address that
it is aware of.

If NAT traversal negotiation did not occur
or if an IKEv1 peer did not send a source
NAT-OA payload, the value of this field is
0.
Restriction: An IKEv1 peer at a NAT
traversal support level that is prior to
RFC3947 is not required to send a source
NAT-OA payload.

460 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 49. NMsecIPDynTunnel structure (continued)

Field Offset Length Format Description

NMsIPDynDstNATOA 140 4 bytes Binary Destination NAT original IP address. NAT
original IP addresses are exchanged only
for certain UDP-encapsulated tunnels.
During NAT traversal negotiations, the
IKE peer sends the destination IP address
that it is aware of.

If NAT traversal negotiation did not occur
or if an IKEv1 peer did not send a
destination NAT-OA payload, the value of
this field is 0.
Restriction: An IKEv1 peer at a NAT
traversal support level that is prior to
RFC3947 will not send a destination
NAT-OA payload.

NMsIPDynProtocol 144 1 byte Binary Protocol for tunnel data. If the value is 0,
the tunnel covers all protocols.

NMsIPDynRsvd4 145 24 bits Binary Reserved bits.

NMsIPDynSrcPort 148 2 bytes Binary Low end of source port range for tunnel
data, or 0 if the tunnel is not limited to
TCP or UDP.

NMsIPDynDstPort 150 2 bytes Binary Low end of destination port range for
tunnel data, or 0 if the tunnel is not
limited to TCP or UDP.

NMsIPDynSrcAddr4 152 4 bytes Binary
v If the NMsIPDynSrcIsSingle field is set,

this field is the IPv4 or IPv6 source
address for tunnel data

v If the NMsIPDynSrcIsPrefix field is set,
this field is the IPv4 or IPv6 source
address base for tunnel data

v If the NMsIPDynSrcIsRange field is set,
this field is the low end of the IPv4 or
IPv6 source address range for tunnel
data

NMsIPDynSrcAddr6 156 16 bytes Binary

NMsIPDynSrcAddrRange4 168 4 bytes Binary If the NMsIPDynSrcIsRange field is set,
this field is the high end of the IPv4 or
IPv6 source address range for tunnel data.

NMsIPDynSrcAddrRange6 168 16 bytes Binary

NMsIPDynDstAddr4 184 4 bytes Binary
v If the NMsIPDynDstIsSingle field is set,

this field is the IPv4 or IPv6 destination
address for tunnel data

v If the NMsIPDynDstIsPrefix field is set,
this field is the IPv4 or IPv6 destination
address base for tunnel data

v If the NMsIPDynDstIsRange field is set,
this field is the low end of the IPv4 or
IPv6 destination address range for
tunnel data

NMsIPDynDstAddr6 184 16 bytes Binary

NMsIPDynDstAddrRange4 200 4 bytes Binary If the NMsIPDynDstIsRange field is set,
this field is the high end of the IPv4 or
IPv6 destination address range for tunnel
data.

NMsIPDynDstAddrRange6 200 16 bytes Binary

NMsIPDynSrcAddrPrefix 216 1 byte Binary If the NMsIPDynSrcIsPrefix field is set,
this field is the length of the tunnel data
source address prefix, in bits.

NMsIPDynDstAddrPrefix 217 1 byte Binary If the NMsIPDynDstIsPrefix field is set,
this field is the length of the tunnel data
destination address prefix, in bits.

Chapter 14. Network management interfaces 461

Table 49. NMsecIPDynTunnel structure (continued)

Field Offset Length Format Description

NMsIPDynMajorVer 218 1 byte Binary Major version of the IKE protocol that is
in use. Only the low-order 4 bits are used.

NMsIPDynMinorVer 219 1 byte Binary Minor version of the IKE protocol that is
in use. Only the low-order 4 bits are used.

NMsIPDynType 220 1 byte Binary Low end of the ICMP, ICMPv6, or MIPv6
type range for tunnel data, or 0 if the
tunnel is not limited to ICMP, ICMPv6, or
MIPv6.

NMsIPDynTypeRange 221 1 byte Binary High end of the ICMP, ICMPv6, or MIPv6
type range for tunnel data, or 0 if the
tunnel is not limited to ICMP, ICMPv6, or
MIPv6. A tunnel that applies to all type
values is indicated as the range 0 - 255.

NMsIPDynCode 222 1 byte Binary Low end of ICMP or ICMPv6 code range
for tunnel data, or 0 if the tunnel is not
limited to ICMP or ICMPv6.

NMsIPDynCodeRange 223 1 byte Binary High end of ICMP or ICMPv6 code range
for tunnel data, or 0 if the tunnel is not
limited to ICMP or ICMPv6. A tunnel that
applies to all code values is indicated as
the range 0 - 255.

NMsIPDynSrcPortRange 224 2 bytes Binary High end of source port range for tunnel
data, or 0 if the tunnel is not limited to
TCP or UDP. A tunnel that applies to all
source port values is indicated as the
range 0 - 65 535.

NMsIPDynDstPortRange 226 2 bytes Binary High end of destination port range for
tunnel data, or 0 if the tunnel is not
limited to TCP or UDP. A tunnel that
applies to all destination port values is
indicated as the range 0 - 65 535.

NMsIPDynGeneration 228 4 bytes Binary Tunnel generation number. The first
dynamic tunnel that has a particular
tunnel ID is generation 1. Subsequent
refreshes of this dynamic tunnel have the
same tunnel ID but have higher
generation numbers.

v The NMsecIPDynamicStack section describes the properties of a dynamic IP
tunnel that are specific to the TCP/IP stack. This section contains the following
data.

Table 50. NMsecIPDynamicStack structure

Field Offset Length Format Description

NMsIPDynStackShadow 0, bit 0 1 bit Binary SWSA shadow indicator. If set, the
tunnel is an SWSA shadow tunnel
originating from a distributing stack.

NMsIPDynStackClearDF 0, bit 1 1 bit Binary Don't-fragment bit clear indicator. If
this bit is set, the IPv4 tunnel mode
tunnel clears the DF bit in the outer IP
header. If neither the
NMsIPDynStackClearDF or the
NMsIPDynStackSetDF value is set, the
IPv4 tunnel mode tunnel passes the DF
bit from the inner IP header to the
outer IP header. This field is not
applicable and is always 0 for IPv6 or
transport mode tunnels.

462 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 50. NMsecIPDynamicStack structure (continued)

Field Offset Length Format Description

NMsIPDynStackSetDF 0, bit 2 1 bit Binary Don't-fragment bit set indicator. If this
bit is set, the IPv4 tunnel mode tunnel
sets the DF bit in the outer IP header. If
neither the NMsIPDynStackClearDF or
the NMsIPDynStackSetDF value is set,
the IPv4 tunnel mode tunnel passes the
DF bit from the inner IP header to the
outer IP header. This field is not
applicable and is always 0 for IPv6 or
transport mode tunnels.

NMsIPDynStackClearDSCP 0, bit 3 1 bit Binary DSCP clear indicator. If this bit is set,
the tunnel mode tunnel clears the DSCP
bit in the outer IP header. If this bit has
the value 0, the tunnel mode tunnel
copies the DSCP field from the inner IP
header to the outer IP header. This field
is not applicable and is always 0 for
transport mode tunnels.

NmsIPDynStackRsvd1 0, bit 4 28 bits Binary Reserved bits.

NMsIPDynStackLifesizeCur 4 8 bytes Binary Current lifesize value. If the tunnel
lifesize value has been negotiated, this
represents the current value of the
lifesize counter.

NMsIPDynStackOutPkt 12 8 bytes Binary Outbound packet count for this tunnel.
For SWSA tunnels, this represents this
tunnel's outbound packet count only for
this particular TCP/IP stack.

NMsIPDynStackInPkt 20 8 bytes Binary Inbound packet count for this tunnel.
For SWSA tunnels, this represents this
tunnel's inbound packet count only for
this particular TCP/IP stack.

NMsIPDynStackOutBytes 28 8 bytes Binary Outbound byte count for this tunnel,
representing the number of outbound
data bytes protected by the tunnel. For
SWSA tunnels, this represents this
tunnel's outbound byte count only for
this particular TCP/IP stack.

NMsIPDynStackInBytes 36 8 bytes Binary Inbound byte count for this tunnel,
representing the number of inbound
data bytes protected by the tunnel. For
SWSA tunnels, this represents this
tunnel's inbound byte count only for
this particular TCP/IP stack.

NMsec_GET_IPTUNDYNIKE

For the requested stack, zero or more records are returned representing dynamic IP
tunnels known to the IKE daemon. Tunnels are presented in an unordered
sequence, except that instances of a particular tunnel family (all sharing the same

NMsec_GET_IPTUNDYNIKE response format

NMsecMessageHdr

Response records (1 for each tunnel)

NMsecRecordHdr NMsecSecDesc (5) NMsecIPTunnel NMsecIpDynTunnel NMsecIPDynamicIKE
v
a
r

v
a
r

Figure 24. NMsec_GET_IPTUNDYNIKE response format

Chapter 14. Network management interfaces 463

tunnel ID) are ordered from most recently activated to least recently activated.
Each record contains the following sections:
v One section, NMsecIPTunnel, describes the basic properties of an IP tunnel. The

layout of this section is described in Table 47 on page 453.
v One section, NMsecIPDynTunnel, describes the basic properties of a dynamic IP

tunnel. The layout of this section is described in Table 49 on page 458.
v One section, NMsecIPDynamicIKE, describes the properties of a dynamic IP

tunnel that are specific to the IKE daemon. This section contains the following
data.

Table 51. NMsecIPDynamicIKE structure

Field Offset Length Format Description

NMsIPDynIKEIsPendingNew 0, bit 0 1 bit Binary Pending new activation indicator. If set,
this dynamic IP tunnel is in pending
state and it represents a new activation
rather than a refresh. If not set, the
tunnel is either not in pending state or
is not a new activation.

NMsIPDynIKERsvd1 0, bit 1 31 bits Binary Reserved bits.

NMsIPDynIKEFilter 4 48 bytes EBCDIC Filter name for the IP filter related to
this dynamic tunnel.

NMsIPDynIKEDHGroup 52 4 bytes Binary Diffie-Hellman group used for perfect
forward secrecy (PFS) for this dynamic
tunnel, or 0 if phase 2 PFS is not
configured.

NMsIPDynIKELclIDType 56 1 byte Binary ISAKMP identity type for the local
client ID, as defined in RFC 2407. Client
identities can be exchanged during
negotiation to limit or define the scope
of data protected by the tunnel. If client
identities are not exchanged, then the
scope of data protection is defined to
cover the peers' tunnel endpoint
addresses.

If client identities were not exchanged
during negotiation, this field is 0.

The IKEv2 equivalent term for client ID
is traffic selector. Although RFC 2407
pertains to IKEv1, section 4.6.2.1 in RFC
2407 can interpret this field value for
both IKEv1 and IKEv2. See Appendix J,
“Related protocol specifications,” on
page 1075 for information about
accessing RFCs.

464 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 51. NMsecIPDynamicIKE structure (continued)

Field Offset Length Format Description

NMsIPDynIKERmtIDType 57 1 byte Binary ISAKMP identity type for the remote
client ID, as defined in RFC 2407. Client
identities might be exchanged during
negotiation to limit or define the scope
of data protected by the tunnel. If client
identities are not exchanged, then the
scope of data protection is defined to
cover the peers' tunnel endpoint
addresses.

If client identities were not exchanged
during negotiation, this field is 0.

The IKEv2 equivalent term for client ID
is traffic selector. Although RFC 2407
pertains to IKEv1, section 4.6.2.1 in RFC
2407 can interpret this field value for
both IKEv1 and IKEv2. See Appendix J,
“Related protocol specifications,” on
page 1075 for information about
accessing RFCs.

NMsIPDynIKEExtState 58 2 bytes Binary Extended tunnel state information. The
field can have one of the following
values:

NMsec_P2STATE_INIT (0)
No key exchange messages
have been initiated.

NMsec_P2STATE_IN_KEP (1)
Key exchange messages are
being processed, but the full
exchange has not completed.

NMsec_P2STATE_DONE (2)
All key exchange messages
have been completed and the
tunnel is usable for traffic.

NMsec_P2STATE_PENDING_NOTIFY
(3) Key exchange messages have

been completed, but until a
connection notification is
received from the tunnel
endpoint, the tunnel is not
done. Applies to IKEv1
tunnels only.

NMsec_P2STATE_PENDING_START
(4) Tunnel is awaiting the

activation of an IKE tunnel to
allow it to begin. See the
description of the
NMsIPTunState field in
Table 47 on page 453 for more
succinct state information.

NMsec_P2STATE_HALF_CLOSED (5)
Tunnel is no longer being
used by the local endpoint but
the delete process has not
been acknowledged by the
remote endpoint. Applies to
IKEv2 tunnels only.

Chapter 14. Network management interfaces 465

v One variable-length section containing the local client ID for this tunnel's phase
2 negotiation. Regardless of the identity's type, the ID is expressed as an
EBCDIC string (an IP address is returned in printable form). The length of this
section is 0 if no client IDs were exchanged.

v One variable-length section containing the remote client ID for this tunnel's
phase 2 negotiation. Regardless of the identity's type, it is expressed as an
EBCDIC string (an IP address is returned in printable form). The length of this
section is 0 if no client IDs were exchanged.

NMsec_GET_IKETUN

For the requested stack, zero or more records are returned representing IKE
security associations (IKE tunnels) used by IKE to negotiate IPSec security
associations (dynamic tunnels) for the given TCP/IP stack. Tunnels are presented
in an unordered sequence, except that instances of a particular tunnel family (all
sharing the same tunnel ID) are ordered from the most recently activated to the
least recently activated. Each record contains the following sections:
v One section, NMsecIKETunnel, describes attributes of the IKE security

association. This section contains the following data.

Table 52. NMsecIKETunnel structure

Field Offset Length Format Description

NMsIKETunIPv6 0, bit 0 1 bit Binary IPv6 indicator. If set, the IKE tunnel security endpoints
are IPv6 addresses, otherwise they are IPv4

NMsIKETunNATAllowed 0, bit 1 1 bit Binary NAT traversal indicator. If set, the NAT traversal
function is enabled for this IKE tunnel.

NMsIKETunLclNAT 0, bit 2 1 bit Binary Local NAT indicator. If set, a NAT has been detected in
front of the local security endpoint.

NMsIKETunRmtNAT 0, bit 3 1 bit Binary Remote NAT indicator. If set, a NAT has been detected
in front of the remote security endpoint.

NMsIKETunRmtNAPT 0, bit 4 1 bit Binary Remote NAPT indicator. If set, an NAPT has been
detected in front of the remote security endpoint. It is
possible that an NAPT might exist but that it is
detected only as a NAT.

NMsIKETunCanInitP1 0, bit 5 1 bit Binary IKE tunnel (P1) initiation indicator. If this field is set,
the local security endpoint can initiate IKE tunnel
negotiations with the remote security endpoint;
otherwise, the remote security endpoint must initiate
IKE tunnel negotiations. Either side can initiate
refreshes.

NMsIKETunFIPS140 0, bit 6 1 bit Binary FIPS 140 mode indicator. If this field is set,
cryptographic operations for this IKE tunnel are
performed using cryptographic algorithms and
modules that are designed to meet the FIPS 140
requirements; otherwise, cryptographic algorithms and
modules that do not meet the FIPS 140 requirements
might be used.

NMsIKETunRsvd1 0, bit 7 25 bits Binary Reserved bits.

NMsIKETunID 4 48 bytes EBCDIC Tunnel ID for this IKE tunnel.

NMsIKETunKeyExchRule 52 48 bytes EBCDIC Key exchange rule name for this IKE tunnel.

NMsec_GET_IKETUN response format

NMsecMessageHdr

Response records (1 for each tunnel)

NMsecRecordHdr NMsecSecDesc (3) NMsecIKETunnel
v
a
r

v
a
r

NMsecIKETunnelStats

Figure 25. NMsec_GET_IKETUN response format

466 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 52. NMsecIKETunnel structure (continued)

Field Offset Length Format Description

NMsIKETunKeyExchAction 100 48 bytes EBCDIC Key exchange action name for this IKE tunnel.

NMsIKETunLclEndpt4 148 4 bytes Binary IPv4 or IPv6 local security endpoint for this IKE tunnel.

NMsIKETunLclEndpt6 148 16 bytes Binary

NMsIKETunRmtEndpt4 164 4 bytes Binary IPv4 or IPv6 remote security endpoint for this IKE
tunnel.NMsIKETunRmtEndpt6 164 16 bytes Binary

NMsIKETunICookie 180 8 bytes Binary The icookie for this IKE tunnel.

NMsIKETunRCookie 188 8 bytes Binary The rcookie for this IKE tunnel.

NMsIKETunExchangeMode 196 1 byte Binary Tunnel exchange mode. For IKEv1 SAs, the field can
have one of the following values:

NMsec_IKETUN_EXCHMAIN (2)

NMsec_IKETUN_EXCHAGGRESSIVE (4)

For IKEv2 SAs, this field is not applicable and the
value will be 0.

NMsIKETunState 197 1 byte Binary Tunnel state. The field can have one of the following
values:

NMsec_SASTATE_PENDING (2)
Tunnel is awaiting negotiation.

NMsec_SASTATE_INCOMPLETE (3)
Tunnel is in negotiation.

NMsec_SASTATE_ACTIVE (4)
Tunnel is active.

NMsec_SASTATE_EXPIRED (5)
Tunnel is expired.

NMsec_SASTATE_HALF_CLOSED (6)
Tunnel is no longer being used by the local
endpoint but the delete process has not been
acknowledged by the remote endpoint.
Applies to IKEv2 tunnels only.

Chapter 14. Network management interfaces 467

Table 52. NMsecIKETunnel structure (continued)

Field Offset Length Format Description

NMsIKETunAuthAlg 198 1 byte Binary Tunnel authentication algorithm. One of the following
values:

NMsec_AUTH_HMAC_MD5 (38)
The tunnel uses HMAC-MD5 authentication
with the full 128-bit Integrity Check Value
(ICV). This value is applicable only to IKEv1
tunnels.

NMsec_AUTH_HMAC_SHA1 (39)
The tunnel uses HMAC-SHA1 authentication
with the full 160-bit ICV. This value is
applicable only to IKEv1 tunnels.

NMsec_AUTH_HMAC_MD5_96 (40)
The tunnel uses HMAC-MD5 authentication
with ICV truncation to 96 bits. This value is
applicable only to IKEv2 tunnels.

NMsec_AUTH_HMAC_SHA1_96 (41)
The tunnel uses HMAC-SHA1 authentication
with ICV truncation to 96 bits. This value is
applicable only to IKEv2 tunnels.

NMsec_AUTH_HMAC_SHA2_256_128 (7)
The tunnel uses HMAC-SHA2-256
authentication with ICV truncation to 128
bits.

NMsec_AUTH_HMAC_SHA2_384_192 (13)
The tunnel uses HMAC-SHA2-384
authentication with ICV truncation to 192
bits.

NMsec_AUTH_HMAC_SHA2_512_256 (14)
The tunnel uses HMAC-SHA2-512
authentication with ICV truncation to 256
bits.

NMsec_AUTH_AES128_XCBC_96 (9)
The tunnel uses AES128-XCBC authentication
with ICV truncation to 96 bits.

NMsIKETunEncryptAlg 199 1 byte Binary Tunnel encryption algorithm. The field can have one of
the following values:

NMsec_ENCR_DES (18)

NMsec_ENCR_3DES (3)

NMsec_ENCR_AES_CBC (12)
AES encryption algorithm in Cipher Block
Chaining (CBC) mode. Also see the
NMsIKETunEncryptKeyLength field, which
identifies the key length in use.

NMsIKETunDHGroup 200 4 bytes Binary Diffie-Hellman group used to generate keying material
for this IKE tunnel.

NMsIKETunPeerAuthMethod 204 1 byte Binary Tunnel peer authentication method. The field can have
one of the following values:

NMsec_IKETUN_PRESHAREDKEY (3)

NMsec_IKETUN_RSASIGNATURE (2)

NMsec_IKETUN_ECDSA_256 (4)

NMsec_IKETUN_ECDSA_384 (5)

NMsec_IKETUN_ECDSA_521 (6)

468 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 52. NMsecIKETunnel structure (continued)

Field Offset Length Format Description

NMsIKETunRole 205 1 byte Binary Tunnel role. The field can have one of the following
values:

NMsec_IKETUN_INITIATOR (1)

NMsec_IKETUN_RESPONDER (2)

NMsIKETunNATTLevel 206 1 byte Binary NAT traversal support level. The field can have one of
the following values:

NMsec_IKETUN_NATTNONE (0)
No NAT traversal support; either not
configured or not negotiated.

NMsec_IKETUN_NATTRFCD2 (1)
RFC 3947 draft 2 support.

NMsec_IKETUN_NATTRFCD3 (3)
RFC 3947 draft 3 support.

NMsec_IKETUN_NATTRFC (4)
RFC 3947 support with non-z/OS peer.

NMsec_IKETUN_NATTZOS (5)
RFC 3947 support with z/OS peer.

NMsec_IKETUN_NATTV2 (6)
RFC 5996 support with non-z/OS peer.

NMsec_IKETUN_NATTV2ZOS (7)
RFC 5996 support with z/OS peer.

NMsIKETunExtState 207 1 byte Binary Extended tunnel state information. The field can have
one of the following values:

NMsec_P1STATE_INIT (0)
No key exchange messages have been
initiated.

NMsec_P1STATE_WAIT_SA (1)
The first key exchange message has been sent
and the endpoint is waiting for a response.

NMsec_P1STATE_IN_KE (2)
A key exchange response has been sent.

NMsec_P1STATE_WAIT_KE (3)
A key exchange message has been sent and
the endpoint is waiting for a response.

NMsec_P1STATE_DONE (4)
All key exchange messages have been
completed and the tunnel is available for
data traffic.

NMsec_P1STATE_EXPIRED (5)
Tunnel has exceeded its lifetime or lifesize
and is not available for data traffic.

NMsec_P1STATE_WAIT_AUTH (6)
An SA authorization request is in progress.

NMsec_P1STATE_HALF_CLOSED (7)
Tunnel is no longer being used by the local
endpoint but the delete process has not been
acknowledged by the remote endpoint.
Applies to IKEv2 tunnels only.

See the NMsIKETunState field for more succinct state
information.

NMsIKETunLifesize 208 8 bytes Binary Tunnel lifesize. If not 0, indicates the negotiated lifesize
limit for the tunnel, in bytes.

Chapter 14. Network management interfaces 469

Table 52. NMsecIKETunnel structure (continued)

Field Offset Length Format Description

NMsIKETunLifetime 216 4 bytes Binary Negotiated tunnel lifetime. Indicates the total number
of seconds the tunnel remains active.

NMsIKETunLifetimeRefresh 220 4 bytes Binary Tunnel lifetime refresh. Indicates the time at which the
tunnel is refreshed, in UNIX format.

NMsIKETunLifetimeExpire 224 4 bytes Binary Tunnel lifesize expiration. Indicates the time at which
the tunnel expires, in UNIX format.

NMsIKETunRmtUDPPort 228 2 bytes Binary Remote UDP port used for IKE negotiations.

NMsIKETunLIDType 230 1 byte Binary ISAKMP identity type for the local security endpoint
identity, as defined in RFC 2407.

ISAKMP peers exchange and verify each others'
identities as part of the IKE tunnel (phase 1)
negotiation.

NMsIKETunRIDType 231 1 byte Binary ISAKMP identity type for the remote security endpoint
identity, as defined in RFC 2407.

ISAKMP peers exchange and verify each others'
identities as part of the IKE tunnel (phase 1)
negotiation.

NMsIKETunStartTime 232 4 bytes Binary Tunnel start time. Indicates the time at which the
tunnel was activated or refreshed, in UNIX format.

NMsIKETunMajorVer 236 1 byte Binary Major version of the IKE protocol that is in use. Only
the low-order 4 bits are used.

NMsIKETunMinorVer 237 1 byte Binary Minor version of the IKE protocol that is in use. Only
the low-order 4 bits are used.

NMsIKETunPseudoRandomFunc 238 1 byte Binary Pseudo-random function that is used to seed keying
material. The field can have one of the following
values:

v NMsec_AUTH_HMAC_MD5 (38)

v NMsec_AUTH_HMAC_SHA1 (39)

v NMsec_AUTH_HMAC_SHA2_256 (15)

v NMsec_AUTH_HMAC_SHA2_384 (16)

v NMsec_AUTH_HMAC_SHA2_512 (17)

v NMsec_AUTH_AES128_XCBC (18)

NMsIKETunLocalAuthMethod 239 1 byte Binary The authentication method for the local endpoint. The
field can have one of the following values:

v NMsec_IKETUN_PRESHAREDKEY (3)

v NMsec_IKETUN_RSASIGNATURE (2)

v NMsec_IKETUN_ECDSA_256 (4)

v NMsec_IKETUN_ECDSA_384 (5)

v NMsec_IKETUN_ECDSA_521 (6)

v NMsec_IKETUN_DS (7)

NMsIKETunReauthInterval 240 4 bytes Binary Re-authentication interval. Indicates the number of
seconds between re-authentication operations.

NMsIKETunReauthTime 244 4 bytes Binary Tunnel re-authentication time. Indicates the time at
which the tunnel is re-authenticated, in UNIX format.

NMsIKETunGeneration 248 4 bytes Binary Tunnel generation number. The first IKE tunnel that
has a particular tunnel ID is generation 1. Subsequent
refreshes of this IKE tunnel will have the same tunnel
ID but will have higher generation numbers.

470 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 52. NMsecIKETunnel structure (continued)

Field Offset Length Format Description

NMsIKETunEncryptKeyLength 252 4 bytes Binary Encryption key length for variable-length algorithms,
in bits. This value is 0 for encryption algorithms that
have a fixed key length, such as DES and 3DES, and is
a nonzero value for encryption algorithms that have a
variable key length, such as AES-CBC.
Result: Example values are 128 and 256.

v One section, NMsecIKETunStats, indicates various counters and statistics for the
IKE tunnel. This section contains the following data.

Table 53. IKE tunnel statistics

Field Offset Length Format Description

NMsIKETunP2Current 0 4 bytes Binary Current count of active dynamic tunnels
that are associated with this IKE tunnel.

NMsIKETunP2InProgress 4 4 bytes Binary Current count of pending or in-progress
dynamic tunnels that are associated with
this IKE tunnel.

NMsIKETunP2LclActSuccess 8 4 bytes Binary Cumulative count of successful dynamic
tunnel activations that were initiated
locally for this IKE tunnel.

NMsIKETunP2RmtActSuccess 12 4 bytes Binary Cumulative count of successful dynamic
tunnel activations that were initiated
remotely for this IKE tunnel.

NMsIKETunP2LclActFailure 16 4 bytes Binary Cumulative count of failed dynamic
tunnel activations that were initiated
locally for this IKE tunnel.

NMsIKETunP2RmtActFailure 20 4 bytes Binary Cumulative count of failed dynamic
tunnel activations that were initiated
remotely for this IKE tunnel.

NMsIKETunBytes 24 8 bytes Binary Cumulative number of bytes that were
protected by this IKE tunnel.

NMsIKETunP1Rexmit 32 8 bytes Binary Cumulative number of retransmitted key
exchange (phase 1) messages sent for this
tunnel over the life of the IKE daemon.
This data is cumulative even across
TCP/IP restarts.

NMsIKETunP1Replay 40 8 bytes Binary Cumulative number of replayed key
exchange (phase 1) messages received for
this tunnel over the life of the IKE
daemon. This data is cumulative even
across TCP/IP restarts.

NMsIPIKETunP2Rexmit 48 8 bytes Binary Cumulative number of retransmitted
QUICKMODE (phase 2) messages sent for
this tunnel over the life of the IKE
daemon. This data is cumulative even
across TCP/IP restarts.

NMsIPIKEStatsP2Replay 56 8 bytes Binary Cumulative number of replayed
QUICKMODE (phase 2) messages
received for this tunnel over the life of the
IKE daemon. This data is cumulative even
across TCP/IP restarts.

v One variable-length section contains the contents of the local identity used to
negotiate the IKE tunnel. Regardless of the type of the identity, the identity is
expressed as an EBCDIC string. An IP address is returned in printable form. A
key ID is returned as an EBCDIC string of hex values.

Chapter 14. Network management interfaces 471

v One variable-length section contains the contents of the remote identity used to
negotiate the IKE tunnel. Regardless of the identity's type, it is expressed as an
EBCDIC string. An IP address is returned in printable form. A key ID is
returned as an EBCDIC string of hex values.

NMsec_GET_IKETUNCASCADE

For the requested stack, zero or more records are returned representing IKE
security associations (phase 1 tunnels) used by IKE to negotiate IPSec security
associations (phase 2 tunnels) for the given TCP/IP stack. The results are similar to
the NMsec_GET_IKETUN request, except that cascaded phase 2 tunnel information
is also included in the response. Each phase 2 IP tunnel associated with the given
phase 1 IKE tunnel is reported in the result record. Each record contains the
following sections:
v One section, NMsecIKETunnel, describes attributes of the IKE SA. The layout of

this section is described in “NMsec_GET_IKETUN” on page 466.
v One section, NMsecIKETunStats, describes various counters and statistics for the

IKE tunnel. The layout of this section is described in Table 53 on page 471.
v One variable-length section contains the contents of the local identity used to

negotiate the IKE tunnel.
v One variable-length section contains the contents of the remote identity used to

negotiate the IKE tunnel.
v One or zero cascaded record containers with a set of dynamic IPSec tunnel

records, identified by a single cascading record descriptor in the record header.
The records in this section describe the basic tunnel properties of each IPSec
security association associated with this IKE tunnel. The format of these
cascaded records is described in “NMsec_GET_IPTUNDYNIKE” on page 463.

NMsec_GET_IPINTERFACES

Each record returned identifies an IP interface that the TCP/IP stack serves. Each
record has a single section, NMsecInterface, that describes attributes of the IP
interface. This section contains the following data.

NMsec_GET_ response formatIKETUNCASCADE

NMsecMessageHdr

Response records (1 for each IKE tunnel)

NMsecRecordHdr NMsecSecDesc (3) NMsecCascSecDesc NMsecIPDynamicIKE NMsecCascadedP2s
v
a
r

v
a
r

Cascaded IPTUNDYNIKE records (1 for each IPSec tunnel associated with this IKE tunnel)

NMsecSecDesc (5) NMsecIPTunnel NMsecIpDynTunnel NMsecIpDynamicIKE
v
a
r

v
a
rNMsecRecordHdr

Figure 26. NMsec_GET_IKETUNCASCADE response format

NMsec_GET_IPINTERFACES response format

NMsecMessageHdr

Response records (1 for each interface)

NMsecRecordHdr NMsecSecDesc NMsecInterface

Figure 27. NMsec_GET_IPINTERFACES response format

472 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 54. NMsecInterface structure

Field Offset Length Format Description

NMsInterfaceName 0 16 bytes EBCDIC Interface name

NMsInterfaceAddr 16 16 bytes Binary IP address. If this is an IPv4 address, the
last 4 bytes contain the address and the
first 12 bytes contain zeros.

NMsInterfaceSecClass 32 1 byte Binary Security class

NMsIPv6 33, bit 1 1 bit Binary IP addressing mode. If set to 1, the
interface is using an IPv6 address;
otherwise, it is using IPv4.

NMsInterfaceActive 33, bit 2 1 bit Binary State indicator. If set to 1, the interface is
active.

NMsInterfaceDVIPA 33, bit 3 1 bit Binary DVIPA indicator. If set to 1, the interface
is a DVIPA.

NMsInterfaceRsvd1 33, bit 4 21 bits Binary Reserved. Must be set to 0.

NMsec_GET_IKENSINFO

Each record returned describes the network security services (NSS) attributes for a
given stack. Each record has a single section, NMsecNSS, that describes the NSS
attributes of the stack. This section contains the following data described in
Table 55.

Table 55. NMsec_GET_IKENSINFO structure
Field Offset Length Format Description

NMsIKENSClientName 0 24 bytes EBCDIC The stack's NSS client name. The default format is sysname_stackname,
where sysname is the client's MVS system name, and stackname is the
TCP/IP job name of the stack that the client represents. However,
clients can override this default form with any valid 24-character string.
If the client is not configured to use an NSS server, this field contains
blanks.

NMsIKENSStackName 24 8 bytes EBCDIC TCP/IP job name of the stack that the client represents.

NMsIKENSUserid 32 8 bytes EBCDIC User ID under which the client is registered with server. If the client is
not configured to use an NSS server, this field contains blanks.

NMsIKENSServerSysName 40 8 bytes EBCDIC MVS system name of the system on which the NSS server is running. If
the client is not configured to use an NSS server, this field contains
blanks.

NMsIKENSSConfigured 48, bit 0 1 bit Binary Indicates whether this stack is configured to use an NSS server. If the
value is set to 1, the stack is configured to use an NS server; otherwise,
it is not.

NMsIKENSSvcSelCert 48, bit 1 1 bit Binary Certificate services selected. If set to 1, the stack is configured for NSS
certificate services.

NMsIKENSSvcEnblCert 48, bit 2 1 bit Binary Certificate services enabled. If set to 1, the stack is actively using NSS
certificate services.

NMsIKENSSvcSelMgmt 48, bit 3 1 bit Binary Remote management services selected. If set to 1, the stack is
configured for NSS remote management services.

NMsIKENSSvcEnblMgmt 48, bit 4 1 bit Binary Remote management services enabled. If set to 1, the stack is actively
using NSS remote management services.

NMsIKENSIPv6 48, bit 5 1 bit Binary IP addressing mode. If set to 1, the client is using an IPv6 address.
Otherwise, it is using IPv4. If the client is not configured to use an NSS
server, this field is set to 0.

NMsec_GET_IKENSINFO response format

NMsecMessageHdr

Response records (1 for each stack)

NMsecRecordHdr NMsecSecDesc NMsecNSS

Figure 28. NMsec_GET_IKENSINFO response format

Chapter 14. Network management interfaces 473

Table 55. NMsec_GET_IKENSINFO structure (continued)
Field Offset Length Format Description

NMsIKENSServerConnectState 50 2 bytes Binary NS server connection state. The field can have one of the following
values:

NMsec_SERVERSTATUS_DISCONNECTED (0)
The stack is disconnected from the NSS server.

NMsec_SERVERSTATUS_CONNECTPENDING (1)
Connection is pending. The stack has requested a
connection to the NSS server but the request has not
completed processing.

NMsec_SERVERSTATUS_CONNECTED (2)
The stack is connected to the NS server.

NMsec_SERVERSTATUS_DISCONNECTPENDING (3)
Disconnect is pending. The stack has requested that the
connection be disconnected but the request has not
completed processing.

NMsec_SERVERSTATUS_UPDATEPENDING (4)
Update is pending. The stack has dynamically reconfigured
its authentication information or its requested NSS. The
stack has requested a connection update but has not
received a successful response from the NSS server.

NMsIKENSClientAddr 52 16 bytes Binary The IPv4 or IPv6 source address of the client connection to the server. If
this is an IPv4 address, the destination address is the last 4 bytes of this
field, with the first 12 bytes containing zeros.

NMsIKENSServerAddr 68 16 bytes Binary The IPv4 or IPv6 destination address of the client connection to the
server. If this is an IPv4 address, the destination address is the last 4
bytes of this field, with the first 12 bytes containing zeros.

NMsIKENSClientPort 84 2 bytes Binary The TCP source port of the client connection to the server.

NMsIKENSServerPort 86 2 bytes Binary The TCP destination port of the client connection to the server.

NMsIKENSConnTime 88 4 bytes Binary UNIX-format timestamp indicating when the client connected to the
server.

NMsIKENSLastMsgTime 92 4 bytes Binary UNIX-format timestamp indicating when the last message was sent to
the server.

NMsIKENSNumFailedReqs 96 8 bytes Binary Number of failed requests to server.

NMsIKENSClientAPIVersion 104 1 byte Binary The version of the NSS client API that the NSS client is using.

v NMsec_NSS_API_VERSION1 (1) - The level of NSS support that is
available in z/OS version V1R9 and later.

v NMsec_NSS_API_VERSION2 (2) - The level of NSS support that is
available in z/OS version V1R10 and later.

NMsIKENSServerAPIVersion 105 1 byte Binary The version of the NSS client API that the connected NSS server
supports.

v The value 0 indicates that this information is not currently available.

v NMsec_NSS_API_VERSION1 (1) - The level of NSS support that is
available in z/OS version V1R9 and later.

v NMsec_NSS_API_VERSION2 (2) - The level of NSS support that is
available in z/OS version V1R10 and later.

NMsIKENSClientRsvd2 106 2 bytes Binary Reserved

NMsec_LOAD_POLICY
This control request does not contain response records. Rather, the return code and
reason code fields in the response message header contain the final status of the
request. Because this control request causes IKED to manipulate the file system, a
z/OS UNIX System Services I/O error might occur, which causes the return code
to contain the error number value EIO. In this case, the reason code contains the
error number value of the error condition. For further error diagnosis see z/OS
UNIX System Services Messages and Codes.

474 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

NMsec_ACTIVATE_IPTUNMANUAL,
NMsec_ACTIVATE_IPTUNDYN,
NMsec_DEACTIVATE_IPTUNMANUAL,
NMsec_DEACTIVATE_IPTUNDYN, NMsec_DEACTIVATE_IKETUN,
NMsec_REFRESH_IPTUNDYN, NMsec_REFRESH_IKETUN
One record is returned that indicates the response of the tunnel action request. A
successful response from a tunnel control request indicates that the requested
operation has been successfully initiated. Because IPSec tunnel activation,
deactivation, and refresh requires an exchange of messages between IPSec peers,
the final status of the operation can be determined later through a subsequent NMI
request that returns the filter or tunnel data.

For a request to activate or deactivate all tunnels of a given type, the response
record contains the NMsecTunCntlResponse section, which is described in Table 56.
For requests that indicate a specific tunnel, this section does not exist.

Table 56. NMsecTunCntlResponse structure

Field Offset Length Format Description

NMsTunCRCount 0 4 bytes Binary The number of tunnels processed. When
the request is for all tunnels, this value is
the number of the tunnels found.

When specific tunnels are requested, the response record contains one
NMsecTunnel section for each of the tunnels. The sections are returned in the same
order as specified in the request. For requests that operate on all tunnels of a given
type, this section does not exist.

IPSec NMI initialization and termination messages
When a client successfully connects to the interface, the server sends an
initialization message (a message with type NMsec_INIT) to the client. This
message contains no records, but the return code and reason code are 0 to indicate
successful connection completion. When the server closes the connection (this
might be the result of error, IKED termination, or the client's closing of the socket),
the server attempts to send a termination message (a message with type
NMsec_TERM) to the client. This message contains no records, but the return code
and reason code indicate the cause of the connection's termination.

IPSec NMI return and reason codes
When sending a request, the client application should set the message header
fields NMsMRc (return code) and NMsMRsn (reason code) to 0. Upon return, the
server sets these fields as follows to indicate the status of the request. This service
uses the errno values defined by z/OS UNIX System Services.

Tunnel Control response format

NMsecMessageHdr

Response records (exactly 1)

NMsecRecordHdr NMsecCntlResponse NMsecTunnel (0-)nNMsecSecDesc (2)

Figure 29. Tunnel control response format

Chapter 14. Network management interfaces 475

Table 57. Return and reason codes

Return code
(NMsMRc) Reason code (NMsMRsn) Description

0 0 No error

ENXIO 0 Requested TCP/IP stack does not exist or is not
active.

System Action: Request is failed but connection
remains open.

Response: Send requests only for active TCP/IP
stacks.

EOPNOTSUPP 0 Requested TCP/IP stack is not configured for IP
security.

System Action: Request is failed but connection
remains open.

Response: Send requests only for TCP/IP stacks
configured for IP security.

EINVAL NMsRsnBadIdent (1) Invalid message or record identifier supplied in
message.

System Action: Connection is closed.

Response: Reissue the connection and send a correctly
formatted message.

EINVAL NMsRsnBadVersion (2) Invalid version supplied in message header.

System Action: Request is failed but connection
remains open.

Response: Send a correctly formatted message.

EINVAL NMsRsnBadType (3) Unsupported or unknown message type supplied in
message header.

System Action: Request is failed but connection
remains open.

Response: Send a supported message type.

EINVAL NMsRsnExcessiveSize (4) Excessive message size.

System Action: Connection is closed.

Response: Reissue the connection and send a correctly
formatted message.

EINVAL NMsRsnHdrSize (5) Message header size is not valid.

System Action: Request is failed but connection
remains open.

Response: Send a message with the header size field
set to the correct value.

EINVAL NMsRsnMsgSize (6) Message size is not valid. For example, the message
might be too short, or the message size might be
greater than the sum of its parts.

System Action: Connection is closed.

Response: Send a correctly formatted message.

476 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 57. Return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EINVAL NMsRsnReservedNonzero
(7)

Reserved data in message header, record header, or
record data is a nonzero value. Reserved fields must
be set to 0 for compatibility with future versions of
the interface.

System Action: Request is failed but connection
remains open.

Response: Send a message with reserved fields set to
0.

EINVAL NMsRsnRecordLength (8) Unrecognized record length supplied in message.
Length does not correspond to known record data.

System Action: Request is failed but connection
remains open.

Response: Send a message with input filters of the
correct length.

EINVAL NMsRsnRecordCount (9) Unsupported record count supplied in message. NMI
requests currently support a maximum of twenty
input filters.

System Action: Request is failed but connection
remains open.

Response: Send a message with the correct number of
input filters.

EINVAL NMsRsnSectionLength (10) Unrecognized section length supplied in record.
Length does not correspond to known section data.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input filters.

EINVAL NMsRsnSectionCount (11) Unrecognized section count supplied in record. NMI
requests currently allow one section in an input filter
record.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input filters.

EINVAL NMsRsnFilterSpec (12) The input filter specification indicates a combination
of filter values that is unsupported for the message's
request type.

System Action: Request is failed but connection
remains open.

Response: Send a message with a valid input filter
specification for the message type.

EINVAL NMsRsnFilterValue (13) The input filter specification contains a value that is
out of range.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input filter
values.

Chapter 14. Network management interfaces 477

Table 57. Return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EINVAL NMsRsnManTypeConflict
(14)

Manual tunnel activation and deactivation requests
for multiple tunnels must contain uniform tunnel
specifications: either tunnel IDs or tunnel names. The
request contained a mixture of tunnel names and
tunnel IDs.

System Action: Request is failed but connection
remains open.

Response: Separate manual tunnel names and tunnel
IDs into different requests.

EINVAL NMsRsnPolicySource (15) The policy source value in the policy load request is
not valid.

System Action: No action is required.

Response: Send a message with a valid
NMsecPolSrcSource value.

EACCES 0 Access denied to the requested resource.

System Action: Request is failed but connection
remains open.

Administrator Response: Permit user to security
resource.

ENOMEM 0 Insufficient storage available in the server to process
the request.

System Action: Request is failed but connection
remains open.

Response: Increase the REGION size for the IKE
daemon, or send a message with a narrower set of
input filters to limit the response.

ENOMEM NMsRsnTooManyConns (1) The NMI thread is already using its maximum
number of 50 connections and cannot accept any
more.

System Action: Connection is not opened and the
request is failed.

Response: Try the request again later.

EIO (z/OS UNIX System
Services Errno)

A file system I/O error occurred. The reason code
contains the value of the errno that describes the
error.

System Action: Request is failed but the connection
remains open.

Response: Diagnose the z/OS UNIX System Services
Errno using z/OS UNIX System Services Messages
and Codes.

Network security services (NSS) network management NMI
z/OS Communications Server network security services (NSS) server provides an
AF_UNIX socket interface through which network management applications can
manage IP filtering and IPSec on remote NSS IPSec clients, or monitor NSS clients
that are connected to the local NSS server. This interface is available only through
the NSS server and should be used by network management applications that

478 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

monitor and control multiple systems through a single point of control.
Applications can perform the following functions using this interface:
v Issue monitoring or control requests through the NSS server to specified NSS

IPSec clients. The NSS server routes all monitoring and control requests
(described in “Local IPSec NMI” on page 420) to NSS IPSec clients, with the
exception of the NMsec_GET_STACKINFO and NMsec_GET_IKENSINFO
requests. Routing occurs only if the NSS IPSec client is connected to the NSS
server at the time the request is made.

v Request information about one or all of the NSS clients that are currently
connected to the NSS server, either for a specified discipline or for all
disciplines.

A client network management application requests information and initiates
control operations by sending specific requests over an AF_UNIX stream socket
connection to the NSS server. If necessary, the request is then redirected to the
specified NSS IPSec client, which later responds with the requested data or the
results of the requested operation. The response information is then returned to the
application directly over the AF_UNIX connection. For most control requests, a
successful response indicates that the operation was successfully initiated, but that
it is still in progress. You can determine the final status of the control operation
later by issuing a subsequent monitoring request for the effected object.

Network security services NMI: Configuring the interface
Access to the network security services (NSS) server's network management
interface is controlled through RACF (or an equivalent external security manager
product) resource definitions in the SERVAUTH class. Most of these resource
names contain the NSS client's name. The client name is defined by the client.
v For an NSS IPSec client, the default value of a client name takes the form

sysname_stackname, where the sysname value is the MVS system name of the
client, and the stackname value is the TCP/IP stack name that it represents. You
can override the clientname value in the client's IKE daemon configuration file on
the NssStackConfig statement or in the IBM Configuration Assistant NSS
Perspective on the Client IPSec Settings tab.

v For an NSS XMLAppliance client, the default value of a client name is left up to
the client application's implementation.

Tip: When you override the clientname value for an NSS IPSec client, ensure that
the name you define does not match the name of an existing NSS client on the
NSS server system. If the names match, users with authority to manage IP security
on that system also gain authority to remotely manage the NSS client, because the
SERVAUTH resource names are identical.

The z/OS system administrator can restrict access to NSS network management
interfaces as follows:
v Access to remote NSS IPSec client monitoring functions (those that request

information only from an NSS IPSec client through the NSS server) within this
interface can be restricted by defining a RACF (or equivalent external security
manager product) resource EZB.NETMGMT.sysname.clientname.IPSEC.DISPLAY
in the SERVAUTH class (where sysname represents the MVS system name where
the interface is being invoked, and clientname is the name of the NSS IPSec
client).

v Access to the remote NSS IPSec client control functions (those that take some
action) is controlled through the
EZB.NETMGMT.sysname.clientname.IPSEC.CONTROL resource (where sysname

Chapter 14. Network management interfaces 479

represents the MVS system name where the interface is being invoked, and
clientname is the name of the NSS IPSec client).

v Access to NSS server monitoring functions (those that request information only
about the server itself) is controlled through the resource
EZB.NETMGMT.sysname.sysname.NSS.DISPLAY in the SERVAUTH class (where
the sysname value represents the MVS system name where the interface is being
invoked).

Requirement: For applications that use the interface, the MVS user ID must be
permitted to the defined resource. Additionally, permitted client applications must
have permission to enter the /var/sock directory and to write to the
/var/sock/nss socket. Ensure that the NSSD OMVS user ID has write access to the
/var/sock directory (or ensure that it has permission to create this directory).

Guideline: If you are developing a feature for a product to be used by other
parties, include instructions in your documentation indicating that administrators
must define and give appropriate permission to the given security resource to use
that feature.

Network security services NMI: Connecting to the server
For an application to use this interface, it must connect to the AF_UNIX stream
socket that is provided by the NSS server for this interface. The socket path name
is /var/sock/nss. Either the Language Environment C/C++ API or the UNIX
System Services BPX services can be used to create AF_UNIX sockets and connect
to this service.

When an application connects to the socket, the server sends an initialization
message to the client application. When the NSS server closes a client connection
(reasons for doing so include severe errors in the format of data requests sent by
the application to the server, or NSS server termination), the NSS server attempts
to send a termination message to the client before closing the connection. Both the
initialization and termination messages match those used by the IKE daemon (see
“IPSec NMI request/response format” on page 423).

Network security services NMI request and response format
The NSS server supports a message format that is almost identical to that used by
the IKE daemon for local IPSec monitoring and control (see “Local IPSec NMI” on
page 420). Like the local monitoring/control interface, these messages are
exchanged over an AF_UNIX socket using a request-response model.

The only difference between the NSS and IPSec NMI message format is that when
an NMI message is sent to the NSS server, the NMsMTarget string in the message
header identifies the remote NSS client to which the request is directed. Use the
clientname field of the target NSS client in the NMsMTarget string, padded on the
right with blanks. You can obtain the clientname values of each client connected to
the NSS server by issuing the NMsec_GET_CLIENTINFO request. The
NMsMTarget field can be set to blanks for an NMsec_GET_CLIENTINFO request.
If this field is set to blanks for any other request, the request is rejected with an
appropriate error code in the reply header.

Restriction: An NMI request is redirected to an NSS client only if that client has
selected the remote management service and is enabled for that service.

480 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Network security services NMI request messages
The NSS server supports all of the request messages described for the IKE daemon
except for the NMsec_GET_STACKINFO and NMsec_GET_IKENSINFO requests
(see “Local IPSec NMI” on page 420). In addition, the NSS server also supports the
NMsec_GET_CLIENTINFO request message.

The NMsec_GET_CLIENTINFO request is a monitoring request that obtains a list
of NSS clients that are currently connected to the NSS server and summary
information about each client. This request allows zero or more input filtering
records that specify client discipline type. If the NMsMTarget field in the message
header is blank, then information for all of the currently connected clients is
returned. If a client name is specified in the NMsMTarget field, then information
for only that client is returned if the client is connected. If the specified client is not
connected, the request fails with an ENXIO return code. Access to this function is
controlled through the EZB.NETMGMT.sysname.sysname.NSS.DISPLAY resource
definition in the SERVAUTH class.

Network security services NMI response messages
The NSS server supports all of the response messages described for the IKE
daemon in “Local IPSec NMI” on page 420 except for the
NMsec_GET_STACKINFO and NMsec_GET_IKENSINFO responses. In addition,
the NSS server also supports the NMsec_GET_CLIENTINFO response message:

NMsec_GET_CLIENTINFO

Each record returned identifies and describes a single NSS client. Each record has a
single section, NMsecNSClient, which contains the following data.

Table 58. NMsecNSClient structure

Field Offset Length Format Description

NMsNSClientName 0 24 bytes EBCDIC The name of the NSS client. For z/OS clients, the default
format is sysname_stackname, where sysname is the z/OS
system name, and stackname is the TCP/IP job name.
z/OS clients can override this default form with any valid
24-character string. For non z/OS clients, the format of
the client name is determined by the client.

NMsNSClientSysName 24 8 bytes EBCDIC This field contains the NSS client's system name. Each
NSS client provides this value to the NSS server at
connection time. For z/OS NSS clients, this field contains
the client's z/OS system name. For other clients, this field
can contain a system identifier such as the first 8 bytes of
their system's host name.

NMsNSClientStackName 32 8 bytes EBCDIC This field contains the NSS client's stack name. Each NSS
client provides this value to the NSS server at connection
time.

NMsNSClientUserid 40 8 bytes EBCDIC The user ID under which the client is registered.

NMsNSClientClientAddress 48 16 bytes Binary The IPv4 or IPv6 address from which the client is
connected. If this is an IPv4 address, it is in the last 4
bytes of this field, with the first 12 containing zeros

NMsec_GET_CLIENTINFO response format

NMsecMessageHdr

Response records (1 for each connected client)

NMsecRecordHdr NMsecSecDesc NMsecNSClient

Figure 30. NMsec_GET_CLIENTINFO response format

Chapter 14. Network management interfaces 481

Table 58. NMsecNSClient structure (continued)

Field Offset Length Format Description

NMsNSClientServerAddress 64 16 bytes Binary The IPv4 or IPv6 address on which the NSS server is
communicating with the client. If this is an IPv4 address,
it is in the last 4 bytes of this field, with the first 12
containing zeros.

NMsNSClientClientPort 80 2 bytes Binary The client's local TCP port over which the client is
communicating with the server.

NMsNSClientServerPort 82 2 bytes Binary The TCP port over which the NSS server is
communicating with the NSS client.

NMsNSClientSvcSelCert 84, bit 0 1 bit Binary Used in conjunction with the NMsNSClientDiscipline field
to indicate which type of certificate service, if any, is
selected. If the NMsNSClientDiscipline field is set to
NMsec_DISCIPLINE_IPSEC, this field indicates whether
the IPSec certificate service is selected. If the
NMsNSClientDiscipline field is set to
NMsec_DISCIPLINE_XMLAPP, this field indicates
whether the XMLAppliance certificate service is selected.

NMsNSClientSvcEnblCert 84, bit 1 1 bit Binary Used in conjunction with the NMsNSClientDiscipline field
to indicate which type of certificate service, if any, is
enabled. If the NMsNSClientDiscipline field is set to
NMsec_DISCIPLINE_IPSEC, this field indicates whether
the IPSec certificate service is enabled. When the
NMsNSClientDiscipline field is set to
NMsec_DISCIPLINE_XMLAPP, this field indicates
whether the XMLAppliance certificate service is enabled.

NMsNSClientSvcSelMgmt 84, bit 2 1 bit Binary The IPSec Network Management Service is selected.

NMsNSClientSvcEnblMgmt 84, bit 3 1 bit Binary The IPSec Network Management Service is enabled.

NMsNSClientIPv6 84, bit 4 1 bit Binary IP addressing mode. If set to 1, the client and server are
using IPv6 addresses; otherwise, they are using IPv4.

NMsNSClientSvcSelPrivKey 84, bit 5 1 bit Binary XMLAppliance private key service is selected.

NMsNSClientSvcEnblPrivKey 84, bit 6 1 bit Binary XMLAppliance private key service is enabled.

NMsNSClientSvcSelSAF 84, bit 7 1 bit Binary XMLAppliance SAF access service is selected.

NMsNSClientSvcEnblSAF 84, bit 8 1 bit Binary XMLAppliance SAF access service is enabled.

NMsNSClientRsvd1 84, bit 9 7 bits Binary Reserved

482 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 58. NMsecNSClient structure (continued)

Field Offset Length Format Description

NMsNSClientConnectState 86 2 bytes Binary Client connection state. The field can have one of the
following values:

NMsec_CLIENTSTATUS_CONNECTPENDING (0x0001)
Connection is pending. The initial TCP
connection has been completed, but the
ConnectClientReqToSrv request has not yet been
successfully processed. The client's name and
access rights cannot be determined until after
the ConnectClientReqToSrv request has been
processed.

NMsec_CLIENTSTATUS_CONNECTED (0x0002)
The client is connected to the server.

NMsec_CLIENTSTATUS_DISCONNECTPENDING
(0x0003) Disconnect is pending. The client is still in the

NSS server's tables, but no more requests from
that client are processed. The server is in the
process of cleaning up after the client and
removing the data from the server tables. The
application enters this state under one of the
following conditions:

v The client's user ID authorization fails during
the processing of a ConnectClientReqToSrv
request.

v A DisconnectClientReqToSrv request is
received from the client.

v The TCP/IP connection to the client was
terminated or was lost.

NMsec_CLIENTSTATUS_UPDATEPENDING (0x0004)
Update is pending. The client authorization
information or selected services have been
reconfigured at the client but the
UpdateClientInfoReqToSrv request has not
completed processing.

NMsNSClientConnTime 88 4 bytes Binary UNIX-format timestamp indicating when the client
connected to the server.

NMsNSClientLastMsgTime 92 4 bytes Binary UNIX-format timestamp indicating when the last message
was received at the server from the client.

NMsNSClientNumreqSigCreate 96 8 bytes Binary For NSS IPSec clients, the number of create signature
requests that have been received from the client. For NSS
XMLAppliance clients, this number is 0.

NMsNSClientNumreqSigVerify 104 8 bytes Binary For NSS IPSec clients, the number of verify signature
requests that have been received from the client. For NSS
XMLAppliance clients, this number is 0.

NMsNSClientNumreqCACacheRefresh 112 8 bytes Binary For NSS IPSec clients, the number of CA cache refreshes
that have been requested by the client. For NSS
XMLAppliance clients, this number is 0.

NMsNSClientNumNMIForward 120 8 bytes Binary For NSS IPSec clients, the number of NMI requests that
have been forwarded to the client by the server. For NSS
XMLAppliance clients, this number is 0.

NMsNSClientNumreqCertSvc 128 8 bytes Binary The number of XMLAppliance certificate service requests
made by the client.

NMsNSClientNumreqPrivKeySvc 136 8 bytes Binary The number of XMLAppliance private key service
requests made by the client.

NMsNSClientNumreqSAFSvc 144 8 bytes Binary The number of XMLAppliance SAF access service requests
made by the client.

Chapter 14. Network management interfaces 483

Table 58. NMsecNSClient structure (continued)

Field Offset Length Format Description

NMsNSClientAPIVersion 152 1 byte Binary The version of the NSS client API that the NSS client is
using.

v NMsec_NSS_API_VERSION1 (0x01) - The level of NSS
support that is available in z/OS version V1R9 and
later.

v NMsec_NSS_API_VERSION2 (0x02) - The level of NSS
support that is available in z/OS version V1R10 and
later.

v NMsec_NSS_API_VERSION3 (0x03) - The level of NSS
support that is available in z/OS version V1R11 and
later.

NMsNSClientDiscipline 153 1 byte Binary NSS discipline:

v NMsec_DISCIPLINE_IPSEC (0x01) - Indicates an NSS
IPSec client.

v NMsec_DISCIPLINE_XMLAPP (0x02) - Indicates an
NSS XMLAppliance client.

NMsNSClientRsvd2 154 2 bytes Binary Reserved

Network security services NMI initialization and termination
messages

When a network management application successfully connects to the interface, the
server sends an initialization message (a message with type NMsec_INIT) to the
client. This message contains no records, but the return code and reason code are 0
to indicate successful connection completion.

When the server closes the connection (the connection can close as a result of an
error, NSSD terminating, or the application's closing of the socket), the server
attempts to send a termination message (a message with type NMsec_TERM) to
the client. This message contains no records, but the return code and reason code
indicate the cause of the connection's termination.

Network security services NMI return and reason codes
When sending a request, the client application should set the message header
fields NMsMRc (return code) and NMsMRsn (reason code) to 0. Upon return, the
server sets these fields as follows to indicate the status of the request. For more
information about return codes and reason codes, see Overview of diagnosing NSS
server problems in z/OS Communications Server: IP Diagnosis Guide.

Table 59. Request return and reason codes

Return code
(NMsMRc) Reason code (NMsMRsn) Description

0 0 No error.

ENXIO (138) 0 The requested NSS client is not connected.

System Action: Request is failed but the
connection remains open.

Response: Send requests for active NSS clients
only.

484 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 59. Request return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EOPNOTSUPP
(1112)

0 The requested NSS client is not enabled for
remote monitoring.

System Action: Request is failed but connection
remains open.

Response: Send requests only for NSS clients
that are enabled for remote monitoring.
Otherwise, configure and permit the given NSS
client for remote monitoring.

EINVAL (121) NMsRsnBadIdent (1) Invalid message or record identifier supplied in
message.

System Action: Connection is closed.

Response: Reissue the connection and send a
correctly formatted message.

EINVAL (121) NMsRsnBadVersion (2) Invalid version supplied in message header.

System Action: Request is failed but connection
remains open.

Response: Send a correctly formatted message.

EINVAL (121) NMsRsnBadType (3) Unsupported or unknown message type
supplied in message header.

System Action: Request is failed but connection
remains open.

Response: Send a supported message type.

EINVAL (121) NMsRsnExcessiveSize (4) Excessive message size.

System Action: Connection is closed.

Response: Reissue the connection and send a
correctly formatted message.

EINVAL (121) NMsRsnHdrSize (5) Message header size is invalid.

System Action: Request is failed but connection
remains open.

Response: Send a message with the header size
field set to the correct value.

EINVAL (121) NMsRsnMsgSize (6) Message size is invalid. For example, the
message might be too short, or the message size
might be greater than the sum of its parts.

System Action: Request is failed but connection
remains open.

Response: Send a correctly formatted message.

EINVAL (121) NMsRsnReservedNonzero (7) Reserved data in message header, record
header, or record data specifies a nonzero value.
Reserved fields must be set to 0 for
compatibility with future versions of the
interface.

System Action: Request is failed but connection
remains open.

Response: Send a message with reserved fields
set to 0.

Chapter 14. Network management interfaces 485

Table 59. Request return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EINVAL (121) NMsRsnRecordLength (8) Unrecognized record length supplied in
message. Length does not correspond to known
record data.

System Action: Request is failed but connection
remains open.

Response: Send a message with input filters of
the correct length.

EINVAL (121) NMsRsnRecordCount (9) Unsupported record count supplied in message.
NMI requests currently support a maximum of
20 input filters.

System Action: Request is failed but connection
remains open.

Response: Send a message with the correct
number of input filters.

EINVAL (121) NMsRsnSectionLength (10) Unrecognized section length supplied in record.
Length does not correspond to known section
data.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input
filters.

EINVAL (121) NMsRsnSectionCount (11) Unrecognized section count supplied in record.
NMI requests currently allow one section in an
input filter record.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input
filters.

EINVAL (121) NMsRsnFilterSpec (12) The input filter specification indicates a
combination of filter values that is unsupported
for the message's request type.

System Action: Request is failed but connection
remains open.

Response: Send a message with a valid input
filter specification for the message type.

EINVAL (121) NMsRsnFilterValue (13) The input filter specification contains a value
that is out of range.

System Action: Request is failed but connection
remains open.

Response: Send a message with correct input
filter values.

486 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 59. Request return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EINVAL (121) NMsRsnManTypeConflict(14) Manual tunnel activation and deactivation
requests for multiple tunnels must contain
uniform tunnel specifications: either tunnel IDs
or tunnel names. The request contained a
mixture of tunnel names and tunnel IDs.

System Action: Request is failed but connection
remains open.

Response: Separate manual tunnel names and
tunnel IDs into different requests.

EINVAL (121) NMsRsnPolicySource (15) The policy source value in the policy load
request is invalid.

System Action: NO action is required.

Response: Send a message with a valid
NMsecPolSrcSource value.

EACCESS (111) 0 Access denied to the requested resource.

System Action: Request is failed but connection
remains open.

Administrator Response: Permit the user to the
security resource.

EACCESS (111) 0 Insufficient storage available in the server to
process the request.

System Action: Request is failed but connection
remains open.

Response: Increase the REGION size for the IKE
daemon, or send a message with a narrower set
of input filters to limit the response.

ENOMEM (132) NMsRsnTooManyConns (1) The NMI thread is already using its maximum
number of 50 connections and cannot accept
any more.

System Action: Connection is not opened and
the request is failed.

Response: Try the request again later.

ENOMEM (132) NMsRsnNSClient (2) Insufficient storage available in the NSS client
to process the request.

System Action: Request is failed but connection
remains open.

Response: Increase the REGION size for the
NSS client, or send a message with a narrower
set of input filters to limit the response.

ETIMEDOUT
(1127)

NMsRsnNSClient (2) Response message was not received from the
NSS client in sufficient time.

System Action: Request is failed but connection
remains open.

Response: Resend the request message to the
server.

Chapter 14. Network management interfaces 487

Table 59. Request return and reason codes (continued)

Return code
(NMsMRc) Reason code (NMsMRsn) Description

EIO (122) (z/OS UNIX System Services
Errno)

A file system I/O error occurred. The reason
code contains the errno value that describes the
error.

System Action: Request is failed but connection
remains open.

Response: Diagnose the z/OS UNIX System
Services Errno using z/OS UNIX System
Services Messages and Codes.

EMVSERR (157) 0 A call to an MVS service failed or an internal
NSSD error has occurred.

System Action: Request fails but connection
remains open. A message appears in the MVS
system log with additional diagnostic
information.

Response: Contact IBM service.

Real-time application-controlled TCP/IP trace NMI (EZBRCIFR)
The real-time application-controlled TCP/IP trace NMI is a callable NMI that
provides real-time TCP/IP stack data to network management applications based
on filters that are set by an application trace instance. Each application can use the
NMI to open multiple trace instances and set unique filters for each trace instance
to obtain the desired data. Filters can be set for the following trace types:
v Data trace
v Packet trace

The application will receive information about real-time data that is lost. The
information is provided in the form of lost trace records. See “Lost records” on
page 523 for detailed information about these trace records. In contrast, the
real-time TCP/IP network monitoring NMI provides real-time data based on the
global settings for the TCP/IP stack and the applications are not notified of lost
data. The real-time data that matches the application filters is provided in trace
records. These trace records are similar to the trace records that are provided by
the real-time TCP/IP network monitoring NMI.

As part of collecting the real-time data for the applications, the NMI uses 64-bit
shared storage that it shares with the application address space. The NMI also uses
64-bit common storage that the TCP/IP address space owns.

64-bit shared storage
The 64-bit shared storage is used as a staging buffer between a TCP/IP
stack and a trace instance to store the real-time data as trace records, until
the trace instance requests the records. The amount of 64-bit shared storage
is limited by the HVSHARE parameter in member IEASYSxx of PARMLIB.
To use this NMI, some 64-bit shared memory storage must be configured
on the HVSHARE parameter.

64-bit common storage
This storage is used as a collection buffer for the real-time data. The NMI
allocates 64 MB of storage for this buffer. The NMI uses the collection
buffer to store trace records for all applications that are using the NMI. The
trace records are then copied to the staging buffer for each application

488 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

trace instance whose filters match the data in the trace record. The amount
of 64-bit common storage is limited by the HVCOMMON parameter in
member IEASYSxx of PARMLIB. To use this NMI, 64-bit common memory
storage must be configured on the HVCOMMON parameter. You can use
the DISPLAY TCPIP,,STOR command to see the amount of 64-bit common
storage that all functions use in the TCP/IP address space.

You can use the DISPLAY TCPIP,,TRACE command to display information about the
applications that use the NMI and information about the resources that the NMI
uses.

In order for applications to be able to access the real-time data, you must define
new System Authorization Facility (SAF) profiles in the SERVAUTH class and
authorize the user IDs of the applications to the profiles.

The real-time application-controlled TCP/IP trace NMI supports several requests
that are used to obtain the real-time data. The following topics describe the details
for enabling applications to use the NMI, for invoking the requests, and for
processing the request output:
v “Real-time control NMI: Overview”
v “Real-time control NMI: Configuration and enablement” on page 491
v “Real-time control NMI: Invoking the requests” on page 492
v “Real-time control NMI: Requests” on page 497

Real-time control NMI: Overview
The real-time data is stored in the form of trace records in the staging buffer that is
shared between the application trace instance and the TCP/IP stack. To obtain the
trace records, a network management application invokes the NMI requests in the
following order:
v RCCOpen

This request creates a trace instance and returns a token to the application. The
token represents this trace instance. The request verifies the application access to
the security product resource profile for the request. This request also creates a
64-bit shared storage area for the NMI to use as a staging buffer on behalf of the
application.
Before invoking the RCCOpen request, you must decide how you want to access
the trace records. The trace records can be accessed in two modes:
– Locate mode

If you use locate mode, you can access the trace records directly in the
staging buffer. Because the staging buffer is comprised of 64-bit storage, your
application must be running in AMODE64 to access the records.

– Move mode
If you use move mode, the trace records are copied to an output buffer that
you provide when you invoke the RCCGetRecords request.

Rule: If you decide to use locate mode, you must indicate this in the input to
the RCCOpen request and this setting cannot be modified later. The setting can
be changed only by closing and reopening the trace instance.
You must also decide whether you want to use an ECB to wait for trace records
to become available. If you don’t use an ECB, you can use the RCCGetRecords
request in one of the following ways:
– You can specify a wait time value on the RCCGetRecords request.

Chapter 14. Network management interfaces 489

– Your application can invoke the RCCGetRecords request until trace records
are available.

Rules:

– If you decide to use an ECB in conjunction with obtaining trace records, the
ECB address must be specified in the input to the RCCOpen request and this
setting cannot be modified later. The setting can be changed only by closing
and reopening the trace instance.

– The specified ECB is posted only when the trace is active and the records are
being written to the trace instance staging buffer. If the trace is stopped, the
ECB is not posted.

v RCCSetFilters

This request sets the trace types for which the application wants to collect
real-time data and sets trace filters and options for each trace type. Currently the
only trace types that are supported are packet trace and data trace. The request
verifies that the application has access to the security product resource profiles
for the trace types that are specified in the request.

v RCCStart

This request causes TCP/IP to start collecting real-time data for the application
based on the filters and options for the trace instance.

v RCCGetRecords

This request enables the application to obtain the requested real-time data. If
locate mode was requested as input to the RCCOpen request, the starting
address and length of the real-time data in the staging buffer are returned to the
application. If move mode is in effect, the real-time data is copied to an
application-supplied buffer.

v RCCStop

This request causes TCP/IP to stop collecting real-time data for the application.
v RCCClose

This request closes the trace instance that is specified by the input token. The
staging buffer is also freed for the trace instance.

Rules:

v All of the NMI requests after RCCOpen, except for the RCCGetRecords request,
must be invoked from the same address space and task as that of the invoker of
the RCCOpen request; otherwise, the NMI request fails. Applications cannot
invoke these subsequent requests from a forked process. These subsequent
requests must be invoked under the same user ID as that of the invoker of the
RCCOpen request.

v The RCCGetRecords request can be invoked from any task in the same address
space as the invoker of the RCCOpen request, but must be invoked under the
same user ID as that of the invoker of the RCCOpen request. The
RCCGetRecords request cannot be invoked concurrently from more than one
task.

See “Real-time control NMI: Requests” on page 497 for detailed information about
invoking each NMI request.

Application abend exit

After the RCCOpen request is successfully processed, your application is
associated with a specific TCP/IP stack. If this TCP/IP stack is stopped, your

490 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

application task might be terminated with an ABEND422. You can provide an
abend exit for this abend.

Disablement of the NMI

If certain error conditions occur, the NMI is disabled. Message EZD2014I is issued
to the console indicating the cause of the disablement. The DISPLAY TCPIP,,TRACE
command output also indicates that the NMI is disabled. If your application
receives a return code of ETCPERR and a reason code of JrDisabled, this indicates
that the NMI is disabled. If your application has an open trace instance, the
application should invoke the RCCClose request to close the trace instance. The
TCP/IP stack must be recycled to reset the disabled condition.

Real-time control NMI: Configuration and enablement
This section provides information about TCP/IP stack configuration for the NMI
and information about the security product requirements to permit an application
to use the NMI.

TCP/IP stack configuration
There is no TCP/IP stack configuration that is required to enable the NMI.

SAF resource names for NMI resources
Use SAF resource profiles to control application access to the NMI requests and to
the real-time data. The profiles are defined in the SERVAUTH class. You must give
the user ID of the application READ access to each resource that you want the
application to use. The resource names have the format
EZB.TRCCTL.sysname.tcpname.identifier or
EZB.TRCSEC.sysname.tcpname.identifier, where:
v sysname is the MVS system name where the TCP/IP stack is running.
v tcpname is the TCP/IP stack job name.
v identifier is the identifier that is associated with the specific request.

Restriction: You must define the SAF resource profiles for the NMI. If profiles
protecting these resources are not defined, no application is authorized to invoke
the NMI requests or obtain the real-time data.

The following resource names are supported:
v EZB.TRCCTL.sysname.tcpname.OPEN

This resource name applies to the RCCOpen request. In order for the application
to invoke an RCCOpen request, the application user ID must be authorized to
the resource profile.

v EZB.TRCCTL.sysname.tcpname.PKTTRACE

This resource name applies to the RCCSetFilters request for the packet trace
type. In order for the application to invoke an RCCSetFilters request for the
packet trace type, the application user ID must be authorized to the resource
profile.

v EZB.TRCSEC.sysname.tcpname.IPSEC

This resource name applies to the RCCSetFilters request for the packet trace
type. In order for the application to set the filter flag to obtain IPSec cleartext
data, the application user ID must be authorized to the resource profile.

v EZB.TRCCTL.sysname.tcpname.DATTRACE

Chapter 14. Network management interfaces 491

This resource name applies to the RCCSetFilters request for the data trace type.
In order for the application to invoke an RCCSetFilters request for the data trace
type, the application user ID must be authorized to the resource profile.

v EZB.TRCSEC.sysname.tcpname.ATTLS

This resource name applies to the RCCSetFilters request for the data trace type.
In order for the application to set the filter flag to obtain AT-TLS cleartext data,
the application user ID must be authorized to the resource profile.

Real-time control NMI: Invoking the requests
Use the EZBRCIFR interface to invoke the NMI requests. This section lists the
requirements for invoking the NMI requests and describes the invocation and
parameters that are used for the EZBRCIFR interface.

Restriction: If the NMI requests are invoked on an MVS release that does not
support the NMI, an ABEND019 occurs and the request terminates.

Considerations for C/C++ applications

If you create a C/C++ application that invokes the NMI requests, ensure that the
SYS1.CSSLIB data set is included in the search path during the program bind step
when you create the executable program for your application. This ensures that the
correct NMI interface programs are included in your executable program.

492 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Requirements
Table 60 identifies the requirements for invoking the NMI requests.

Table 60. Requirements to invoke the NMI requests

Requirements

Minimum
authorization

Authorization depends on the request that is invoked:

RCCOpen
The user ID of the caller must be permitted to the SAF profile for
this request.

RCCSetFilters
The user ID of the caller must be permitted to the SAF resource
profile for the trace type for which filter structures have been
specified as input to the request. In addition to this requirement,
the address space, task, and user ID of the caller must match
those that were in effect when the RCCOpen request was
invoked.

RCCStart
The address space, task, and user ID of the caller must match
those that were in effect when the RCCOpen request was
invoked.

RCCGetRecords
The address space and user ID of the caller must match those
that were in effect when the RCCOpen request was invoked.

RCCStop
The address space, task, and user ID of the caller must match
those that were in effect when the RCCOpen request was
invoked.

RCCClose
The address space, task, and user ID of the caller must match
those that were in effect when the RCCOpen request was
invoked.

Dispatchable
unit mode

Task

Cross memory
mode

PASN=SASN=HASN

AMODE 31-bit or 64-bit

ASC mode Primary

Interrupt status Enabled for I/O and external interrupts

Locks Not applicable

Control
parameters

Must be in an addressable area in the primary address space and must be
accessible using the execution key of the caller

EZBRCIFR invocation format
For C/C++ callers, invoke the EZBRCIFR interface as shown in the following
example:
EZBRCIFR(&RequestResponseBuffer,

&RequestResponseBufferLength,
&ReturnValue,
&ReturnCode,
&ReasonCode);

Chapter 14. Network management interfaces 493

For assembler callers, invoke the EZBRCIFR interface as shown in the following
example:
Name EZBRCIFR RequestResponseBuffer, X

RequestResponseBufferLength, X
ReturnValue, X
ReturnCode, X
ReasonCode, X
MF=(E,Plist)

Input registers

Before you invoke the EZBRCIFR interface, you do not need to place any
information into any register unless you are using register notation for a particular
parameter or you are using the register as a base register.

EZBRCIFR parameters
RequestResponseBuffer

Supplied parameter.

Type: Character

Length: Variable

The name of the storage area that contains the input structures for a
request. The input must be in the format of a request header structure
(RCCHeader) that is followed by one or more input structures that are
specific to the request. Table 61 shows the files in which the structures that
are used for the requests are defined.

Table 61. Request structure definition files

File name Language and type Installed location

EZBRCIFA Assembler macro SEZANMAC

EZBRCIFC C/C++ header SEZANMAC and the z/OS
UNIX /usr/include file
system directory

Rule: For C/C++ applications, the LANGLVL(EXTENDED) compiler
option must be specified because of the definition of anonymous unions in
header file EZBRCIFC.

See “Real-time control NMI: Requests” on page 497 for a description of the
input structures for each request.

RequestResponseBufferLength
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the length of all the input structures
in RequestResponseBuffer.

ReturnValue
Returned parameter.

Type: Integer

494 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Length: Fullword

The name of a fullword in which the EZBRCIFR interface returns one of
the following values:

0 The request is successful.

-1 The request is not successful.

ReturnCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBRCIFR interface stores the return
code (errno). The EZBRCIFR interface returns the ReturnCode value only if
the ReturnValue value is -1. Table 62 provides all the common return codes.
Return codes that are specific to each request are provided under the
request. See z/OS UNIX System Services Messages and Codes for a
description of the return codes.

ReasonCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBRCIFR interface stores the reason
code (errnojr). The EZBRCIFR interface returns the ReasonCode value only if
the ReturnValue value is -1. The ReasonCode value further qualifies the
ReturnCode value. Table 62 provides all the reason codes for the common
return codes. Reason codes that are specific to each request are provided
under the request. See z/OS UNIX System Services Messages and Codes
for a description of the reason codes.

Common EZBRCIFR return and reason codes
The following return and reason codes are common to all the requests.

Table 62. Common EZBRCIFR Return values, return codes, and reason codes

Return code
Return code
value Reason code

Reason code
value Meaning

EACCES 0111 (X'06F') JRSAFNotAuthorized 00220 (X'00DC') v The user ID of the caller is not
authorized to the resource profile
for the request.

v The caller is running in AMODE
24.

EACCES 0111 (X'06F') JRNotSRBSyscall 01013 (X'03F5') The caller is running in SRB mode.

EAGAIN 0112 (X'070') JRTCPNotUp 29215 (X'721F') The target TCP/IP stack was not
active.

EFAULT 0118 (X'076') JRReadUserStorageFailed 00447 (X'01BF') A program check occurred while
copying input parameters, or while
copying input data from the
RequestResponseBuffer.

Chapter 14. Network management interfaces 495

Table 62. Common EZBRCIFR Return values, return codes, and reason codes (continued)

Return code
Return code
value Reason code

Reason code
value Meaning

EFAULT 0118 (X'076') JRWriteUserStorageFailed 00448 (X'01C0') A program check occurred while
copying output parameters, or
while copying output data to the
RequestResponseBuffer.

EINVAL 0121 (X'079') JRJobNameNotValid 01307 (X'051B') The NMI could not find the
TCP/IP stack that was associated
with the trace instance. Verify that
the input token in field
RCHRToken in the RCCHeader is
correct.

EINVAL 0121 (X'079') JRInvalidValue 29460 (X'7314') A problem occurred with the input
parameters or structures. This
return and reason code is set for
the following reasons:

v One of the input parameters was
not provided.

v An incorrect input token is in
the RCHRToken field of the
RCCHeader structure.

v The RCHRNum field in the
RCCHeader structure is incorrect
for the request.

EINVAL 0121 (X'079') JrOutOfSequence 29544 (X'7368') Request out of sequence. A request
was invoked for a trace instance
for which RCCClose processing
had been attempted, but the
RCCClose processing did not
complete successfully. Issue
RCCOpen to open a new trace
instance.

EMVSERR 0157 (X'09D') JRSyscallAbend 00301 (X'012D') An abend occurred in a system
call.

EMVSPARM 0158 (X'09E') JRInvParmLength 00298 (X'012A') The RequestResponseBufferLength
value is smaller than the length of
the RCCHeader.

ETCPERR 1158(X'486') JRTcpError 00657 (X'0291') The request encountered an
internal error during processing.

ETCPERR 1158(X'486') JrDisabled 29541 (X'7365') The NMI is currently disabled as
the result of insufficient storage for
internal control blocks or the
collection buffer.

ETCPERR 1158(X'486') JrCallerMismatch 29542 (X'7366') v For all requests except
RCCGetRecords, the address
space, task, or user ID of the
caller of the request does not
match that of the caller of the
RCCOpen request.

v For the RCCGetRecords request,
the address space or user ID of
the caller of the request does not
match that of the caller of the
RCCOpen request.

496 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Real-time control NMI: Requests
This section describes each NMI request. SAF resource profiles control the access to
the requests. See “Real-time control NMI: Configuration and enablement” on page
491 for more information about the resource profiles. See “Real-time control NMI:
Invoking the requests” on page 492 for information about how to invoke the
requests and the request return codes.

Guidelines:

v When you create the input structures for the requests, all reserved and unused
fields should be set to binary zero.

v The values for all EBCDIC fields in the input structures must be padded with
trailing EBCDIC blanks.

Common request requirements
All the requests require a RCCHeader structure that is defined as the first structure
in the RequestResponseBuffer storage area that is passed as input to the request. You
must set the following fields in the RCCHeader before invoking a request:
v RCHREye
v RCHRVer
v RCHRRequest - Set this field to the request constant.
v RCHRLen
v RCHRNum

Table 63 shows the RCCHeader layout of these fields. The RCHRToken field is
returned by the RCCOpen request and must be provided in the RCCHeader
structure that is specified as input to all other requests. The RCCHeader structure
is followed by one or more additional structures that are specific to the request.

Table 63. RCCHeader structure

Offset Field Length Format Description

0(X'0') RCHREye 4 EBCDIC RCHR eyecatcher

4(X'4') RCHRVer 1 Binary Version

5(X'5') RCHRRequest 1 Binary Request type:

v 1 - RCCOpen

v 2 - RCCSetFilters

v 3 - RCCStart

v 4 - RCCGetRecords

v 5 - RCCStop

v 6 - RCCClose

6(X'6') RCHRLen 2 Binary Length of RCCHeader
structure

8(X'8') RCHRNum 2 Binary Number of additional input
structures. This value does not
include the RCCHeader
structure.

10(X'A') 6 Binary Reserved

16(X'10') RCHRToken 16 Binary Token that is returned by the
RCCOpen request

32(X'20') 16 Binary Reserved

Chapter 14. Network management interfaces 497

RCCOpen - Open a trace instance
Use this request to open a trace instance. This request returns a token that
represents this trace instance. The RCCHeader structure containing this token must
be specified as input to all subsequent requests. The input RCCOpenInfo structure
must follow the RCCHeader structure in the input RequestResponseBuffer.

Restriction: Each TCP/IP stack supports a maximum of 32 open trace instances.

You must set the following fields in the input RCCOpenInfo structure before you
invoke a request:
v RCOPEye
v RCOPVer
v RCOPLen
v RCOPBufSize - Use this field to specify the size (in megabytes) for the staging

buffer that the request creates. The staging buffer is obtained from 64-bit shared
storage. The size should be large enough to contain all the trace records that
match the filters you specify. The trace records might be lost in one of the
following situations:
– The size is not large enough.
– The application does not invoke the RCCGetRecords request often enough.
– The application does not invoke the RCCGetRecords request with a large

enough output buffer (for move mode).

Rule: The HVSHARE parameter in member IEASYSxx of PARMLIB limits the
amount of 64-bit shared storage that is available to applications. You must
specify enough shared storage on the HVSHARE parameter so that the NMI can
obtain the staging buffer size you specified.

v RCOPStack - Set this field to the TCP/IP stack name.

The following fields in the input RCCOpenInfo structure are optional:
v RCOPFlags

– Set flag RCOPFLocMode in this field if you want to use locate mode to access
the trace records directly in the staging buffer. If this flag is set, the
RCCGetRecords request returns the address and length of the trace records in
the staging buffer. If this flag is not set, the RCCGetRecords request assumes
that you want to access the trace records in move mode and it copies the
trace records to an application-supplied output buffer.

Rule: If you specify locate mode, your application must run in AMODE64 so
that your application can process the records directly from the staging buffer.

– Set flag RCOPFEcb in this field if you want the NMI to post an ECB when
trace records become available in the staging buffer. You must also specify the
ECB address in field RCOPEcbAddr. The ECB is posted when the NMI
attempts to create a trace record in the staging buffer.

Guidelines:

- Use the RCCGetRecords request to obtain all available trace records before
you wait on the ECB for the first time.

- You might want to wait on the ECB and a timeout value. If the traffic that
you are tracing stops, the ECB is not posted.

498 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Rules:

- The ECB must be in accessible 31-bit storage and in the same storage key
as the caller of the RCCOpen request.

- The specified ECB is posted only when the trace is active and records are
being written to the trace instance staging buffer. If the trace is stopped, the
ECB is not posted.

v RCOPDesc
Use this field, in conjunction with flag RCOPFDesc, to specify an EBCDIC
description of the application. This description is displayed by the DISPLAY
TCPIP,,TRACE command along with other information about the NMI resources
that the application is using.

Rule: The description value must be displayable characters and must not begin
with an EBCDIC blank character.

Processing to open a new trace instance

This request performs the following processing to open the new trace instance:
v Verifies that the user ID of the application is permitted to access the SAF profile

to open a trace instance. The profile resource name is:
EZB.TRCCTL.sysname.tcpprocname.OPEN

v Creates a 64-bit shared storage area for the NMI to use as a staging buffer on
behalf of the application.

v If this is the first RCCOpen request that was processed since the TCP/IP stack
was started, the request obtains a 64-bit common storage area for the NMI to use
on behalf of all applications. Use the DISPLAY TCPIP,,TRACE command to
display attributes of this storage.

Cleanup processing

This request also performs the following cleanup processing:
v Verifies that all open trace instances belong to applications that are still active in

their address spaces. If it finds a trace instance whose application appears to
have ended, it closes the trace instance.

v If this is the first RCCOpen request after all trace instances were closed, and
there are old trace records left in the collection buffer, it causes all the old trace
records to be discarded.

Input:

v RCCHeader structure
RCHRRequest field is set to RCCOpen.

v RCCOpenInfo structure

Table 64. RCCOpenInfo structure

Offset Field Length Format Description

0(X'0') RCOPEye 4 EBCDIC RCOP eyecatcher

4(X'4') RCOPVer 1 Binary Version

5(X'5') 1 Binary Reserved

6(X'6') RCOPLen 2 Binary Length of the RCCOpenInfo
structure

Chapter 14. Network management interfaces 499

Table 64. RCCOpenInfo structure (continued)

Offset Field Length Format Description

8(X'8') RCOPFlags 1 Binary Flags

v X'80', RCOPFDesc: If this
flag is set, a description is
specified in the RCOPDesc
field.

v X'40', RCOPFLocMode: If
this flag is set, Locate mode
is requested.

v X'20', RCOPFEcb: If this flag
is set, an ECB address was
specified in field
RCOPEcbAddr.

9(X'9') 3 Binary Reserved

12(X'C') RCOPBufSize 4 Binary Staging buffer size in
megabytes. For example, a
value of 1 indicates a size of
1M.

16(X'10') 4 Binary Reserved

20(X'14') RCOPEcbAddr 4 Binary ECB address

24(X'18') RCOPStack 8 EBCDIC TCP/IP stack name

32(X'20') RCOPDesc 32 EBCDIC Application description. The
value must be displayable
characters and must not begin
with an EBCDIC blank
character..

Output:

v If the request is successful, an RCHRToken value is returned in the RCCHeader
structure.

v If the request fails, use the list of error return code and reason codes in Table 62
on page 495 and Table 65 to determine the cause of the failure.

Table 65. RCCOpen return and reason codes

Return code
Return code
value Reason code

Reason code
value Meaning

EACCES 0111 (X'06F') JRSAFNotAuthorized 00220 (X'00DC') The user ID of the caller is not
authorized to the security product
resource profile for the request.

EFAULT 0118 (X'076') JRReadUserStorageFailed 00447 (X'01BF') A program check occurred when
verifying read access to the ECB
storage that the RCOPEcbAddr
parameter addressed. The ECB
must be in 31-bit storage.

EFAULT 0118 (X'076') JRWriteUserStorageFailed 00448 (X'01C0') A program check occurred when
verifying write access to the ECB
storage that the RCOPEcbAddr
parameter addressed. The ECB
must be in 31-bit storage.

500 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 65. RCCOpen return and reason codes (continued)

Return code
Return code
value Reason code

Reason code
value Meaning

EINVAL 0121 (X'079') JRTcpError 00657 (X'0291') The request was unable to obtain
required information about the
address space and TCB of the caller.

EINVAL 0121 (X'079') JRJobNameNotValid 01307 (X'051B') The NMI could not find the TCP/IP
stack associated with the trace
instance. Verify that the TCP/IP
stack name specified in field
RCOPStack in the RCCOpenInfo
structure is correct.

EINVAL 0121 (X'079') JRInvalidValue 29460 (X'7314') There is a problem with the input
structures. This error is returned for
the following reasons:

v The RequestResponseBufferLength
value is smaller than the length
of an RCCOpenInfo structure.

v There is a problem with the
RCCOpenInfo input field values.

EMFILE 0124 (X'07C') JRTooManyInstances 29543 (X'7367') An RCCOpen request was received,
but the maximum number of trace
instances is already open.

ENOMEM 0132 (X'084') JRTcpError 00657 (X'0291') An error was encountered during
one of the following request actions:

v Storage is not available in the
TCP/IP address space for internal
control blocks.

v Obtaining the 64-bit common
storage that the collection buffer
uses.

EMVSERR 0157 (X'09D') JRTcpError 00657 (X'0291') An error was encountered when
setting up the staging buffer
support.

EMVSPARM 0158 (X'09E') JRInvParmLength 00298 (X'012A') The RequestResponseBufferLength
value is smaller than the length of
the RCCHeader and the
RCCOpenInfo structure.

EMVSPARM 0158 (X'09E') JRIARV64Error 29514 (X'7341') An error was encountered during
one of the following request actions:

v Obtaining the 64-bit shared
storage in the application address
space that is used as a staging
buffer.

v Obtaining access to the staging
buffer from the application
address space.

v Obtaining access to the staging
buffer from the TCP/IP stack
address space.

Example:
The following assembler program example shows how to invoke the RCCOpen
request:

Chapter 14. Network management interfaces 501

* RCCOpen request *
* *
* *
* The token created by a successful open request may be saved *
* and moved to another request header. The token remains *
* valid until a close request is issued with that token. *
* *

USING RCCHeader,DynRccH
PUSH Using
USING RCCOpenInfo,DynRccO
L R0,=A(RCHREyeC) Set Eyecatcher
ST R0,RCHREye
MVI RCHRVer,RCHRCurrentVer Set version
MVI RCHRRequest,RCCOpen Set request
LHI R0,RCHRSize Size of header
STH R0,RCHRLen
LHI R0,1 Number of input structures
STH R0,RCHRNum

* Setup RCCOpenInfo structure
L R0,=A(RCOpEyeC) Set Eyecatcher
ST R0,RCOPEye
MVI RCOPVer,RCOPCurrentVer Set version
LHI R0,RCOPSize Set size of subheader
STH R0,RCOPLen

*
* We use Move Mode with a WaitTime (no ECB)

OI RCOPFLag,RCOPFDesc Set description
MVC RCOPDesc,=CL32’SAMPLE &SYSDATC &SYSTIME’
LHI R0,StgSize Size of the staging buffer
ST R0,RCOPBufSize
LG R0,DynTcpNm Get the Tcpip name
STG R0,RCOPStack Set stack name
LHI R0,RCHRSize+RCOPSize Size of header & RCCOpenInfo
ST R0,DynReqLn Save size of request input
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue Open request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input
DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header
DynRccO DS XL(RCOPSize) Space for RCCOpenInfo structure
StgSize EQU 20 Staging buffer size in Megs
DynTcpNm DC CL8’TCPIP ’ TCP stack name

RCCSetFilters - Set trace filters and options
Use this request to set the trace type for which you want to collect real-time data,
and to specify filters and options for each trace type. The main input filter
structure is the RCCFilt structure. The RCCFilt structure contains the following
trace-type specific filter structures:
v RCCPkt - packet trace
v RCCDat - data trace

The RCCFilt input structures containing the filters and options must follow the
RCCHeader structure in the input RequestResponseBuffer. You must set the
following fields in the input structures before invoking a request:

502 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v RCFLEye
v RCaaEye - Eyecatcher field in the trace-type specific filter structure
v RCaaVer - Version field in the trace-type specific filter structure
v RCaaLen - Length field in the trace-type specific filter structure

Rules:

v You must invoke the RCCSetFilters request and specify an RCCFilt input
structure for every trace type for which you want to collect real-time data, even
if you do not want to specify any filters for the data. If you do not invoke the
RCCSetFilters request, the RCCStart request fails.

v You can invoke the RCCSetFilters request either before you invoke an RCCStart
request or after you invoke an RCCStop request. The RCCSetFilters request
cannot be processed while a trace is active.

v Each invocation of the RCCSetFilters request is a complete replacement for the
current set of filters for the trace instance for all trace types. For example, if you
invoked the RCCSetFilters request with three filter sets and you want to define
three additional filter sets, you must include all six filter sets on the next
RCCSetFilters request invocation.

v If the request fails, no filters are in effect because any previously set filters are
deleted before the request processes the new filters.

Restriction: The RCCSetFilter request supports a maximum of 32 filter sets for a
trace instance per trace type.

This request performs the following actions:
v Verifies that the user ID of the application is permitted to access the SAF profile

to set filters and options for the specified trace type. The request verifies the
application access on each invocation of the request when it processes the first
filter control block for a trace type. The profile resource names are:
– Packet trace: EZB.TRCCTL.sysname.tcpprocname.PKTTRACE
– Data trace: EZB.TRCCTL.sysname.tcpprocname.DATTRACE

v Additionally for packet trace, if the filter flag is set to obtain IPSec cleartext data,
verifies that the user ID of the application is permitted to access the SAF IPSec
profile for packet trace. The request verifies the application access on each
invocation of the request when it processes the first filter control block where the
flag is set. The profile resource name is:

EZB.TRCSEC.sysname.tcpprocname.IPSEC

v Additionally for data trace, if the filter flag is set to obtain AT-TLS cleartext data,
verifies that the user ID of the application is permitted to access the SAF AT-TLS
profile for data trace. The request verifies the application access on each
invocation of the request, when it processes the first filter control block where
the flag is set. The profile resource name is:

EZB.TRCSEC.sysname.tcpprocname.ATTLS

v Saves the filters and options.

Payload considerations

Specify a payload value as part of a set of filter values to restrict the amount of
trace data in a trace record. The payload value applies only to the data portion of
the trace data for the trace type. The data portion is determined by the trace type.

Packet trace
For packet trace, the IP, transport, and SMC headers are always traced.

Chapter 14. Network management interfaces 503

|

Therefore, the payload value applies only to the packet data that follows
all the headers. In the resulting trace record, the packet trace header
PTH_Tlen field contains the length of the traced data. The traced data
length is the original packet length, including the IP and transport headers,
truncated by the payload value. The PTH_Plen field contains the original
packet length.

Enterprise-extender (EE) packet trace
For EE packet trace, the 3-byte LDLC control command is always traced.
Therefore, the payload value applies only to the packet data that follows
the LDLC control command. In the resulting trace record, the packet trace
header PTH_Tlen field contains the length of the traced data. The traced
data length is the original packet length, including the LDLC control
command, truncated by the payload value. The PTH_Plen field contains
the original packet length.

Data trace
For data trace, all the data for the socket request is treated as data.
Therefore, the payload value applies to all the data for the request even if
the data includes IP and transport headers (for example, RAW sockets). In
the resulting trace record, the packet trace header PTH_Tlen field contains
the length of the traced data. The traced data length is the original socket
request data length truncated by the payload value. Use the PTH_DtPlen
field to obtain the original data length value because the PTH_Plen field
can accommodate data lengths of only 65535 or less.

Packet trace IPSec cleartext data

Specify the RCPKFIPSecClear filter flag to request IPSec cleartext data. IPSec
cleartext data is packet trace data before encapsulation or after decapsulation. The
packet must match all the other filter values that you specified in the filter
structure in order for a trace record to be created for the packet. In the resulting
trace record, the PTH_ClearTxt flag is set in the packet trace header to indicate that
the trace record contains IPSec cleartext data.

Restrictions:

v You can obtain only IPSec cleartext data for packets that the TCP/IP stack
encapsulates or decapsulates. You cannot obtain cleartext data for packets that
the IKE daemon encapsulates or decapsulates.

v On TCP/IP stacks where the stack is only routing IPSec encapsulated packets to
another host, you cannot obtain cleartext data for the routed packets.

Rule: Specification of the RCPKFIPSecClear filter flag does not cause the NMI to
trace only IPSec cleartext data for the filter. Trace records are created for non-IPSec
cleartext packets if the packet matches the other filter values in the filter structure
where the RCPKFIPSecClear filter flag is set.

Packet trace IPSec secure data

The NMI does not trace IPSec encapsulated packet data by default. If you want
trace records to be created for IPSec encapsulated packets, you must set the
RCPKFIPSecSecure filter flag and protocol filter values of AH, ESP, or UDP (for
UDP-encapsulated ESP packets), along with any other filter values.

Rule: Specification of the RCPKFIPSecSecure filter flag does not cause the NMI to
trace only IPSec encapsulated data for the filter. Trace records are created for

504 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

non-IPSec encapsulated packets if the packet matches the other filter values in the
filter structure where the RCPKFIPSecSecure filter flag is set.

Data trace AT-TLS cleartext data

Specify the RCDAFATTLSClear filter flag to request AT-TLS cleartext data. The
data must match all the other filter values you specified in the filter structure
where the RCDAFATTLSClear filter flag was specified for a trace record to be
created for the data. In the resulting trace record the PTH_ClearTxt flag is set in
the packet trace header to indicate that the trace record contains AT-TLS cleartext
data.

Restriction: You can obtain AT-TLS cleartext data only when the CtraceClearText
parameter is set to On in the policy and the application is authorized to see the
cleartext data. If the CtraceClearText parameter is set to Off in the policy or if the
CtraceClearText parameters is set to On but the application is not authorized to see
the cleartext data, then the PTH_CfTxt flag is set in the packet trace header to
indicate that the trace record does not contain any data.

Rule: Specification of the RCDAFATTLSClear filter flag does not cause the NMI to
trace only AT-TLS cleartext data for the filter. Trace records are created for
non-ATTLS cleartext data if the data matches the other filter values in the filter
structure where the RCDAFATTLSClear filter flag is set.

Input:

v RCCHeader structure
Set the RCHRRequest field to RCCSetFilters.

v RCCFilt structure - Provides filters and options for each trace type.
The RCCFilt structure is a common structure that contains the following
trace-type specific filter structures:
– RCCPkt - packet trace
– RCCDat - data trace

To indicate that you want trace records for a trace type, provide a trace-type
specific filter structure. If you do not specify any flag settings in the trace-type
specific filter structure, no filter values are in effect for the trace after the
RCCStart request is invoked for the trace instance.

Table 66. RCCFilt structure

Offset Field Length Format Description

0(X'0') RCFLEye 4 EBCDIC RCFL eyecatcher

4(X'4') 4 Binary Reserved

8(X'8') Union of trace-type specific
filter control blocks

8(X'8') RCFLPkt RCCPkt filter structure for
packet trace. For layout, see
Table 67 on page 506.

8(X'8') RCFLDat RCCDat filter structure for data
trace. For layout, see Table 68
on page 510.

Chapter 14. Network management interfaces 505

Table 67. RCCPkt structure.

Offset Field Length Format Description

0(X'0') RCPKEye 4 EBCDIC RCPK eyecatcher

4(X'4') RCPKVer 1 Binary Version

5(X'5') 1 Binary Reserved

6(X'6') RCPKLen 2 Binary Length of the RCCPkt
structure

8(X'8') RCPKIpAddr4 4 Binary IP address (source or
destination)

v IPv4 address, if the
RCPKFIpAddr flag is set.

v IPv6 address, if the
RCPKFIpAddr flag is set.

RCPKIpAddr6 16 Binary

24(X'18') RCPKPortNum 2 Binary Port number (source or
destination)

26(X'1A') 2 Binary Reserved

28(X'1C') RCPKPayload 4 Binary Payload length. The packet
headers are always traced.
The RCPKPayload value
determines how many
bytes of payload are traced.
For example, if the packet
holds a TCP segment of 260
bytes and RCPKPayload is
specified as 100, the IP
header, the TCP header,
and the first 100 bytes of
the TCP segment are traced.

The following values are
supported for this field:

0 No payload, only
headers.

n Length of payload
to be traced.

65535 Maximum amount
of data. This is the
default value if the
RCPKFPayload
flag is not set.

506 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 67. RCCPkt structure (continued).

Offset Field Length Format Description

32(X'20') RCPKFiltFlags 2 Binary The following flags indicate
which filters were set:

v X'8000', RCPKFPrefix: If
this flag is set, an IP
address prefix was
specified. The
RCPKPrefix field
contains the specified
prefix. If this flag is set,
you must also provide an
IP address.

v X'4000', RCPKFProto: If
this flag is set, a TCP/IP
protocol was specified.
The RCPKProto field
contains the specified
protocol value.

v X'2000', RCPKFPortNum:
If this flag is set, a port
number was specified.
The RCPKPortNum field
contains the specified
port number. This value
is compared to either the
source or destination port
numbers.

v X'1000', RCPKFIntfName:
If this flag is set, an
interface name was
specified. The
RCPKIntfName field
contains the specified
interface name.

Chapter 14. Network management interfaces 507

Table 67. RCCPkt structure (continued).

Offset Field Length Format Description

32(X'20') RCPKFiltFlags 2 Binary v X'0800', RCPKFIpv4Addr:
If this flag is set, an IPv4
address was specified.
The RCPKIpAddr4 field
contains the specified IP
address. This flag is
mutually exclusive with
the RCPKFIpv6Addr
flag.

v X'0400', RCPKFIpv6Addr:
If this flag is set, an IPv6
IP address was specified.
The RCPKIpAddr6 field
contains the specified IP
address. This flag is
mutually exclusive with
the RCPKFIpv4Addr
flag.

v X'0200', RCPKFDiscard: If
this flag is set, the
RCPKDiscard field
contains either an
indicator of whether
discarded packets should
be traced, or a discard
reason code. If this flag is
not set, trace records are
not created for discarded
packets.

v X'0100',
RCPKFIPSecClear: If this
flag is set, requests trace
records that contain
IPSec cleartext data. The
packets must match the
other filters that are
specified in this filter
structure.

v X'0080',
RCPKFIPSecSecure: If
this flag is set, requests
trace records that contain
IPSec secure data
(encapsulated). The
packets must match the
other filters that are
specified in this filter
structure.

508 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 67. RCCPkt structure (continued).

Offset Field Length Format Description

34(X'22') RCPKOptFlags 1 Binary Flags to indicate which
options were set:

v X'80', RCPKFPayload: If
this flag is set, a payload
length was specified. The
RCPKPayload field
contains the specific
value. If this flag is not
set, the complete payload
is traced.

35(X'23') 1 Binary Reserved

36(X'24') RCPKPrefix 1 Binary Prefix length for IP address.
The prefix value for an
IPv4 address must be in the
range 1 - 32; the prefix
value for an IPv6 address
must be in the range 1 -
128. This is the number of
significant bits of the IP
address to be considered
for a match.

37(X'25') RCPKProto 1 Binary Protocol number
(IPPROTO_TCP,
IPPROTO_UDP, and so on.)

38(X'26') RCPKDiscard
(see Note)

2 Binary Discarded packet indicator
or reason code. The
indicator values are:

v 0 - No discarded packets
should be traced. This is
the default value if the
RCPKFDiscard flag is not
set.

v 1 - Trace both discarded
and non-discarded
packets.

v 2 - Trace only discarded
packets.

The reason code values are
in the range 4,096 - 20,479.

40(X'28') 4 Binary Reserved

44(X'2C') RCPKIntfName 16 EBCDIC Interface name over which
packet is sent or received.
The value must be
displayable characters and
the letters must be in
uppercase.

60(X'3C') 12 Binary Reserved

Chapter 14. Network management interfaces 509

Table 67. RCCPkt structure (continued).

Offset Field Length Format Description

Note: The RCPKDiscard filter does not apply to EE and SMC-R packets.
Guideline: If applications set the RCPKDiscard value to 0 or 1, applications might receive
malformed packets. Applications must be designed to process these packets. The
RCPKDiscard value of 0 or 1 enables the stack to trace malformed packets if the packet
passes other filters. Applications that set the RCPKDiscard value to 1 can receive the same
packet twice:

v When the packet is traced at the lower-level IP layer.

v When the packet is a discarded packet in an upper-level protocol layer.

Table 68. RCCDat structure

Offset Field Length Format Description

0(X'0') RCDAEye 4 EBCDIC RCDA eyecatcher

4(X'4') RCDAVer 1 Binary Version

5(X'5') 1 Binary Reserved

6(X'6') RCDALen 2 Binary Length of the RCCDat
structure

8(X'8') RCDAIpAddr4 4 Binary IP address (source or
destination)

v IPv4 address, if the
RCPKFIpAddr flag is set.

v IPv6 address, if the
RCPKFIpAddr flag is set.

RCDAIpAddr6 16 Binary

24(X'18') RCDAPortNum 2 Binary Port number (source or
destination)

26(X'1A') 2 Binary Reserved

28(X'1C') RCDAPayload 4 Binary Payload length. The
RCDAPayload value
determines how many bytes of
payload are traced. For
example, if the total amount of
data being read or written is
260 bytes and RCDAPayload is
specified as 100, the first 100
bytes of the data are traced.

The following values are
supported for this field:

v 0 - No data.

v n - Length of data to be
traced.

v 184320 - Maximum amount
of data. This is the default
value if the RCPKFPayload
flag is not set.

510 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|
|

|

|

Table 68. RCCDat structure (continued)

Offset Field Length Format Description

32(X'20') RCDAFiltFlags 2 Binary The following flags indicate
which filters were set:

v X'8000', RCDAFPrefix: If this
flag is set, an IP address
prefix was specified. The
RCDAPrefix field contains
the specified prefix. If this
flag is set, you must also
provide an IP address.

v X'4000', RCDAFPortNum: If
this flag is set, a port
number was specified. The
RCDAPortNum field
contains the specified port
number. This value is
compared to either the
source or destination port
numbers.

v X'2000', RCDAFJobName: If
this flag is set, a job name
was specified. The
RCDAJobName field
contains the specified job
name.

v X'1000', RCDAFIpv4Addr: If
this flag is set, an IPv4
address was specified. The
RCDAIpAddr4 field contains
the specified IP address. This
flag is mutually exclusive
with the RCDAFIpv6Addr
flag.

v X'0800', RCDAFIpv6Addr: If
this flag is set, an IPv6 IP
address was specified. The
RCDAIpAddr6 field contains
the specified IP address. This
flag is mutually exclusive
with the RCDAFIpv4Addr
flag.

v X'0400', RCDAFATTLSClear:
If this flag is set, requests
trace records that contain
AT-TLS cleartext data. The
data must match the other
filters that are specified in
this filter structure.

Chapter 14. Network management interfaces 511

Table 68. RCCDat structure (continued)

Offset Field Length Format Description

34(X'22') RCDAOptFlags 1 Binary Flags to indicate which options
were set:

v X'80', RCDAFPayload: If this
flag is set, a payload length
was specified. The
RCDAPayload field contains
the specific value. If this flag
is not set, the complete
payload is traced.

35(X'23') RCDAPrefix 1 Binary Prefix length for IP address.
The prefix value for an IPv4
address must be in the range 1
- 32; the prefix value for an
IPv6 address must be in the
range 1 - 128. This is the
number of significant bits of
the IP address to be considered
for a match.

36(X'24') RCDAJobName 8 EBCDIC Job name. The value must be
displayable characters and the
letters must be in uppercase.

44(X'2C') 12 Binary Reserved

Output:

v If the request is successful, no additional output is returned.
v If the request fails, use the list of error return code and reason codes in Table 62

on page 495 and Table 69 on page 513 to determine the cause of the failure.

512 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 69. RCCSetFilters return and reason codes

Return code
Return code
value Reason code

Reason code
value Meaning

EACCES 0111 (X'06F') JRSAFNotAuthorized 00220 (X'00DC') This error is returned for the
following reasons:

v The user ID of the caller is not
authorized to the resource
profile for the trace type, for
which filters were specified.

v For packet trace, the filter flag
to obtain IPSec cleartext data
was set, but the user ID of the
caller is not authorized to the
resource profile for packet
trace IPSec cleartext data.

v For data trace, the filter flag to
obtain AT-TLS cleartext data
was set, but the user ID of the
caller is not authorized to the
resource profile for data trace
AT-TLS cleartext data.

v The system is running in a
multilevel secure environment
and the security label of the
application user ID does not
dominate the security label of
the TCP/IP stack.

EINVAL 0121 (X'079') JRInvalidValue 29460 (X'7314') There is a problem with the input
structures. This error is returned
for the following reasons:

v The RequestResponseBufferLength
value is smaller than the
length of the number of input
structures, which are specified
in the RCHRNum field of the
RCCHeader structure.

v One or more of the input
structures was not recognized.
Ensure that the RCaaaEye field
contains the correct value.

v More than 32 trace filter
structures were specified as
input to the request for one
trace type.

EINVAL 0121 (X'079') JrOutOfSequence 29544 (X'7368') Request out of sequence. The
request was invoked for a trace
instance where the trace is
currently active. In this case,
invoke the RCCStop request
before invoking the RCCSetFilters
request.

ENOMEM 0132 (X'084') JRTcpError 00657 (X'0291') Storage is not available in the
TCP/IP address space for
internal control blocks.

Example:

Chapter 14. Network management interfaces 513

The following assembler program example shows how to invoke the RCCSetFilters
request:

* RCCSetFilters request *
* *
* The RCCHeader is reused from the RCCOpen request. *
* This request contains two filters: *
* 1. The first filter is for packet trace *
* 2. The second filter is for data trace *
* *

SetFilter DS 0H
Flt1 USING RCCFilt,DynRccF
Pkt1 USING RCCPkt,Flt1.RCFLPkt
Flt2 USING RCCFilt,DynRccF+RCFLSize
Dat2 USING RCCDat,Flt2.RCFLDat

MVI RCHRRequest,RCCSetFilters
LHI R0,2 Number of filters
STH R0,RCHRNum
XC DynRccF,DynRccF Zero filters
L R0,=A(RCFLEyeC)
ST R0,Flt1.RCFLEye Set eyecatcher for a Filter

*
* Setup packet trace filter
*

L R0,=A(RCPKEyeC)
ST R0,Pkt1.RCPKEye Indicate packet trace
MVI Pkt1.RCPKVer,RCPKCurrentVer
LHI R0,RCPKSize Size of structure
STH R0,Pkt1.RCPKLen
LHI R0,PortNum Get the port number
STH R0,Pkt1.RCPKPortNum Save it
OI Pkt1.RCPKFiltFlag1,RCPKFPortNum Indicate port filter

*
L R0,Payload Get the payload value
ST R0,Pkt1.RCPKPayLoad Save it
OI Pkt1.RCPKOptFlags,RCPKFPayload Indicate payload param

*
* Setup Data trace filter
*

L R0,=A(RCFLEyeC)
ST R0,Flt2.RCFLEye Set eyecatcher for a Filter
L R0,=A(RCDAEyeC)
ST R0,Dat2.RCDAEye Indicate data trace
MMI Dat2.RCDAVer,RCDACurrentVer
LHI R0,RCDASize Size of structure
STH R0,Dat2.RCDALen
LHI R0,PortNum Get the port number
STH R0,Dat2.RCDAPortNum Save it
OI Dat2.RCDAFiltFlag1,RCDAFPortNum Indicate port filter

*
L R0,Payload Get the payload value
ST R0,Dat2.RCDAPayLoad Save it
OI Dat2.RCDAOptFlags,RCDAFPayload Indicate payload param
LHI R0,RCHrSize+2*RCFLSize Size of header and filters
ST R0,DynReqLn
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue RCCSetFilters request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input

514 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header
DynRccF DS XL(RCFLSize*2) Space for two filters
PortNum EQU 25 Filter port number
PayLoad EQU 1024 Payload value

RCCStart - Start trace collection
Use this request to cause the TCP/IP stack to start collecting trace records based
on the trace types, filters, and options that were set by the RCCSetFilters request.
The trace records are written to the staging buffer of the trace instance. Your
application can invoke the RCCGetRecords request to obtain the trace records that
the TCP/IP stack collects.

Rules:

v If a RCCSetFilters request has not been successfully processed for the trace
instance, the RCCStart request fails.

v The staging buffer statistics are initialized as part of the RCCStart processing.
Any records remaining in the staging buffer are lost. If your application had
previously invoked the RCCStop request to stop a trace, the application must
invoke the RCCGetRecords request to obtain all the records currently in the
staging buffer before invoking the RCCStart request; otherwise, the records are
lost.

Guideline: If the trace collection has been started, your network management
application should immediately invoke the RCCGetRecords request to start
obtaining the trace records. A delay in invoking the RCCGetRecords request might
result in lost trace records.

This request performs the following actions:
v Set the status of the trace to active.

Input
v RCCHeader structure

The RCHRRequest field is set to RCCStart

Output
v If the request is successful, no additional output is returned.
v If the request fails, use the list of error return code and reason codes in Table 62

on page 495 and Table 70 to determine the cause of the failure.

Table 70. RCCStart Return values, return codes, and reason codes

Return code
Return code
value Reason code Reason code value Meaning

EINVAL 0121 (X'079') JrOutOfSequence 29544 (X'7368') Request out of sequence. This error is
returned for the following reasons:

v The request was invoked for a trace
instance, for which no filters have
been set. In this case, invoke the
RCCSetFilters request before
invoking the RCCStart request.

v The request was invoked for an
active trace instance.

Chapter 14. Network management interfaces 515

Table 70. RCCStart Return values, return codes, and reason codes (continued)

Return code
Return code
value Reason code Reason code value Meaning

ENOMEM 0132 (X'084') JRTcpError 00657 (X'0291') Storage is not available in the TCP/IP
address space for internal control
blocks.

Example

The following assembler program example shows how to invoke the RCCStart
request:

* RCCStart request *
* *
* The RCCHeader is reused from the RCCOpen request. *
* *

Start DS 0H

MVI RCHRRequest,RCCStart Setup request header
XR R0,R0 No other input structures
STH R0,RCHRNum
LHI R0,RCHRSize Size of header
ST R0,DynReqLn

*
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue RCCStart request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input
DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header

RCCGetRecords - Get the real-time trace records
Use this request to obtain the trace records that matched the filters that were set by
the RCCSetFilters request. The real-time data are stored in the form of cte trace
records in the staging buffer that is shared between the application trace instance
and the TCP/IP stack. The staging buffer is created during processing of the
RCCOpen request. See “Format of trace records” on page 521 for more information
about the format of the trace records.

Rule: The RCCGetRecords request can be invoked from any task in the same
address space as the invoker of the RCCOpen request, but must be invoked under
the same user ID as that of the invoker of the RCCOpen request. The
RCCGetRecords request cannot be invoked concurrently from more than one task.

Guideline: If the trace collection has been started, your network management
application should immediately invoke the RCCGetRecords request to start
obtaining the trace records. A delay in invoking the RCCGetRecords request might
result in lost trace records.

The trace records can be accessed in two modes:
v Locate mode

516 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Locate mode enables your application to access the trace records directly in the
staging buffer. To use locate mode, indicate it on the RCCOpen request when
you open a trace instance. If you are using locate mode, the RCCGetRecords
request returns the starting address and length of the trace records in the staging
buffer. On each subsequent invocation, the RCCGetRecords request frees the
storage occupied by the trace records previously returned.

Rule: If you are using locate mode, your application must be executing in
AMODE64 so that your application can process the records directly from the
staging buffer.

v Move mode
If you did not indicate to use locate mode on the RCCOpen request, the
RCCGetRecords uses move mode. If you are using move mode, the
RCCGetRecords request copies the trace records from the staging buffer to the
output buffer that is specified in the RCCGetRecords input structure. After the
records are copied to the output buffer, the staging buffer storage that the
records used is freed for new trace records.

The input RCCGet structure must follow the RCCHeader structure in the input
RequestResponseBuffer. You must set the following fields in the input RCCGet
structure before invoking a request:
v RCGREye
v RCGRVer
v RCGRLen
v RCGRBufAlet - Required for move mode only.
v RCGRBufLen - Required for move mode only.
v RCGRBufAddr - Required for move mode only.

Waiting for trace records using RCGRWaitTime

If there are no records currently available, use the RCGRWaitTime field to specify
whether the request should wait or just return. If you specify a wait value in
milliseconds for the RCGRWaitTime field, but no trace records are available, the
RCCGetRecords request waits until either a trace record is available or the wait
time expires. If the millisecond interval expires and there are still no trace records
available, the request returns to the application with a successful return value.
Although you can specify the number of milliseconds, internal TCP/IP timers that
are used to implement this function have a granularity of approximately 100
milliseconds. You can use the value in the RCGRBufUsed field to determine
whether any trace records were returned in your buffer (for move mode) or any
trace records are ready to be processed (for locate mode).

Waiting for trace records using an ECB

You can also specify that the NMI should post an ECB when trace records are
available. The ECB address is specified as input to the RCCOpen request and
belongs to your application.

Guidelines:

v Your application must initially set the ECB to 0 before the application invokes
the RCCStart request. After the trace starts, the application needs to reset the
ECB to 0 after the application waits on the ECB and the ECB is posted.

Chapter 14. Network management interfaces 517

v Use the RCCGetRecords request to obtain all available trace records before you
wait on the ECB for the first time.

v You might want to wait on the ECB and a timeout value. If the traffic that you
are tracing stops, the ECB is not posted.

Input:

v RCCHeader structure
The RCHRRequest field is set to RCCGetRecords.

v RCCGetInfo structure - this structure contains the following fields:
– The output buffer ALET, length, and address.
– Wait indication to be used when no trace records are available. The

application can indicate the following situations:
- The NMI should just return to the application if no trace records are ready

to be copied.
- The NMI should wait for a specified time interval.

Table 71. RCCGetInfo structure

Offset Field Length Format Description

0(X'0') RCGREye 4 EBCDIC RCGR eyecatcher

4(X'4') RCGRVer 1 Binary Version

5(X'5') 1 Binary Reserved

6(X'6') RCGRLen 2 Binary Length of the RCCGet structure

8(X'8') RCGRWaitTime 4 Binary Wait time value in milliseconds:

0 Do not wait.

n Milliseconds to wait. A value of
1000 is equal to one second.
Valid range is 1 - 3600000 (one
hour), but the granularity is 100
milliseconds.

12(X'C') RCGROutFlags 1 Binary Output flag

X'80', RCGRFLossState
If this flag is set, records are
currently being lost in the
staging buffer. The
RCGRLostStats section contains
the current lost record
information.

13(X'D') 3 Binary Reserved

16(X'10') RCGRBufAlet 4 Binary Buffer ALET

v Move mode - This field is a required
input. If a nonzero ALET is specified,
the ALET must represent a valid entry
in the dispatchable unit access list
(DU-AL) of the caller.

v Locate mode - This field is ignored by
the request on input.

518 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 71. RCCGetInfo structure (continued)

Offset Field Length Format Description

20(X'14') RCGRBufLen 4 Binary Buffer length

v Move mode - This field is a required
input.

v Locate mode - This field is ignored by
the request on input.

24(X'18') RCGRBufUsed 4 Binary Buffer bytes that are used

v Move mode - The bytes that are used
in output buffer.

v Locate mode - The total length of
records you can process.

28(X'1C') 4 Binary Reserved

32(X'20') RCGRBufAddr64 8 Binary Buffer address (AMODE 64)

v Move mode - This field is a required
input.

v Locate mode - This field indicates the
address of the first record in staging
buffer you can process. This field is
zero if no trace records are available.

32(X'20') 4 Binary Reserved

36(X'24') RCGRBufAddr31 4 Binary Buffer address (AMODE 31)

v Move mode - This field is a required
input.

v Locate mode - Ignored

40(X'28') RCGRLostStats 32 Binary Current lost record information. The
following RCLSaaa fields are valid only
when the RCGRFLossState flag is set.

40(X'28') RCLSFirstRecTime 8 Binary TOD timestamp when first record was
discarded.

48(X'30') RCLSLastRecTime 8 Binary TOD timestamp when last record was
discarded.

56(X'38') RCLSPktCount 4 Binary The count of lost packet trace records.

60(X'3C') RCLSDatCount 4 Binary The count of lost data trace records

64(X'40') RCLSLostCollCount 4 Binary The count of collection buffer lost records
that were discarded from the staging
buffer.

68(X'44') 4 Binary Reserved

72(X'48') 8 Binary Reserved

Output:

v If the request is successful, you can get one of the following output:
– The RCGRBufUsed field contains the total length of the trace records you can

process, either directly in staging buffer (for locate mode) or from the output
buffer (for move mode).

– For locate mode, the RCGRBufAddr64 field contains the address of the first
record in the staging buffer that you can process.

Chapter 14. Network management interfaces 519

– If records are currently being lost in the staging buffer because lack of storage
the RCGRFLossState flag in field RCGROutFlags is set and the following
fields from the RCGRLostStats section contain the current lost record
information:
- RCLSFirstRecTime
- RCLSLastRecTime
- RCLSPktCount
- RCLSDatCount
- RCLSLostCollCount

Eventually, when enough storage becomes available in the staging buffer, the
lost record information is written to the staging buffer as a lost record. See
“Lost records” on page 523 for more information about these records.

Guideline: The application must provide support for processing both normal
trace records and lost records. See “Format of trace records” on page 521 for
more information about the format of the trace records.

v If the request fails, use the list of error return code and reason codes in Table 62
on page 495 and Table 72 to determine the cause of the failure.

Table 72. RCCGetRecords return and reason codes

Return
code

Return code
value Reason code

Reason code
value Meaning

EINVAL 0121 (X'079') JRInvalidParms 00169(X'00A9') A wait time value was specified for a trace
instance for which an ECB address had been
specified on the earlier RCCOpen request
that opened the trace instance. Wait time
and an ECB address are mutually exclusive
parameters. If you want to use a wait time,
you must close the trace instance and
reopen it without an ECB address.

EINVAL 0121 (X'079') JRInvParmLength 00298(X'012A') The RequestResponseBufferLength value is
smaller than the value of the length of the
RCCHeader and the RCCGetInfo structures.

EINVAL 0121 (X'079') JRInvalidValue 29460 (X'7314') There is a problem with the input structures.
This return and reason code is set for the
following reasons:

v There is a problem with the RCCGetInfo
input field values.

ENOBUFS 0122 (X'462') JRBuffTooSmall 00107 (X'006B') For move mode processing, the output
buffer, whose length was specified in the
RCGRBufLen field, is too small to contain
any trace records.

Example:
The following assembler program example shows how to invoke the
RCCGetRecords request:

* RCCGetRecords request *
* *
* The RCCHeader is reused from the RCCOpen request. *
* This request uses move mode to place records into a *
* buffer. *
* *

520 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

GetRecs DS 0H
USING RCCGetInfo,DynRccG
MVI RCHRRequest,RCCGetRecords Set request
LHI R0,1 Number of input structures
STH R0,RCHRNum
XC DynRccG,DynRccG Zero RCCGetInfo structure
L R0,=A(RCGREyeC) Set Eyecatcher
ST R0,RCGREye
MVI RCGRVer,RCGRCurrentVer Version
LHI R0,RCGRSize Size of structure
STH R0,RCGRLen
L R0,=A(LenBuffr) Size of buffer
ST R0,RCGRBufLen .

*
* Need to obtain storage before use DynBuffr
*

LA R4,DynBuffr Address of buffer
ST R4,RCGRBufAddr31 Save buffer address
L R0,DynWTime Get wait time
MHI R0,1000 Convert to milliseconds
ST R0,RCGRWaitTime Set time to wait
LHI R0,RCHrSize+RCGRSize Size of request buffer
ST R0,DynReqLn

GetMore DS 0H
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue RCCSetFilters request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error
LT R5,RCGRBufUsed Any records (time out)
JNP GetMore No, try again for more

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input
DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header
DynRccG DS XL(RCGRSize) Space for RCCGetInfo
DynWTime EQU 30 Seconds
LenBuffr EQU 32768 Buffer for trace records
DynBuffr DS XL(LenBuffr) Address of buffer

Format of trace records:
The real-time data is provided in the form of cte trace records. Each cte record
consists of the cte header, the cte epilog, and the real-time data portion. The format
of each trace record is:

v cte (common portion header)

v real-time data portion

v cteeplg (common portion epilog)

Table 73 shows the files in which the cte structures are defined.

Table 73. cte structure definition file

File name Language and type Installation location

ITTCTE Assembler macro SYS1.MACLIB

Chapter 14. Network management interfaces 521

Table 73. cte structure definition file (continued)

File name Language and type Installation location

EZBNMCTE C/C++ header SEZANMAC and the z/OS UNIX
/usr/include file system directory (this
header is dynamically included by the NMI
header EZBRCIFC)

cte header and epilog

The cte header, cte, describes the length of the real-time data in the record. The cte
header is a 16-byte descriptor whose format is:
struct cte
{

unsigned short ctelenp; /* Length of CTE
and cteeplg. */

short cteoff; /* Offset from start of CTE */
unsigned long ctefmtid; /* Format ID of record */
unsigned long long ctetime; /* TOD timestamp of record creation */

};

where
v ctelenp is the total length of the record including the cte, the data record, and the

cteeplg.
v cteoff is the offset to the data record from the start of the cte.
v ctefmtid is a format ID that is specific to each trace record and can be used to

identify the record. The first byte of the format ID indicates the trace type to
which the record belongs:

X'00' RCFIPktDat - Packet or data trace.

X'FF' RCFILost - Lost record.

The remaining 3 bytes identify the specific trace record in each trace type. Your
application can compare the record ID constants in the following table with the
ctefmtid value to identify each record.

ctefmtid trace
type (byte 1)

ctefmtid record
ID (bytes 2-4)

Record ID
constant

Trace record
description

Structure for
real-time data

X'00' X'000004' PTHIdPkt IPv4 or IPv6
packet trace
record

PTHDR_T

The Pth_Lost
and Pth_TrCnt
fields are always
0.

X'00' X'000005' PTHIdDat IPv4 or IPv6
data trace record

PTHDR_T

The Pth_Lost
and Pth_TrCnt
fields are always
0.

X'00' X'000006' PTHIdEE IPv4 or IPv6 EE
packet trace
record

PTHDR_T

The Pth_Lost
and Pth_TrCnt
fields are always
0.

522 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

ctefmtid trace
type (byte 1)

ctefmtid record
ID (bytes 2-4)

Record ID
constant

Trace record
description

Structure for
real-time data

X'FF' X'000001' RCFILOSTSTG Staging buffer
lost record

RCCLost

X'FF' X'000002' RCFILOSTCOLL Collection buffer
lost record

RCCLost

The structures that define the real-time data portion of the trace records are
defined in the following files:

Structure Description File name
Language and
type

Installed
location

PTHDR_T
(assembler
macro); pthdr_t
or pthdr_base_t
(C/C++ header)

Packet trace header
used for packet and
data trace . See
“Common real-time
trace record header”
on page 651 for a
description of the
fields.

EZBYPTHA Assembler
macro

SEZANMAC

EZBYPTHH C/C++ header SEZANMAC

RCCLost Lost record EZBRCIFA Assembler
macro

SEZANMAC

EZBFCIFC C/C++ header SEZANMAC
and the z/OS
UNIX
/usr/include
file system
directory

v ctetime is an 8-byte TOD time stamp of the time that the record was written.

The cte epilog consists of a 2-byte cteeplg structure. This structure contains only the
ctelene field. The ctelene field contains the same length value as the ctelenp field in
the cte structure.

Lost records:
If there is not enough storage for a new trace record, either in the TCP/IP stack
collection buffer or in the trace instance staging buffer, the new trace data is
discarded and the NMI creates a lost record to indicate this situation. The NMI
also creates lost records to keep up with high trace activity when the NMI
bypasses trace records that are written incompletely. Depending on how quickly
new trace records are created in the collection or staging buffer and how often the
application invokes the RCCGetRecords request to retrieve records from the
staging buffer, the lost record might represent several discarded trace records.

If records are being lost in the staging buffer when a trace is stopped, the lost
record information is not written to the staging buffer as a lost record until the
trace is started again. If you change the filters before starting the trace again, the
information in this lost record might represent data that does not match your
current set of filters. Before returning to the application, the RCCGetRecords
request checks whether records are currently being lost in the staging buffer. If
they are being lost, the request sets the RCGRFLossState flag in the RCCGetInfo
structure and returns the current lost record information in the RCGRLostStats
section of the structure.

Chapter 14. Network management interfaces 523

Lost trace records are also provided in the form of cte trace records. The ctefmtid
value of the lost record indicates whether it represents trace records lost from the
collection buffer or the staging buffer.

Lost records in the staging buffer and lost records in the collection buffer differ in
the following aspects:
v Staging buffer

– The lost records represent trace records that matched the filter values that the
trace instance specified.

– The RCLOFirstRecTime and the RCLOLastRecTime field values indicate the
time interval during which records were lost. You can use the trace type
count fields in the lost records to determine how many trace records of each
trace type were lost during the time interval.

v Collection buffer
– The lost records might represent trace records that matched the filter values

that the trace instance specified, or might represent trace records that did not
match such specified filter values. However, the lost records are written to the
staging buffer of all active trace instances regardless of whether they
represent the matching trace records.

– The RCLOFirstRecTime and the RCLOLastRecTime field values are the same
and represent the approximate time that trace records were being lost in the
collection buffer. You can use the trace type count fields in the lost records to
determine how many trace records of each trace type were lost by that time.

The RCCLost structure defines the real-time data portion of a lost record.

Table 74. RCCLost structure

Offset Field Length Format Description

0(X'0') RCLOEye 4 EBCDIC RCLO eyecatcher

4(X'4') RCLOVer 1 Binary Version

5(X'5') 1 Binary Reserved

6(X'6') RCLOLen 2 Binary Length of RCCLost structure

8(X'8') RCLOStats 32 Binary Lost record information

8(X'8') RCLSFirstRecTime 8 Binary v For staging buffer lost records, the
TOD timestamp when first record was
discarded.

v For collection buffer lost records, the
approximate time when records were
being lost.

16(X'10') RCLSLastRecTime 8 Binary v For staging buffer lost records, the
TOD timestamp when last record was
discarded.

v For collection buffer lost records, this
field contains the same value as the
RCLSFirstRecTime field.

24(X'18') RCLSPktCount 4 Binary The count of lost packet trace records.

28(X'1C') RCLSDatCount 4 Binary The count of lost data trace records.

32(X'20') RCLSLostCollCount 4 Binary The count of collection buffer lost records
that were discarded from the staging
buffer.

524 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 74. RCCLost structure (continued)

Offset Field Length Format Description

36(X'24') 4 Binary Reserved

40(X'28') 16 Binary Reserved

Segmented records:
For packet trace and data trace, the NMI might create segmented records to
represent one packet or one set of data for a socket request. Segmented records are
created when the resulting trace record is larger than 65534 bytes. Each segmented
record has the same format as regular trace records: a cte, a real-time data portion,
and a cteeplg. See “Segmented trace records” on page 654 for more information.
You can recognize the set of segmented records by checking the following packet
trace header (PTH) fields in the records:
v PTH_Tlen - The value is the same in each record of the set of segmented

records. The value is the total length of all trace data in the complete set of
segmented records.

v PTH_Time - The value is the same in all the records.
v PTH_SeqNum - The PTH_SeqNum starts at 0 in the first segmented record and

increases by 1 in the subsequent records. If there are more than 256 records, the
value wraps back to 1.

The information in the segmented records can be reassembled into the original
complete packet or complete data for the socket request. The PTH_Tlen field value
can be used to determine when all the trace data has been reassembled. The first
record of the set of segmented records contains the following information based on
the trace record type:
v Packet trace

The IP and transport headers
v Data trace

Any ancillary data that was included on the socket request.

The remaining records of the set of segmented records contain data only from the
packet or socket request.

RCCStop - Stop trace collection
Use this request to cause the TCP/IP stack to stop collecting trace records. This
request preserves any trace filters or options that that you previously set using the
RCCSetFilters request. Therefore, you can stop the trace collection and then invoke
the RCCStart request to restart the trace collection with the same filters and
options.

Rule: The staging buffer statistics are initialized as part of the RCCStart
processing. This means that any records remaining in the staging buffer are lost
when tracing is restarted. If your application has invoked the RCCStop request to
stop a trace, the application must invoke the RCCGetRecords request to obtain all
the records currently in the staging buffer before invoking the RCCStart request;
otherwise, the records are lost.

This request performs the following action:
v Sets the status of the trace to inactive.

Input:

Chapter 14. Network management interfaces 525

v RCCHeader structure
The RCHRRequest field is set to RCCStop.

Output:

v If the request is successful, no additional output is returned.
v If the request fails, use the list of error return code and reason codes in Table 62

on page 495 and Table 75 to determine the cause of the failure.

Table 75. RCCStop Return values, return codes, and reason codes

Return
code

Return code
value Reason code

Reason code
value Meaning

EINVAL 0121 (X'079') JrOutOfSequence 29544 (X'7368') Request out of sequence. This error is
returned for the following reason:

v The request was invoked for a trace
instance that is not active currently.
An RCCStart request has not been
invoked for the trace instance.

Example:
The following assembler program example shows how to invoke the RCCStop
request:

* RCCStop request *
* *
* The RCCHeader is reused from the RCCOpen request. *
* *

Stop DS 0H

MVI RCHRRequest,RCCStop Setup request header
XR R0,R0 No other input structure
STH R0,RCHRNum
LHI R0,RCHRSize Size of request header
ST R0,DynReqLn

*
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue RCCStart request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input
DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header

RCCClose - Close a trace instance
Use this request to close a trace instance. If the trace that is associated with the
trace instance is active, the RCCClose request processing stops the trace.

This request performs the following actions:
v If the trace is active, stop the trace.
v Free the 64-bit shared storage.
v Close the trace instance.

526 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Input:

v RCCHeader structure
The RCHRRequest field is set to RCCClose.

Output:

v If the request is successful, no additional output is returned.
v If the request fails, use the list of error return code and reason codes in Table 62

on page 495 to determine the cause of the failure.
v If the input verification for the request is successful, the RCCHeader structure is

returned with the RCHRToken value reset to binary zeros.

Example:
The following assembler program example shows how to invoke the RCCClose
request:

* RCCClose request *
* *
* The RCCHeader is reused from the RCCOpen request. *
* *

Close DS 0H

MVI RCHRRequest,RCCClose Setup request header
XR R0,R0 No other input structure
STH R0,RCHRNum
LHI R0,RCHRSize Size of request header
ST R0,DynReqLn

*
EZBRCIFR RCCHeader,DynReqLn, X

DynRtVal,DynRtCde,DynRtRsn, X
MF=(E,DynRcIfr) Issue RCCStart request

LT R15,DynRtVal Did it work?
JNZ ErrRtn Error

.

.

DynRcIfr EZBRCIFR MF=L RCC API parameter list
DynReqLn DS F Length of request input
DynRtVal DS F Return value
DynRtCde DS F Return Code
DynRtRsn DS F Reason Code
DynRccH DS XL(RCHRSize) Space for the RCC header

Real-time TCP/IP network monitoring NMI
Network management applications can use the z/OS Communications Server
real-time TCP/IP network monitoring NMI to programmatically obtain data in real
time. The network management applications obtain the data by performing the
following steps:
v Connect to one of the real-time NMI interfaces. Use the NETMONITOR profile

statement to enable these interfaces in the TCP/IP stack.
v Invoke the TMI copy buffer interface to copy the real-time data to application

storage.

Table 76 on page 528 shows the real-time NMI interfaces that are described in this
topic.

Chapter 14. Network management interfaces 527

Table 76. Real-time NMI interfaces

Interface name Description

SYSTCPDA Real-time TCP/IP packet and data trace
NMI

SYSTCPCN Real-time TCP connection SMF NMI

SYSTCPOT Real-time OSAENTA packet trace NMI

SYSTCPSM Real-time SMF NMI

Each of the interfaces described in this section provides a unique type of data to be
processed by the end user, but the general interface by which the data is obtained
is essentially the same. The records are retrieved using a common data layout,
although the records themselves might differ in format depending on the interface.

Tip: New SMF 119 records might be added with new releases. If you write an
application that processes the SMF 119 records from these NMIs, design the
application to receive SMF 119 records that it might not recognize.

The information provided by each interface is as follows.

Table 77. Interface descriptions

Interface Description

Real-time TCP/IP
packet and data trace
NMI (SYSTCPDA)

Using this interface, applications can obtain a copy of network
packets (for example, packet trace records) or data trace records
that are buffered by the TCP/IP stack's packet or data trace
functions. The packet trace function, data trace function, or both
must be enabled with the VARY TCPIP,,PKTTRACE command or
VARY TCPIP,,DATTRACE command. See z/OS Communications
Server: IP System Administrator's Commands for more
information about using the Vary command.

Real-time TCP
connection SMF NMI
(SYSTCPCN)

Using this interface, applications can be notified when TCP
connections are established or terminated in a near real-time
fashion. SYSTCPCN provides applications with a copy of records
indicating a TCP connection initiation or termination. These
records are presented in the same format as SMF type 119 TCP
connection initiation and termination records (for example,
subtype 1 and 2 records). The interface can also be used to
provide records describing existing TCP connections. This
interface does not require TCP/IP SMF recording to be active.

Real-time TCP/IP
OSAENTA trace NMI
(SYSTCPOT)

Using this interface, applications can obtain copies of network
packets and records that are buffered by the TCP/IP OSAENTA
trace functions. The OSAENTA Trace function must be enabled
using the VARY TCPIP,,OSAENTA command. See z/OS
Communications Server: IP System Administrator's Commands
for more information about using the Vary command.

528 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 77. Interface descriptions (continued)

Interface Description

Real-time SMF NMI
(SYSTCPSM)

The records provided through the interface are type 119 SMF
records. The specific subtypes that are provided are:

v FTP client transfer completion records (subtype 3)

v TCP/IP profile event record (subtype 4)

v TN3270E Telnet server session initiation and termination
records (subtypes 20 and 21)

v TSO Telnet client connection initiation and termination records
(subtypes 22 and 23)

v DVIPA status change and DVIPA removed records (subtypes 32
and 33)

v DVIPA target added and removed records (subtypes 34 and 35)

v DVIPA target server started and ended records (subtypes 36
and 37)

v CSSMTP event records (subtypes 48 - 52)

v FTP server transfer completion records (subtype 70)

v FTP daemon configuration records (subtype 71)

v FTP server logon failure records (subtype 72)

v IKE tunnel and dynamic tunnel event records (subtypes 73 -
78)

v Manual tunnel activation and deactivation records (subtypes 79
and 80)

Except for the MVS SMF header, these records are identical in
format to SMF records created by TCP/IP. Some fields in the
MVS SMF header are not set.

These records offer several key advantages over SMF records:

v They do not require that TCP/IP SMF record capturing is
activated.

v They are presented to the application in a buffered format (for
example, when several SMF records are created within a short
time interval, they are collected and passed to the application
as a group of records instead of individual records).

In addition to these records, more records are available across
this interface that are not currently available from TCP/IP SMF
records processing:

v FTP server transfer initiation records (subtype 100)

v FTP client transfer initiation records (subtype 101)

v FTP client login failure records (subtype 102)

v FTP client session records (subtype 103)

v FTP server session records (subtype 104)

See “Real-time SMF NMI: FTP SMF type 119 subtypes 100-104
record formats” on page 546 for the structures and mappings of
records 100 through 104.

Steps for using the real-time NMI
This topic describes the steps of using the real-time NMI.

Chapter 14. Network management interfaces 529

Procedure

Follow this 2-step process to use interfaces of the real-time NMI to access the data:
1. Connect to the interface. See “Connecting to the AF_UNIX stream socket.”
2. Copy the real-time data to application storage. See “Obtaining the real-time

data.”

Connecting to the AF_UNIX stream socket
The Communications Server TCP/IP stack provides an AF_UNIX stream socket for
each of the interfaces (see Table 77 on page 528). The interfaces can be used by one
or more applications to receive notifications for the data that is being collected. The
TCP/IP stack acts as the server for these AF_UNIX stream sockets, performing the
listen() function call and waiting for incoming connection requests. To use the
interface, applications connect to the listening socket. Each interface has a distinct
AF_UNIX path name that uniquely identifies the socket that the interface will use.
The network management application can connect to one or more interfaces from
the same application.
v If the application connects to the SYSTCPDA, SYSTCPOT, or SYSTCPSM

interface, it immediately starts receiving applicable data.
v If the application connects to the SYSTCPCN interface, it must send a record to

the server to indicate the type of data it requires. Then the application starts
receiving applicable data.

Obtaining the real-time data
Each notification record that the application receives over the socket contains a
token that represents a buffer, in which the TCP/IP stack has stored trace records
that contain the real-time data. The actual real-time data is not part of this
notification record. After the application receives the entire notification record from
the AF_UNIX socket, it must pass this record, along with a user-allocated storage
buffer, to the TMI copy buffer interface. For more information about the TMI copy
buffer interface, see “Real-time NMI: Copying the real-time data” on page 537.

The TMI copy buffer interface populates the provided storage buffer with the
output records. The output records are related to the real-time interface that the
input notification record defines. After the application receives the notification over
the AF_UNIX socket, it must call the TMI copy buffer interface immediately
because the TCP/IP stack stores the buffers in a circular queue and the buffers
might be eventually overwritten and invalidated. The network management
application also needs to run at a relatively high priority to ensure that it gets
dispatched by the system quickly enough to obtain the data before those buffers
are overwritten.

For information about the format of these buffers and the records that the buffers
contain, see “Real-time NMI: Processing the output records” on page 541.

Real-time NMI: Configuration and enablement
You must enable the real-time interfaces within the TCP/IP stack and authorize the
network management applications to the interfaces before the applications can
obtain the real-time data.

Perform the following steps to enable the real-time interfaces and authorize the
network management applications:
1. Enable the real-time interfaces.

530 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|

Use the NETMONITOR statement in the TCP/IP profile to enable the real-time
interfaces and start the collection of the real-time data. See NETMONITOR
statement in z/OS Communications Server: IP Configuration Reference for
details.

2. Authorize the network management applications. See “Authorizing the
applications.”

Authorizing the applications
This topic describes the steps of authorizing applications to use the real-time NMI.

Procedure

Perform the following steps to authorize applications to use the real-time NMI:
1. Define the security product resource profiles.

An optional resource name is supported for each real-time interface to restrict
access to the interfaces. The resource name has the format
EZB.NETMGMT.sysname.tcpprocname.interface, where:
v sysname is the MVS system name where the interface is enabled.
v tcpprocname is the job name that is associated with the TCP/IP stack where

the interface is enabled.
v interface is the real-time interface name. It can be SYSTCPDA, SYSTCPCN,

SYSTCPOT, or SYSTCPSM.

For examples of the RACF commands that are used to define the real-time
interface security product resource names, see sample EZARACF in data set
SEZAINST.

2. Permit the user IDs of the applications to access the real-time NMI resources.
After the resource profiles are defined, the user ID that is associated with the
network management application must be permitted for READ access to the
resources.

Guideline: The user ID that is referenced for access to the resources is the user
ID that is associated with the MVS address space from which the connect()
function call or the TMI copy buffer interface invocation was issued. If you are
developing a feature for a product to be used by other parties, you should
include in your documentation instructions indicating that administrators
should define the real-time interface resource profiles for the real-time
interfaces and permit the user ID of the application for READ access to the
profile.

3. Review the authorization verification performed by the real-time NMI.
The authorization verification for the application is different when an
application connects to the real-time interface and when it invokes the TMI
copy buffer interface. You should review the verification to ensure that your
application will be authorized. See “Verifying authorization for applications
that connect to the real-time interface” and “Verifying authorization for
applications that invoke the TMI copy buffer interface” on page 532 for more
information.

Verifying authorization for applications that connect to the real-time interface:
The real-time NMI performs the following actions to verify the authorization of an
application when the application connects to the real-time interface:
v If a multilevel secure (MLS) environment is active, the real-time interface

resource profile must be defined and the user ID that is associated with the
application must be permitted for READ access to the profile.

Chapter 14. Network management interfaces 531

v If the real-time interface resource profile is defined, the user ID that is associated
with the application must be permitted for READ access to the profile.

v If the real-time interface resource profile is not defined, the user ID of the
application must be defined as a superuser (that is, a user ID with an OMVS
UID of zero or a user ID that is permitted for READ access to the
BPX.SUPERUSER resource in the FACILITY class).

Verifying authorization for applications that invoke the TMI copy buffer
interface:
The real-time NMI performs the following actions to verify the authorization of an
application when the application invokes the TMI copy buffer interface:
v The application is APF authorized.
v If the application is not APF authorized, the real-time interface resource profile

must be defined and the user ID that is associated with the application must be
permitted for READ access to the profile.

Guideline: Because the security product resource profiles can be used for
authorization verification when connecting to the interface and when invoking the
TMI copy buffer interface, you should use the profiles for authorizing network
management applications to use the real-time interfaces.

Real-time NMI: Connecting to the server
The application that is to use one of the interfaces must connect to the appropriate
AF_UNIX stream socket provided by TCP/IP, which acts as the server. The socket
path names for each of these interfaces are as follows. For each of the following,
tcpipprocname is the procedure name used to start TCP/IP.
v Network monitor interface for capturing packet and data trace packets

(SYSTCPDA)
/var/sock/SYSTCPDA.tcpipprocname

v Network monitor interface for obtaining TCP connection information
(SYSTCPCN)
/var/sock/SYSTCPCN.tcpipprocname

v Network monitor interface for capturing OSAENTA trace packets (SYSTCPOT)
/var/sock/SYSTCPOT.tcpipprocname

v Network monitor interface for obtaining real-time SMF data (SYSTCPSM)
/var/sock/SYSTCPSM.tcpipprocname

Use either the z/OS XL C/C++ API or the z/OS UNIX System Services assembler
callable services to open AF_UNIX sockets and connect to the given service.

Real-time NMI: Interacting with the servers
In the case of the TCP connection information service, after connecting to the
SYSTCPCN server over AF_UNIX socket, /var/sock/SYSTCPN.tcpipprocname, the
application must then send a connection request record to the server over the
connected socket (see the tmi_conn_request record in “Real-time NMI: Requests
sent by the client to the server” on page 534). For the other services, the
application does not need to take action.

After the client connects to the desired server (or, in the case of the SYSTCPCN
service, after sending a connection request record), the server sends an initial
record to the client, identifies the server (see the tmi_init record in “Records sent
by the server to the client: Initialization record” on page 535). After that record is
received, the client is sent tmi_token records that represent data buffers. A record is

532 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

sent for each data buffer that is filled in by TCP/IP. Records for partial buffers are
sent if there has been no activity for a brief period. In case there is no activity, the
client should be prepared to wait indefinitely for incoming tokens.

When the server needs to terminate the connection, it attempts to send a special
termination record (see the tmi_term record in “Records sent by the server to the
client: Termination record” on page 535) over the socket to the connected
application, after which it closes the socket. This termination record describes the
reason for closure. In some cases, the server might be unable to send such a record,
and will close the socket. The application should be prepared to handle either case.

Particularly for the SYSTCPDA, SYSTCPOT, and SYSTCPCN interfaces, large
amounts of data can be generated. For SYSTCPDA, do not activate a packet trace
filter option that is too broad, in order to avoid recording unnecessary data; see the
VARY TCPIP,,DATTRACE or VARY TCPIP,,PKTTRACE information in z/OS
Communications Server: IP System Administrator's Commands and the packet
trace (SYSTCPDA) for TCP/IP stacks information in z/OS Communications Server:
IP Diagnosis Guide for details. For SYSTCPCN, the NETMONITOR MINLIFETIME
TCP/IP profile configuration option can be used to restrict the collection of
short-lived connections; see the NETMONITOR statement information in z/OS
Communications Server: IP Configuration Reference for details. For SYSTCPOT, see
the VARY TCPIP,,OSAENTA information in z/OS Communications Server: IP
System Administrator's Commands.

Restriction: Except in the case of sending a connection request record for the
SYSTCPCN service, the client application must never send data to the server. If
data is unexpectedly received by the server, the server sends a termination record
with tmit_termcode = EPIPE to the client, and closes the connection.

Real-time NMI: Common record header
All data sent over the AF_UNIX socket by the client and the server is prefixed
with a common header indicating the length of the entire record (this length
includes the header) and the type of data contained within the record. The format
for the header is as follows, as defined in ezbytmih.h (an assembler mapping for
this structure is in EZBYTMIA):
struct tmi_header
{
int TmiHr_len; /* Length of this record */
int TmiHr_Id; /* Identifier for this record */
int TmiHr_Ver; /* Version identifier for this */
int TmiHr_resv; /* reserved */
};
#define TmiHr_CnRqst 0xC3D5D9D8 /* Constant("CNRQ") */

/* TCP connection request record */
#define TmiHr_Init 0xC9D5C9E3 /* Constant("INIT") */

/* Connection initialization */
#define TmiHr_Term 0xE3C5D9D4 /* Constant("TERM") */

/* Normal connection termination */
#define TmiHr_SmfTok 0xE2D4E3D2 /* Constant("SMTK") */

/* Token for SMF buffer */
#define TmiHr_PktTok 0xE2D7D3E2 /* Constant("TPKT") */

/* Token for packettrc data */
#define TmiHr_Version1 1 /* Version number */
};

Chapter 14. Network management interfaces 533

Real-time NMI: Requests sent by the client to the server
For the SYSTCPCN service only, the client must send a request record to the server
after connecting to the server's AF_UNIX socket. This request record is in the
following format, defined in ezbytmih.h (an assembler mapping for this structure
is in EZBYTMIA):
struct tmi_conn_request /* Conn info server request */
{
struct tmi_header tmicnrq_hdr; /* Header; id=TMI_ID_CNRQST */
unsigned int tmicnrq_list :1; /* Requests connection list */
unsigned int tmicnrq_smf :1; /* Requests init/term SMFrcd*/
unsigned int tmicnrq_rsvd1 :30; /* Reserved, set to 0 */
char tmicnrq_rsvd2[12]; /* Reserved, set to 0
};

The client should initialize the fields of this request structure as follows:
v Initialize tmicnrq_hdr using the length of tmi_conn_request, the appropriate

record ID (TMIHr_CnRqst), and the correct version (TMIHr_Version1).
v Initialize the tmicnrq_list and tmicnrq_smf fields as described in the following list.
v Initialize all remaining fields to 0.

The two fields tmicnrq_list and tmicnrq_smf control the data that the SYSTCPCN
server sends to the client. These fields should be set as follows:
v tmicnrq_list

If set, the server sends the client zero or more tokens that represent data buffers
that contain a list of all established TCP connections at the time the client
connected. These connections are represented as type 119 TCP connection
initiation SMF records. If this field is set to 0, no such list is sent to the client.

v tmicnrq_smf

If set, the server sends tokens to the client. These tokens represent data buffers
that contain type 119 TCP connection initiation and termination SMF records,
representing TCP connections that are established and closed on the TCP/IP
stack. If this field is set to 0, the server does not send any tokens, representing
ongoing connection establishment and closure.

The SYSTCPCN server waits until it has received this entire record from the client
before it starts processing connection information on the client's behalf. If the client
does not send a complete record, then the server never reports data to the client,
because the client has not completed initialization. If the server receives a record
with an unrecognized version, a bad length, or a bad eyecatcher, then it sends a
termination record (see “Records sent by the server to the client: Termination
record” on page 535) with tmit_termcode = EINVAL to the client, and closes the
connection.

Real-time NMI: Records sent by the server to the client
For each of the three interfaces, the server sends three types of records to the
client:
v Initialization records
v Termination records
v Token records

Each record is described in the sections that follow.

534 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Records sent by the server to the client: Initialization record
After the client connects to the server, the server sends an initialization record to
the client. The initialization record can be recognized as having a TmiHr_Id equal
to TmiHr_Init. This record contains miscellaneous information about the server and
the stack that the client can choose to use or ignore. This record has the following
format, defined in ezbytmih.h (an assembler mapping for this structure is in
EZBYTMIA):
struct tmi_init /* Connection startup record */
{
struct tmi_header tmii_hdr; /* Record header */
char tmii_sysn[8]; /* System name (EBCDIC) */
char tmii_comp[8]; /* Component name (EBCDIC) */
char tmii_sub[8]; /* TCPIP job name (EBCDIC) */
char tmii_time[8]; /* Time TCPIP started (STCK) */
int tmii_bufsz; /* Maximum size of buffer */
char tmii_rsvd[12]; /* Reserved */
};

v The component name, tmii_comp, represents the server that the client is
connected to. This is one of SYSTCPDA, SYSTCPCN, SYSTCPOT, or SYSTCPSM,
depending on the server that is being accessed.

v The tmii_bufsz value is the minimum size of the buffer required to be provided
on the EZBTMIC1 call. If the value is 0, a maximum of a 64 KB buffer is copied.

Records sent by the server to the client: Termination record
The termination record is sent when the server closes the connection. The
termination record can be recognized as having a TmiHr_Id equal to TmiHr_Term.
The connection might be closed as part of normal operation (for example the
service is being disabled or the stack is terminating), or it might be closed as the
result of some error. A termination code in the record indicates the termination
reason.

This record is the last data sent by the server before close; after sending the
termination record, the server closes the connection. The stack attempts to send the
termination record before it closes the socket. However, under certain abnormal
stack termination conditions, it might be unsuccessful; furthermore, if the client's
receive buffer is full, it might also be unsuccessful. In such cases the connection is
closed.

The format of this record is as follows, as defined in ezbytmih.h (an assembler
mapping for this structure is in EZBYTMIA):
struct tmi_term /* Termination notification rcd */
{
struct tmi_header tmit_hdr; /* Record header */
unsigned int tmit_termcode; /* Termination code */
char tmit_tstamp[8]; /* Termination timestamp */
char tmit_rsvd[12]; /* Reserved */
};

The possible values for tmit_termcode and their explanations are as follows, as
defined in errno.h:

Value Description

0 No error; planned termination. Either this
function is being disabled or the TCP/IP
stack is ending.

EACCES (111) The client is not permitted to connect to the
server.

Chapter 14. Network management interfaces 535

Value Description

EINVAL (121) The client has sent data that is not valid to
the server.

ENOMEM (132) The server was unable to allocate necessary
storage.

EPIPE (140) The client has erroneously sent data to the
server when the server was not expecting
data.

EWOULDBLOCK (1102) The server could not write to the client
socket because the client's receive buffer is
full (in which case it is possible that the
server might not have been able to write this
record and closed the connection).

See z/OS UNIX System Services Messages and Codes for more detail.

The tmit_tstamp field contains an 8-byte MVS TOD clock value for the time of
termination of the connection.

The client should expect to receive no more data on the connection following this
record; the connection is closed by the server.

Records sent by the server to the client: Token record
The server sends the tmi_token record when a buffer has been filled with records
for the given service. The token record can be recognized as having a TmiHr_Id
value that is equal to the TmiHr_PktTok value (in the case of SYSTCPDA and
SYSTCPOT) or the TmiHr_SmfTok value (in the case of SYSTCPCN and
SYSTCPSM). In addition, each of the servers will, after a brief period of inactivity,
flush a partially filled buffer, sending a token for that partial buffer and advancing
to the next internal buffer.

The format of this record is as follows, as defined in ezbytmih.h (an assembler
mapping for this structure is in EZBYTMIA):
struct tmi_token /* Buffer token record @Q1A*/
{

struct tmi_header tmik_hdr; /* Record header @Q1A*/
union { /*@31A*/

char tmik_token[32]; /* Token representing buffer @F1C*/
struct { /* Mapping of token @31A*/

int TmiTk_TID; /* TCPIP identifier @31A*/
int TmiTk_SID; /* TCPIP instance identifier @31A*/
int TmiTk_AID; /* Application identifier @31A*/
unsigned int TmiTk_SeqNum; /* Sequence number of buffer @31A*/
int TmiTk_BufL; /* Length of trace buffer @31A*/
int TmiTk_LostCt; /* Number of buffers lost @31A*/
int TmiTk_Resv1; /* Reserved @31A*/
char *TmiTk_BufA; /* Trace buffer identifier @31A

@32C*/
}; /* End of token mapping @31A*/

}; /* End of union @31A*/
}; /*@Q1A*/

The record contains a token describing the data buffer. The client's actions upon
receiving this record are discussed in “Real-time NMI: Copying the real-time data”
on page 537.

536 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Tip: If the TmiTk_LostCt count is not zero, the value in this field indicates the
number of buffers that were reused by the TCP/IP stack before the token record
for the buffer could be sent to the application. This means that the application will
not be able to process the trace records in these buffers. If this value is often
greater than zero, increase the size of the trace area if possible.

Real-time NMI: Copying the real-time data
To copy the data buffer to application storage, use one of the following TMI copy
buffer interfaces, depending on the language that is used to write your application:

Assembler interface
EZBTMIC1 (31-bit AMODE) or EZBTMIC4 (64-bit AMODE)

C/C++ interface
TMI_CopyBuffer function call (invoking EZBTMIC1 or EZBTMIC4)

EZBTMIC1 or EZBTMIC4: Copy real-time data for assembler
applications
The EZBTMIC1 and EZBTMIC4 callable interfaces use the tmi_token record that
was recently read from the AF_UNIX socket as input to locate and copy the data
buffer into application storage. Assembler macro EZBYTMIA contains the
definitions of the calls to these interfaces. The EZBYTMIA macro is installed in the
SEZANMAC data set.

Guideline: EZBTMIC1 is the API that is used by AMODE 31 callers, EZBTMIC4 is
the API that is used by AMODE 64 callers. References to the EZBTMIC1 API also
apply to the EZBTMIC4 API.

EZBTMIC1 requirements:

Authorization: Supervisor state or problem state, any PSW
key; Caller must be APF authorized or the
security product profile for the real-time
interface must be defined and the user ID of
the application must be permitted for READ
access to the profile.

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the
caller and must be in the primary address
space.

EZBTMIC4 requirements:

Authorization: Supervisor state or problem state, any PSW
key; Caller must be APF authorized or the
security product profile for the real-time
interface must be defined and the user ID of
the application must be permitted for READ
access to the profile.

Chapter 14. Network management interfaces 537

|
|
|
|
|

|

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE: 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the
caller and must be in the primary address
space.

EZBTMIC1 format:
CALL EZBTMIC1,(Token,

Bufptr,
Return_value,
Return_code,
Reason_code)

EZBTMIC4 format:
CALL EZBTMIC1,(Token,

Bufptr,
Return_value,
Return_code,
Reason_code)

EZBTMIC1 or EZBTMIC4 parameters:

Token The name of a record containing a token describing a TCP/IP management
interface data buffer.

Type: Structure

Length: Size of buffer token record

Bufptr The address of a buffer into which the TCP/IP management data buffer is
copied.

Type: Structure

Length: 12

The bufptr parameter is a 12-byte structure describing the address of the
buffer:
Bufptr DS 0F /* Buffer pointer */
Buf_alet DC F’0’ /* Buffer ALET, or 0 */
Buf_addr_hi DC F’0’ /* Highword of 64bit bufptr */
Buf_addr DC A(0) /* Lowword of 64bit bufptr */

If the buffer is in a data space, then Buf_alet is the ALET of the data space;
otherwise it is 0. If the buffer is in 64-bit storage, then Buf_addr_hi and
Buf_addr contain the 64-bit address of the buffer. If the buffer is in 24-bit or
31-bit storage, then Buf_addr_hi contains zeros and the buffer address in
Buf_addr. To improve performance, place the buffer on a page boundary.

This buffer can represent the following information:
v When the token is a TmiHr_PktTok token, the data buffer contains the

unformatted packet trace data records (SYSTCPDA or SYSTCPOT).

538 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v When the token is a TmiHr_SmfTok token, the data buffer contains SMF
records (SYSTCPCN or SYSTCPSM).

Return_value
Returned parameter. The name of a fullword in which the TMI buffer copy
service returns the results of the request:

Type: Integer

Length: Fullword

v >0: The data buffer has been successfully copied into the application
buffer. The return value is the number of bytes of data that has been
copied into the buffer. This length does not include the trailing halfword
of zeros in the buffer.

v -1: The system could not complete the request, for reasons such as the
data buffer being no longer valid. See Return_code and Reason_code for
more details.

Return_code
Returned parameter. The name of a fullword in which the TMI buffer copy
service stores the return code. The TMI buffer copy service returns
Return_code only if Return_value is -1. The TMI buffer copy service can
return one of the following values in the Return_code parameter:

Return_value Return_code Meaning

>0 0 The request was successful.

-1 EACCES The application is not
authorized.

-1 EBADF The token provided to locate
a buffer is not a valid token.

-1 EFAULT The address is incorrect.

-1 EINVAL The token provided to locate
a buffer does not specify a
valid data buffer.

-1 EILSEQ The data buffer described by
token has been overwritten
and is no longer available.

Reason_code
The name of a fullword in which the TMI buffer copy service stores the
reason code.

Type: Integer

Length: Fullword

The TMI buffer copy service returns Reason_code only if Return_value is -1.
The reason code contains diagnostic information and is described in z/OS
UNIX System Services Messages and Codes.

EZBTMIC1 or EZBTMIC4 usage notes:

v Compiling and linking
– Assembler mappings for the various records that flow over the AF_UNIX

socket are in macro EZBYTMIA.
– EZBTMIC1 and EZBTMIC4 are defined as callable stubs in SYS1.CSSLIB.

Chapter 14. Network management interfaces 539

TMI_CopyBuffer: Copy real-time data for C/C++ applications
The TMI_CopyBuffer() function call uses the tmi_token record that is recently read
from the AF_UNIX socket as input to locate and copy the data buffer to the buffer
that the application provides. Specify this tmi_token for the input token. The data
will be copied to the buffer that bufptr points to. The ezbytmih.h header file is
installed in the SEZANMAC data set and in the z/OS UNIX file system directory,
/usr/include.

For programming requirements for invoking this function, see “EZBTMIC1
requirements” on page 537 if your application uses 31-bit AMODE and see
“EZBTMIC4 requirements” on page 537 if your application uses 64-bit AMODE.

TMI_CopyBuffer format:
void Tmi_CopyBuffer (struct tmi_header *token,

struct bufptr_t *bufptr,
int *retval,
int *retcode,
int *rsncode);

TMI_CopyBuffer parameters:

token The pointer to the token record read from the TCP/IP management
interface service. The record contains a token used to locate a data buffer
to be copied.

bufptr A pointer to a tmi_bufptr structure describing a 64 KB buffer provided by
the user. The indicated buffer is overwritten with the contents of the TMI
data buffer if the call is successful.

The tmi_bufptr structure is a 12-byte structure that describes the address of
the buffer for AMODE 31 callers.
struct tmi_bufptr /* Buffer pointer */
{
int buf_alet; /* Buffer ALET, or 0 */
int buf_addr_hi; /* Highword of 64bit bufptr */
void *buf_addr; /* Lowword of 64bit bufptr */
};

When _LP64 is defined, the tmi_bufptr structure is a 12-byte structure that
describes the address of the buffer for AMODE 64 callers.
struct tmi_bufptr /* Buffer pointer */
{
int buf_alet; /* Buffer ALET, or 0 */
void *buf_addr; /* Pointer to 64bit bufptr */
};

retval The returned value. If successful, TMI_CopyBuffer() returns the number of
bytes copied in retval. This length does not include the trailing halfword of
zeros copied to the buffer. If unsuccessful, TMI_CopyBuffer() returns -1 in
retval and returns retcode as described in the following definition.

retcode
A pointer to a fullword in which the TMI buffer copy service stores the
return code. The TMI buffer copy service returns retcode only if retval is -1.
The TMI buffer copy service can return one of the following values in the
retcode parameter.

Return code Meaning

EACCES The application is not authorized.

EBADF The token provided to locate a buffer is not a valid token.

540 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Return code Meaning

EFAULT Using the buffer parameter as specified would result in an
attempt to access storage outside the address space of the caller.

EINVAL The token provided to locate a buffer does not specify a valid
data buffer.

EILSEQ The data buffer described by token has been overwritten and no
longer available.

rsncode
The address of a fullword in which the TMI buffer copy service stores the
reason code. The TMI buffer copy service returns rsncode only if retval is -1.
The reason code contains diagnostic information and is described in z/OS
UNIX System Services Messages and Codes.

TMI_CopyBuffer usage notes:

v Character data
Some of the data contained in the TMI data buffer might be system data, such as
job names. Such data is encoded in EBCDIC and the application should be
prepared to process it appropriately.

v Compiling and linking
The callable service routine that provides this service is provided as a callable
stub located in SYS1.CSSLIB.

Real-time NMI: Processing the output records
Upon successful completion of the EZBTMIC1, EZBTMIC4, or TMI_CopyBuffer()
invocations, the user-supplied buffer is filled with cte records. The cte record
contains the data that is provided by the service being used. Each cte record
consists of a common portion and a service-specific portion. The common portion
of the record encapsulates the service-specific portion. The format of each record is
as follows:

cte (common portion header)
service-specific portion
cteeplg (common portion epilog)

Format of common portion of output records
The common portion of the data record consists of the cte and the cteeplg
structures. The data records for the server are stored sequentially within individual
data buffers. The cte describes the length of the data record. The data record is
immediately followed by a cteeplg (cte epilogue) structure. The first cte structure
begins at the beginning of the buffer. The last cteeplg is followed by a cte whose
ctelenp field is 0, which signifies the end of the data in the buffer. The layout of the
buffer is as follows:

cte data cte_epilogue cte data cte_epilogue ... cte data cte_epilogue binary
0

The cte is a 16-byte descriptor whose format is as follows (as defined in
ezbnmcte.h, and in ITTCTE in SYS1.MACLIB):
struct cte
{

unsigned short ctelenp; /* Length of CTE
and cte_epilogue. */

short cteoff; /* Offset from start of CTE */

Chapter 14. Network management interfaces 541

uint32_t ctefmtid; /* Format ID of record */
uint64_t ctetime; /* STCK timestamp of record

creation */
};

ctelenp holds the total length of the record, including the cte, the data record, and
the cte_epilogue. cteoff is the offset to the data record from the start of the cte. The
ctefmtid is a format ID specific to each service; it is described in “Format of
service-specific portion of output records.” The ctetime is an 8-byte STCK
timestamp of the time the record was written.

The format of the 2-byte cteeplg is as follows (as defined in ezbytmih.h, and in
ITTCTE in SYS1.MACLIB):
struct cteeplg
{

unsigned short ctelene; /* Length of CTE, data, and
cte_epilogue. */

};

The field ctelene holds the same value as the ctelenp field in the cte.

Format of service-specific portion of output records
The following information describes how to process cte records for all the real-time
services.

Processing the cte records for SYSTCPDA and SYSTCPOT:
Use the packet and data trace formatting NMI to format records that are collected
from the SYSTCPDA and SYSTCPOT real-time NMI interfaces. See “Trace record
formatting NMI (EZBCTAPI)” on page 632 for more information about using this
formatting NMI. The following ctefmtid values are supported for the SYSTCPDA
and SYSTCPOT interfaces:

ctefmtid Data area Description Command to start

4 (PTHIdPkt) Described by the
PTHDR_T structure

IPv4 or IPv6 packet
trace record

VARY
TCPIP,,PKTTRACE

5 (PTHIdDat) Described by the
PTHDR_T structure

IPv4 or IPv6 data
trace record

VARY
TCPIP,,DATTRACE

6 (PTHIdEE) Described by the
PTHDR_T structure

IPv4 or IPv6 EE trace
record

VARY
TCPIP,,PKTTRACE,
SRCP =12000

7 (PTHidNTA) Described by the
PTHDR_T structure

IPv4 and IPv6
OSAENTA trace
record

VARY
TCPIP,,OSAENTA

8 (PTHIdSmc) Described by the
PTHDR_T structure

IPv4 or IPv6 SMC
trace record

VARY
TCPIP,,PKTTRACE

If tracing for the TCP/IP data trace and the TCP/IP packet trace is active, the trace
buffer will contain both types of records. The client must handle this condition.

Trace record header

For all the SYSTCPDA and SYSTCPOT trace records, the cte 16-byte descriptor is
followed by a packet trace header in each trace record. The packet trace header is a
common header for these trace records. See “Common real-time trace record
header” on page 651 for more information about the packet trace header fields.

542 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Processing SYSTCPDA and SYSTCPOT trace records in a buffer:
The EZBTMIC1 call or the TMI_CopyBuffer() service is used to receive a buffer of
trace records defined by starting with a CTE structure and ending with a 2-byte
ctelene field, which has the same value as the ctelenp. The PTHDR_T structure
follows the CTE and has many fields for use when processing the trace records.
The pth_tlen field is the IP packet payload length, although this field can reflect the
ABBREV parameter on the PKTTRACE command. In some cases, to obtain the
entire IP packet, multiple trace records must be processed. These trace records can
span multiple buffers and might not be contiguous. In this case, several fields must
be examined. See the example of packet records in “Example of split buffers for IP
packet X.” The ctelenp will be less than the pth_tlen. The pth_seqnum fields must be
used to determine the ordered chain of records that make up the IP packet. The
first record in the sequence will have pth_seqnum=0 and will contain the IP protocol
headers. The pth_tlen and pth_time are the same for each record in the sequence.

TCP segmentation offload considerations

When TCP segmentation is being offloaded (indicated by flag pth_seg_offload), the
pth_plen field represents the data length of all the segments being offloaded. When
the pth_seg_offload flag is set, the pth_offseglen field indicates the length of each
segment (the MSS). The total number of offloaded segments can be derived by
dividing the data length in field pth_plen by the length of each segment from field
pth_offseglen and rounding up one segment for a nonzero remainder. For example,
you can use the following algorithm to derive the total number of offloaded
segments:
totnumoffsegs = (pth_plen - ip_header_len - tcp_headerlen + pth_offseglen - 1) / pth_offseglen

In the algorithm, for IPv4, ip_header_len = ip_hl * 4; for IPv6, ip_header_len =
sizeof(ip6) and tcp_header_len = tcph_hdr_len * 4.

Example of split buffers for IP packet X

First TMI_CopyBuffer() issued; a complete buffer received.

Trace Records

Record1 for IP packet X

CTE structure

ctelenp=1 KB

PTHDR_T structure

pth_seqnum=0

pth_tlen=64 KB

pth_time=Time X

trace data

(IP packet X)

contains IP
headers

ctelente=1 KB

Second TMI_CopyBuffer issued; a complete buffer received.

Trace Records

Record1 for IP packet Y

CTE structure

ctelenp=1 KB

PTHDR_T structure

v pth_seqnum=0

v pth_tlen=ip

payload
length (less
than 1 KB)

trace data

(IP packet Y)

contains IP
headers

ctelente=1 KB

Chapter 14. Network management interfaces 543

Record2 for IP packet X

CTE structure

ctelenp=nnn

PTHDR_T structure

pth_seqnum=1

pth_tlen=64 KB

pth_time=Time X

trace data

(IP packet X
continued)

no headers

ctelente=nnn

Last TMI_CopyBuffer() issued; a partial buffer received.

Trace Records

Record n for IP packet X

CTE structure

ctelenp=nnn

PTHDR_T structure

pth_seqnum=n-1

pth_tlen=64 KB

pth_time=Time X

trace data

(IP packet X
continued)

No headers

ctelente=nnn

Processing the cte records for SYSTCPCN:
The TCP connection information server (SYSTCPCN) presents information about
the establishment and closing of TCP connections as they occur. Type 119 SMF TCP
connection initiation and termination records (subtypes 1 and 2) are stored in the
data buffer to reflect this activity. Each record in the data buffer is a complete type
119 SMF record, of subtype 1 or 2.

Additionally, if requested, the server fills one or more buffers with the list of
currently active connections. This list is provided as type 119 TCP connection
initiation records (subtype 1), so that entries in the list are indistinguishable from
newly established connections (except that the connection establishment timestamp
is in the past). This set of records is sent only once per new connection, after the
initialization.

For the TCP connection information server, the ctefmtid for the CTE is always equal
to the subtype of the SMF record (either 1 or 2) following the CTE in the data
buffer.

Applications can use this interface to dynamically maintain a list of active TCP
connections. As a result of timing issues, it is possible that an application will
receive two initiation records for a given connection (if the connection is
established around the time the client connects, its initiation record will be sent, as
will a record identifying it as a preexisting established connection). It is also
possible that an application will receive a termination record for a connection for
which it has not received an initiation record. Client applications should be
prepared to handle both of these possibilities.

SMF recording for TCP connection initiation and termination records does not need
to be active for this service to function. Moreover, activating this service does not
cause TCP connection initiation and termination SMF records to be recorded into
the SMF data sets if they are not already enabled.

C structures for mapping the SMF type 119 records can be found in ezasmf.h.
Assembler mappings for the structures can be found in EZASMF77 in
SYS1.MACLIB.

Processing the cte records for SYSTCPSM:
The real-time SMF data server (SYSTCPSM) reports type 119 SMF event records for
TCP/IP applications. Each record in the data buffer is a complete type 119 SMF
record. The records reported, and their subtypes, are as follows:

544 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v FTP client transfer completion (subtype 3)
v TCP/IP profile event (subtype 4)
v TN3270E Telnet server session initialization (subtype 20)
v TN3270E Telnet server session termination (subtype 21)
v TSO Telnet client connection initialization (subtype 22)
v TSO Telnet client connection termination (subtype 23)
v TN3270E Telnet server profile event record (subtype 24)
v DVIPA removed (subtype 33)
v DVIPA status change (subtype 32)
v DVIPA target added (subtype 34)
v DVIPA target removed (subtype 35)
v DVIPA target server ended (subtype 37)
v DVIPA target server started (subtype 36)
v CSSMTP configuration record (subtype 48)
v CSSMTP connection record (subtype 49)
v CSSMTP mail message record (subtype 50)
v CSSMTP spool file record (subtype 51)
v CSSMTP statistical record (subtype 52)
v FTP server transfer completion (subtype 70)
v FTP daemon configuration (subtype 71)
v FTP server logon failure (subtype 72)
v IPSec IKE Tunnel Activation/Refresh (subtype 73)
v IPSec IKE Tunnel Deactivation/Expire (subtype 74)
v IPSec Dynamic Tunnel Activation/Refresh (subtype 75)
v IPSec Dynamic Tunnel Deactivation (subtype 76)
v IPSec Dynamic Tunnel Added (subtype 77)
v IPSec Dynamic Tunnel Removed (subtype 78)
v IPSec Manual Tunnel Activation (subtype 79)
v IPSec Manual Tunnel Deactivation (subtype 80)
v FTP server transfer initialization (subtype 100)
v FTP client transfer initialization (subtype 101)
v FTP client login failure records (subtype 102)
v FTP client session records (subtype 103)
v FTP server session records (subtype 104)

For the real-time SMF data server, the ctefmtid for the CTE is always equal to the
subtype of the SMF record (one of the values listed above) following the CTE in
the data buffer. Table 78 lists the structures and macros for mapping the SMF 119
record subtypes that are delivered by these interfaces.

Table 78. SMF 119 record subtypes

Subtype C/C++ Assembler macro

3, 20, 21, 22, 23, 24,
32, 33, 34, 35, 36, 37,
48, 49, 50, 51,52, 70,
71, 72, 73, 74, 75, 76,
77, 78, 79, 80

SEZANMAC(EZASMF)
/usr/include/ezasmf.h

SYS1.MACLIB(EZASMF77)

Chapter 14. Network management interfaces 545

Table 78. SMF 119 record subtypes (continued)

Subtype C/C++ Assembler macro

4 SEZANMAC(EZBNMMPC)
/usr/include/ezbnmmpc.h

SEZANMAC(EZBNMMPA)

100, 101, 102, 103,
104

SEZANMAC(EZANMFTC) SEZANMAC(EZANMFTA)

See Appendix E, “Type 119 SMF records,” on page 743 for the formats of SMF type
119 records.

Restriction: The FTP type 119 records of subtypes 100 through 104 are available
only across the real-time SMF NMI interface, SYSTCPSM, and are not available in
the MVS SMF data sets. Therefore, the record formats for these subtypes are not
included in Appendix E, “Type 119 SMF records,” on page 743. For information
about processing these SMF records, see “Real-time SMF NMI: FTP SMF type 119
subtypes 100-104 record formats.”

Real-time SMF NMI: FTP SMF type 119 subtypes 100-104
record formats

The FTP SMF type 119 records of subtypes 100 through 104 are available only
across the real-time SMF NMI interface, SYSTCPSM, and are not available in the
MVS SMF data sets. However, these SMF records have the same format as all other
SMF 119 records do. To understand this format, see “Common Type 119 SMF
record format” on page 745. To view the format of the TCP/IP Common
identification section in the record, see “Common TCP/IP identification section” on
page 749. To understand the format of the self-defining sections and record-specific
data in these SMF records, use the information in this section.

Real-time SMF NMI: FTP server transfer initialization record
(subtype 100)
Table 79 shows the FTP server transfer initialization self-defining section of SMF
record.

Table 79. FTP server transfer initialization self-defining section

Offset Name Length Format Description

0 (X'0') Standard SMF
header

24 N/A Standard SMF header; subtype is 100
(X'64')

Self-defining section

24 (X'18') SMF119SD_TRN 2 Binary Number of triplets in this record
(V1R4: 5, V1R5: 6)

26 (X'1A') 2 Reserved

28 (X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section. *

32 (X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section. *

34 (X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections. *

36 (X'24') SMF119S1Off 4 Binary Offset to FTP server transfer
initialization section

40 (X'28') SMF119S1Len 2 Binary Length of FTP server transfer
initialization section

546 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 79. FTP server transfer initialization self-defining section (continued)

Offset Name Length Format Description

42 (X'2A') SMF119S1Num 2 Binary Number of FTP server transfer
initialization sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP server hostname
section

48 (X'30') SMF119S2Len 2 Binary Length of FTP server hostname
section

50 (X'32') SMF119S2Num 2 Binary Number of FTP server hostname
sections

52 (X'34') SMF119S3Off 4 Binary Offset to FTP server first associated
data set name section

56 (X'38') SMF119S3Len 2 Binary Length of FTP server first associated
data set name section

58 (X'3A') SMF119S3Num 2 Binary Number of FTP server first
associated data set name sections

60 (X'3C') SMF119S4Off 4 Binary Offset to FTP server second
associated data set name section

64 (X'40') SMF119S4Len 2 Binary Length of FTP server second
associated data set name section

66 (X'42') SMF119S4Num 2 Binary Number of FTP server second
associated data set name sections

68 (X'44') SMF119S5Off 4 Binary Offset to FTP server security section
(V1R5)

72 (X'48') SMF119S5Len 2 Binary Length of FTP server security section
(V1R5)

74 (X'4A') SMF119S5Num 2 Binary Number of FTP server security
sections (V1R5)

See “Common TCP/IP identification section” on page 749 for the contents of the TCP/IP
stack identification section.

Table 80 shows the FTP server transfer initialization record section (located
physically after the TCP/IP identification section in the record). This section is
slightly different from the one in the transfer completion record and the field
names are therefore different from the completion record. The mapping of this
record section is in EZANMFTA (assembler macro) for assembler code and in
EZANMFTC (a C header) for C code.

Table 80. FTP server transfer initialization record section

Offset Name Length Description

0 SMF119FT_FSIOPer 1 FTP Operation according to SMF77 subtype
classification (this is really redundant
information, the same information can be
found in SMF119FT_FSICmd).

v X'01': Append

v X'02': Delete

v X'03': Rename

v X'04': Retrieve

v X'05': Store

v X'06': Store Unique

Chapter 14. Network management interfaces 547

Table 80. FTP server transfer initialization record section (continued)

Offset Name Length Description

1 SMF119FT_FSIActPas 1 Passive or active mode data connection:

v X'00' active using default ip and port

v X'01' active using PORT

v X'02' active using EPRT

v X'03' passive using PASV

v X'04' passive using EPSV

2 2 Reserved

4 SMF119FT_FSICmd 4 FTP command (according to RFC 959+; see
Appendix J, “Related protocol
specifications,” on page 1075 for
information about accessing RFCs)

8 SMF119FT_FSIFType 4 File type (SEQ, JES, or SQL)

12 SMF119FT_FSIDRIP 16 Remote IP address (data connection)

28 SMF119FT_FSIDLIP 16 Local IP address (data connection)

44 SMF119FT_FSIDRPort 2 Remote port number (data connection)

46 SMF119FT_FSIDLPort 2 Local port number (data connection -
server)

48 SMF119FT_FSICRIP 16 Remote IP address (control connection)

64 SMF119FT_FSICLIP 16 Local IP address (control connection)

80 SMF119FT_FSICRPort 2 Remote port number (control connection -
client)

82 SMF119FT_FSICLPort 2 Local port number (control connection -
server)

84 SMF119FT_FSISUser 8 Client user ID on server

92 SMF119FT_FSIFType 1 Data type

v A: ASCII

v E: EBCDIC

v I: Image

v B: Double-byte

v U: UCS-2

93 SMF119FT_FSIMode 1 Transmission mode

v B: Block

v C: Compressed

v S: Stream

94 SMF119FT_FSIStruct 1 Data structure

v F: File

v R: Record

95 SMF119FT_FSIDsType 1 Data set type

v S: SEQ

v P: PDS

v H: z/OS UNIX file

96 SMF119FT_FSISTime 4 Data connection start time, formatted in
1/100 seconds since midnight [using
Coordinated Universal Time (UTC)]

548 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 80. FTP server transfer initialization record section (continued)

Offset Name Length Description

100 SMF119FT_FSISDate 4 Data connection start date (format:
0cyydddF). If the start date is not available,
the value specified is X'0000000F'.

104 SMF119FT_FSICSTime 4 Control connection start time in 1/100
seconds since midnight [using Coordinated
Universal Time (UTC)] (FTP session start
time)

108 SMF119FT_FSICSDate 4 Control connection start date (format:
0cyydddF). If the end date is not available,
the value specified is X'0000000F' (FTP
sessions start date)

112 SMF119FT_FSIM1 8 PDS Member name

120 SMF119FT_FSIM2 8 Second PDS member name (if rename
operation)

128 SMF119FT_FSICConnID 4 TCP connection ID of FTP control
connection (z/OS version V1R8 and later)

132 SMF119FT_FSIDConnID 4 TCP connection ID of FTP data connection,
or zero (z/OS version V1R8 and later)

136 SMF119FT_FSISessionID 15 FTP activity logging session ID (z/OS
version V1R8 and later)

151 Reserved 1 Reserved (z/OS version V1R8 and later)

Table 81 shows the FTP server hostname section, physically located after the FTP
server transfer initialization section. This section is optional and is identical to the
one present in the transfer completion record, and is present only if a
gethostbyaddr operation was performed for the Local IP address.

Table 81. FTP server hostname section

Offset Name Length Description

0 SMF119FT_FSHostname n Host name

Table 82 shows the name section of the first associated data set in the FTP server
transfer initialization record. This section represents the server MVS or z/OS UNIX
data set name that is associated with the file transfer or rename operation. Use the
Data Set Type field information in the FTP server transfer initialization section to
determine the type of file name that this section represents.

Table 82. FTP server transfer initialization record section: First associated data set name

Offset Name Length Format Description

0(X'0') SMF119FT_FSFileName1 n EBCDIC First server MVS
or z/OS UNIX file
name that is
associated with
the file transfer or
rename operation.
If the operation is
rename, this is the
original name of
the file or data set.

Chapter 14. Network management interfaces 549

||

|
|
|
|
|

||

|||||

|||||
|
|
|
|
|
|
|
|
|
|

Table 83 shows the name section of the second associated data set in the FTP server
transfer initialization record. This section represents an MVS or z/OS UNIX data
set name that is associated with a rename operation. Use the Data Set Type field
information in the FTP server transfer initialization section to determine the type of
file name that this section represents.

Table 83. FTP server transfer initialization record section: Second associated data set name

Offset Name Length Format Description

0(X'0') SMF119FT_FSFileName2 n EBCDIC Second MVS or
z/OS UNIX file
name that is
associated with a
rename operation.
This is the new
name of the file or
data set.

Table 84 displays the FTP server security section.

Table 84. FTP server security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FSMechanism 1 EBCDIC Protection mechanism

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FSCProtect 1 EBCDIC Control connection
protection level

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FSDProtect 1 EBCDIC Data connection
protection level

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FSLoginMech 1 EBCDIC Login method

v P: Password

v C: Certificate

v T: Kerberos ticket

4 (X'4') SMF119FT_FSProtoLevel 8 EBCDIC
Protocol level (present
only if Protocol
Mechanism is TLS or
AT-TLS).

Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

550 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|
|

||

|||||

|||||
|
|
|
|
|
|
|
|

|

Table 84. FTP server security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FSCipherSpec 20 EBCDIC
Cipher specification
(present only if Protocol
Mechanism is TLS or
AT-TLS).

Possible values when
Protocol Level is SSLV2

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-bit

v Triple-DES US

Possible values when
Protocol Level is SSLV3,
TLSV1, TLSV1.1, or
TLSV1.2:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FSProtoBufSize 4 Binary Negotiated protection
buffer size

36 (X'24') SMF119FT_FSCipher 2 EBCDIC
Hexadecimal value of
Cipher Specification
(present only if Protocol
Mechanism is TLS or
AT-TLS). If the value is
4X, the Cipher
Specification must be
obtained from the
SMF119FT_FSCipher4
field.

38 (X'26') SMF119FT_FSFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39 (X'27') SMF119FT_FSCipher4 4 EBCDIC Four byte hexadecimal
value of Cipher
Specification (present
only if Protocol
Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FSSessReuse 1 EBCDIC SSL session reuse:

v A: Allowed

v R: Required

Chapter 14. Network management interfaces 551

|||||
|
|

Table 84. FTP server security section (continued)

Offset Name Length Format Description

44(X'2C') SMF119FT_FSCSSLSessIDLen 2 Binary Length of the SSL
session ID of FTP
control connection

46(X'2E') SMF119FT_FSCSSLSessID 32 Binary SSL session ID of FTP
control connection

78(X'4E') SMF119FT_FSDSSLSessIDLen 2 Binary Length of the SSL
session ID of FTP data
connection

80(X'50') SMF119FT_FSDSSLSessID 32 Binary SSL session ID of FTP
data connection

Real-time SMF NMI: FTP client transfer initialization record
(subtype 101)
The following table shows the FTP client transfer initialization self-defining section
of the SMF record.

Offset Name Length Format Description

0 (X'0') Standard SMF header 24 N/A Standard SMF header; subtype is 101
(X'65')

Self-defining section

24 (X'18') SMF119SD_TRN 2 Binary Number of triplets in this record
(V1R4: 4, V1R5: 5, V1R8: 6)

26 (X'1A') 2 Reserved

28 (X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section
*

32 (X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section *

34 (X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections *

36 (X'24') SMF119S1Off 4 Binary Offset to FTP client transfer
initialization section

40 (X'28') SMF119S1Len 2 Binary Length of FTP client transfer
initialization section

42 (X'2A') SMF119S1Num 2 Binary Number of FTP client transfer
initialization sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP client associated data
set name section

48 (X'30') SMF119S2Len 2 Binary Length of FTP client associated data
set name section

50 (X'32') SMF119S2Num 2 Binary Number of FTP client associated data
set name sections

52 (X'34') SMF119S3Off 4 Binary Offset to FTP client SOCKS section

56 (X'38') SMF119S3Len 2 Binary Length of FTP client SOCKS section

58 (X'3A') SMF119S3Num 2 Binary Number of FTP client SOCKS sections

60 (X'3C') SMF119S4Off 4 Binary Offset to FTP client security section
(z/OS version V1R5 and later)

64 (X'40') SMF119S4Len 2 Binary Length of FTP client security section
(z/OS version V1R5 and later)

552 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||
|
|

|||||
|

|||||
|
|

|||||
|

Offset Name Length Format Description

66 (X'42') SMF119S4Num 2 Binary Number of FTP client security
sections (z/OS version V1R5 and
later)

68 (X'44') SMF119S5Off 4 Binary Offset to FTP client user name section
(z/OS version V1R8 and later)

72 (X'48') SMF119S5Len 2 Binary Length of FTP client user name
section (z/OS version V1R8 and later)

74 (X'4A') SMF119S5Num 2 Binary Number of FTP client user name
sections (z/OS version V1R8 and
later)

* See “Common TCP/IP identification section” on page 749 for the contents of the TCP/IP
stack identification section.

Table 85 describes the FTP client transfer initialization record section, which is
physically located after the TCP/IP identification section. This section is slightly
different from the one in the transfer completion record and the field names are
therefore different from the completion record. The mapping of this record section
is in EZANMFTA (assembler macro) for assembler code and in EZANMFTC (a C
header) for C code.

Table 85. FTP client transfer initialization record section

Offset Name Length Description

0 SMF119FT_FCICmd 4 FTP subcommand (according to RFC 959;
see Appendix J, “Related protocol
specifications,” on page 1075 for information
about accessing RFCs)

4 SMF119FT_FCIFType 4 Local file type (SEQ or SQL)

8 SMF119FT_FCIDRIP 16 Remote IP address (data connection)

24 SMF119FT_FCIDLIP 16 Local IP address (data connection)

40 SMF119FT_FCIDRPort 2 Remote port number (data connection)

42 SMF119FT_FCIDLPort 2 Local port number (data connection)

44 SMF119FT_FCICRIP 16 Remote IP address (control connection)

60 SMF119FT_FCICLIP 16 Local IP address (control connection)

76 SMF119FT_FCICRPort 2 Remote port number (control connection)

78 SMF119FT_FCICLPort 2 Local port number (control connection)

80 SMF119FT_FCIRUser 8 User ID (login name) on server

88 SMF119FT_FCILUser 8 Local user ID

96 SMF119FT_FCIType 1 Data format

v A: ASCII

v E: EBCDIC

v I: Image

v B: Double-byte

v U: UCS-2

97 SMF119FT_FCIMode 1 Transfer mode

v B: Block

v C: Compressed

v S: Stream

Chapter 14. Network management interfaces 553

Table 85. FTP client transfer initialization record section (continued)

Offset Name Length Description

98 SMF119FT_FCIStruct 1 Structure

v F: File

v R: Record

99 SMF119FT_FCIDSType 1 Data set type

v S: SEQ

v P: PDS

v H: z/OS UNIX file system

100 SMF119FT_FCISTime 4 Start time of data connection, in a hundreth
of a second, since midnight [using
Coordinated Universal Time (UTC)]

104 SMF119FT_FCISDate 4 Start date of data connection (format:
0cyydddF). If the start date is not available,
the value specified is X'0000000F'.

108 SMF119FT_FCICSTime 4 Start time of control connection, in a
hundreth of a second, since midnight [using
Coordinated Universal Time (UTC)]. FTP
session start time.

112 SMF119FT_FCICSSDate 4 Start date of the control connection (format
0cyydddF). If the start date is not available,
the value specified is X'0000000F'. FTP
session start date.

116 SMF119FT_FCIM1 8 PDS member name

124 SMF119FT_FCIActPas 1 Passive or active mode data connection.
Possible values are:

v X'00': Active using default IP and port

v X'01': Active using PORT

v X'03': Passive using PASV

v X'04': Passive using EPSV

125 Reserved 3 Reserved

128 SMF119FT_FCICConnID 4 TCP connection ID of FTP control
connection (z/OS version V1R8 and later)

132 SMF119FT_FCIDConnID 4 TCP connection ID of FTP data connection
(z/OS version V1R8 and later)

Table 86 describes the FTP client associated data set name section, which is
physically located after the FTP client transfer initialization section. This section is
identical to the one present in the transfer completion record.

Table 86. FTP client associated data set name section

Offset Name Length Description

0 SMF119FT_FCFileName n MVS data set or z/OS UNIX file name
associated with a file transfer operation. Use
the data set type field information in the FTP
client transfer initialization section to determine
the type of file name that is represented by this
value.

554 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 87 describes the FTP client SOCKS section, which is present only if the
connection passes through a SOCKS server.

Table 87. FTP client SOCKS section

Offset Name Length Description

0 SMF119FT_FCCIP 16 SOCKS server IP address

16 SMF119FT_FCCPort 2 SOCKS server port number

18 SMF119FT_FCCProt 1 SOCKS protocol version. Possible values are:

v X'01': SOCKS Version 4

v X'02': SOCKS Version 5

Table 88 describes the FTP client security section.

Table 88. FTP client security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FCMechanism 1 EBCDIC Protection mechanism. Possible
values are:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FCCProtect 1 EBCDIC Control connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FCDProtect 1 EBCDIC Data connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FCLoginMech 1 EBCDIC Login method. Possible values are:

v U: Undefined; the login method
is not defined for the client.

v P: Password

v C: Certificate

4 (X'4') SMF119FT_FCProtoLevel 8 EBCDIC Protocol level (present only if
Protocol Mechanism is TLS or
AT-TLS). Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

Chapter 14. Network management interfaces 555

Table 88. FTP client security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FCCipherSpec 20 EBCDIC Cipher specification (present only if
Protocol Mechanism is TLS or
AT-TLS). Possible values when
Protocol Level is SSLV2 are:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-bit

v Triple-DES US

Possible values when Protocol
Level is SSLV3, TLSV1, TLSV1.1, or
TLSV1.2 are:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FCProtBuffSize 4 Binary Negotiated protection buffer size

36 (X'24') SMF119FT_FCCipher 2 EBCDIC Hexadecimal value of the Cipher
Specification (present only if the
Protocol Mechanism value is TLS
or AT-TLS). If the value is 4X, the
Cipher Specification must be
obtained from the
SMF119FT_FCCipher4 field.

38 (X'26') SMF119FT_FCFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39 (X'27') SMF119FT_FCCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only
if Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FCSessReuse 1 EBCDIC SSL session reuse:

v N: None

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FCCSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP control connection

46(X'2E') SMF119FT_FCCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FCDSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP data connection

80(X'50') SMF119FT_FCDSSLSessID 32 Binary SSL session ID of FTP data
connection

Table 89 on page 557 describes the FTP client user name section.

556 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||
|
|
|

|||||
|

|||||
|

|||||
|

|||||
|

Table 89. FTP client user name section

Offset Name Length Format Description

0(X'0') SMF119FT_FCIXUserID n EBCDIC User name or user ID used to
log in to the FTP server.

Real-time SMF NMI: FTP client login failure record (subtype 102)
Table 90 describes the FTP client login failure self-defining section of the SMF
record.

Table 90. FTP client login failure self-defining section

Offset Name Length Format Description

0 (X'0') Standard SMF
header

24 N/A Standard SMF header; subtype is 102
(X'66')

Self-defining section

24 (X'18') SMF119SD_TRN 2 Binary Number of triplets in this record

26 (X'1A') Reserved 2 N/A Reserved

28 (X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section *

32 (X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section *

34 (X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections *

36 (X'24') SMF119S1Off 4 Binary Offset to FTP client login failure
section

40 (X'28') SMF119S1Len 2 Binary Length of FTP client login failure
section

42 (X'2A') SMF119S1Num 2 Binary Number of FTP client login failure
sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP client SOCKS section

48 (X'30') SMF119S2Len 2 Binary Length of FTP client SOCKS section

50 (X'32') SMF119S2Num 2 Binary Number of FTP client SOCKS
sections

52 (X'34') SMF119S3Off 4 Binary Offset to FTP client Security section

56 (X'38') SMF119S3Len 2 Binary Length of FTP client Security section

58 (X'3A') SMF119S3Num 2 Binary Number of FTP client Security
sections

60 (X'3C') SMF119S4Off 4 Binary Offset to FTP client user name
section (z/OS version V1R8 and
later)

64 (X'40') SMF119S4Len 2 Binary Length of FTP client user name
section (z/OS version V1R8 and
later)

66 (X'42') SMF119S4Num 2 Binary Number of FTP client user name
sections (z/OS version V1R8 and
later)

* See “Common TCP/IP identification section” on page 749 for the contents of the TCP/IP
identification section.

Chapter 14. Network management interfaces 557

|

Table 91 shows the client login failure session section, which follows the TCP/IP
identification section.

Table 91. Client login failure session section

Offset Name Length Format Description

0(X'0') SMF119FT_FCLRIP 16 Binary Remote IP address (server)

16(X'10') SMF119FT_FCLLIP 16 Binary Local IP address (client)

32(X'20') SMF119FT_FCLRPort 2 Binary Remote port number (server)

34(X'22') SMF119FT_FCLLPort 2 Binary Local port number (client)

36(X'24') SMF119FT_FCLUserID 8 EBCDIC Local user ID

44(X'2C') SMF119FT_FCLReason 4 Binary Login failure reason. The reason
is a Client Error Code as
documented in FTP Client Error
Codes in z/OS Communications
Server: IP User's Guide and
Commands. Following list
shows the client error codes
most likely for login failures.

X'0A'FTP_SESSION_ERROR
Socket, send, or receive
error.

X'0B' FTP_LOGIN_FAILED
User ID, password, or
account information is
not valid.

X'11' FTP_AUTHENTICATION
Security authentication
or negotiation failed;
incorrect specification
of security keywords.

48 (X'30') SMF119FT_FCLCConnID 4 Binary TCP connection ID of FTP
control connection

Table 92 describes the FTP client SOCKS section, which is present only if the
connection passes through a SOCKS server.

Table 92. FTP client SOCKS section

Offset Name Length Description

0(X'0') SMF119FT_FCCIP 16 SOCKS server IP address

16(X'10') SMF119FT_FCCPort 2 SOCKS server port number

18(X'12') SMF119FT_FCCProt 1 SOCKS protocol version. Possible values
are:

v X'01': SOCKS Version 4

v X'02': SOCKS Version 5

Table 93 on page 559 defines the FTP client login failure security section.

558 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|

|

Table 93. FTP client login failure security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FCMechanism 1 EBCDIC Protection mechanism. Possible
values are:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FCCProtect 1 EBCDIC Control connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FCDProtect 1 EBCDIC Data connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FCLoginMech 1 EBCDIC Login method. Possible values are:

v U: Undefined; the login method
is not defined for the client.

v P: Password

v C: Certificate

4 (X'4') SMF119FT_FCProtoLevel 8 EBCDIC Protocol level (present only if
Protocol Mechanism is TLS or
AT-TLS). Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

Chapter 14. Network management interfaces 559

|

|

|

|

|

Table 93. FTP client login failure security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FCCipherSpec 20 EBCDIC Cipher specification (present only if
Protocol Mechanism is TLS or
AT-TLS). Possible values when
Protocol Level is SSLV2 are:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-bit

v Triple-DES US

Possible values when Protocol
Level is SSLV3, TLSV1, TLSV1.1, or
TLSV1.2 are:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FCProtBuffSize 4 Binary Negotiated protection buffer size

36(xX'24') SMF119FT_FCCipher 2 EBCDIC Hexadecimal value of Cipher
Specification (present only if
Protocol Mechanism is TLS or
AT-TLS). If the value is 4X, the
Cipher Specification must be
obtained from the
SMF119FT_FCLCipher4 field.

38 (X'26') SMF119FT_FCFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39 (X'27') SMF119FT_FCCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only
if Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FCSessReuse 1 EBCDIC SSL session reuse:

v N: None

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FCCSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP control connection

46(X'2E') SMF119FT_FCCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FCDSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP data connection

80(X'50') SMF119FT_FCDSSLSessID 32 Binary SSL session ID of FTP data
connection

Table 94 on page 561 shows the FTP client user name section.

560 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|

|

|

|

|||||
|
|
|

|||||
|

|||||
|

|||||
|

|||||
|

Table 94. FTP client user name section

Offset Name Length Format Description

0(X'0') SMF119FT_FCLXUserID n EBCDIC User name or user ID
used to log on to the
FTP server

Real-time SMF NMI: FTP client session record (subtype 103)
Table 95 shows the FTP client session record self-defining section.

Table 95. FTP client session record self-defining section

Offset Name Length Format Description

0 (X'0') Standard SMF
header

24 N/A Standard SMF header; subtype is 103
(X'67')

Self-defining section

24 (X'18') SMF119SD_TRN 2 Binary Number of triplets in this record

26 (X'1A') Reserved 2 N/A Reserved

28 (X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section *

32 (X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section *

34 (X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections *

36 (X'24') SMF119S1Off 4 Binary Offset to FTP client session section

40 (X'28') SMF119S1Len 2 Binary Length of FTP client session section

42 (X'2A') SMF119S1Num 2 Binary Number of FTP client session sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP client SOCKS section

48 (X'32) SMF119S2Len 2 Binary Length of FTP client SOCKS section

50 (X'34') SMF119S2Num 2 Binary Number of FTP client SOCKS
sections

52 (X'34') SMF119S3Off 4 Binary Offset to FTP client security section

56 (X'38') SMF119S3Len 2 Binary Length of FTP client security section

58 (X'3A') SMF119S3Num 2 Binary Number of FTP client security
sections

60 (X'3C') SMF119S4Off 4 Binary Offset to FTP client session user
name section

64 (X'40') SMF119S4Len 2 Binary Length of FTP client session user
name section

66 (X'42') SMF119S4Num 2 Binary Number of FTP client session user
name section

*See “Common TCP/IP identification section” on page 749 for the contents of the TCP/IP
identification section.

Table 96 shows the FTP client session section.

Table 96. FTP client session section

Offset Name Length Format Description

0 (X'0') SMF119FT_FCNRIP 16 Binary Remote IP address (server)

Chapter 14. Network management interfaces 561

|

Table 96. FTP client session section (continued)

Offset Name Length Format Description

16 (X'10') SMF119FT_FCNLIP 16 Binary Local IP address (client)

32 (X'20') SMF119FT_FCNRPort 2 Binary Remote port number (server)

34 (X'22') SMF119FT_FCNLPort 2 Binary Local port number (Client)

36 (X'24') SMF119FT_FCNUserID 8 EBCDIC Local User ID

44 (X'2C') SMF119FT_FCNReason 4 Binary Session end reason. The reason is
a client error code as documented
in FTP Client Error Codes in z/OS
Communications Server: IP User's
Guide and Commands. If no error
occurred, the value of this field is
0.

This field is defined only when
the value of the
SMF119FT_FCNEvent field is T.

48 (X'30') SMF119FT_FCNEvent 1 EBCDIC v I: Session has started; client is
logged into the server

v T: Session has ended

49 (X'31') Reserved 3 Binary Reserved

52 (X'34') SMF119FT_FCNSTime 4 Binary Session start time, in one
hundreths of a second, since
midnight [using Coordinated
Universal Time (UTC)].

56 (X'38') SMF119FT_FCNSDate 4 Binary Session start date (format:
0cyydddF). If the date is not
available, the value specified is
X'0000000F'.

60 (X'3C') SMF119FT_FCNETime 4 Binary Session end time, in one
hundreths of a second, since
midnight [using Coordinated
Universal Time (UTC)].

This field is defined only when
the value of SMF119FT_FCNEvent
is T.

64 (X'40') SMF119FT_FCNEDate 4 Binary Session end date (format:
0cyydddF). If the date is not
available, the value specified is
X'0000000F'.

This field is defined only when
the value of SMF119FT_FCNEvent
is T.

68 (X'44') SMF119FT_FCNCConnID 4 Binary TCP connection ID of FTP control
connection

Table 97 on page 563 shows the FTP client SOCKS section, which is present only if
the connection passes through a SOCKS server.

562 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 97. FTP client SOCKS section

Offset Name Length Description

0(X'0') SMF119FT_FCCIP 16 SOCKS server IP address

16(X'10') SMF119FT_FCCPort 2 SOCKS server port number

18(X'12') SMF119FT_FCCProt 1 SOCKS protocol version. Possible values
are:

v X'01' SOCKS Version 4

v X'02' SOCKS Version 5

Table 98 shows the FTP client security section:

Table 98. FTP client security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FCMechanism 1 EBCDIC Protection mechanism. Possible
values are:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FCCProtect 1 EBCDIC Control connection protection
level. Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FCDProtect 1 EBCDIC Data connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FCLoginMech 1 EBCDIC Login method. Possible values are:

v P: Password

v C: Certificate

4 (X'4') SMF119FT_FCProtoLevel 8 EBCDIC Protocol level (present only if
Protocol Mechanism value is TLS
or AT-TLS). Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

Chapter 14. Network management interfaces 563

|

|

|

|

|

|

|

|

Table 98. FTP client security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FCCipherSpec 20 EBCDIC Cipher specification (present only
if Protocol Mechanism value is
TLS or AT-TLS).

Possible values when Protocol
Level is SSLV2 are:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-bit

v Triple-DES US

Possible values when Protocol
Level value is SSLV3, TLSV1,
TLSV1.1, or TLSV1.2 are:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FCProtoBufSize 4 Binary Negotiated protection buffer size

36 (X'24') SMF119FT_FCCipher 2 EBCDIC Hexadecimal value of Cipher
Specification (present only if
Protocol Mechanism is TLS or
AT-TLS). If the value is 4X, the
Cipher Specification must be
obtained from the
SMF119FT_FCNCipher4 field.

38 (X'26') SMF119FT_FCFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39 (X'27') SMF119FT_FCCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only
if Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FCSessReuse 1 EBCDIC SSL session reuse:

v N: None

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FCCSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP control connection

46(X'2E') SMF119FT_FCCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FCDSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP data connection

80(X'50') SMF119FT_FCDSSLSessID 32 Binary SSL session ID of FTP data
connection

564 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|

|

|

|

|||||
|
|
|

|||||
|

|||||
|

|||||
|

|||||
|

Table 99 shows the FTP client session user name section.

Table 99. FTP client session user name section

Offset Name Length Format Description

0(X'0') SMF119FT_FCNXUserID n EBCDIC User name or user ID
used to log into the FTP
server.

Real-time SMF NMI: FTP server session record (subtype 104)
Table 100 describes the FTP server session record.

Table 100. FTP server session record

Offset Name Length Format Description

0 (X'0') Standard SMF
header

24 N/A Standard SMF header; subtype is 104
(X'68')

Self-defining section

24 (X'18') SMF119SD_TRN 2 Binary Number of triplets in this record

26 (X'1A') 2 Binary Reserved

28 (X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section.
*

32 (X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section. *

34 (X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections. *

36 (X'24') SMF119S1Off 4 Binary Offset to FTP server session section

40 (X'28') SMF119S1Len 2 Binary Length of FTP server session section

42 (X'2A') SMF119S1Num 2 Binary Number of FTP server session sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP server security section

48 (X'30') SMF119S2Len 2 Binary Length of FTP server security section

50 (X'32') SMF119S2Num 2 Binary Number of FTP server security
sections.

* See “Common TCP/IP identification section” on page 749 for the contents of the TCP/IP
identification section.

Table 101 describes the server session section.

Table 101. Server session section

Offset Name Length Format Description

0 (X'0') SMF119FT_FSRRIP 16 Binary Remote IP address

16 (X'10') SMF119FT_FSRLIP 16 Binary Local IP address

32 (X'20') SMF119FT_FSRRPort 2 Binary Remote port number (client)

34 (X'22') SMF119FT_FSRLPort 2 Binary Local port number (server)

36 (X'24') SMF119FT_FSRUserID 8 Binary Client user ID

Chapter 14. Network management interfaces 565

|

Table 101. Server session section (continued)

Offset Name Length Format Description

44 (X'2C') SMF119FT_FSRReason 4 Binary Session end reason.

v X'00': Normal session end;
QUIT or REIN command
received

v X'01': Security authentication
or negotiation failed; incorrect
specification of security
keywords; possible security
handshake deadlock

v X'02': Control connection
socket error; network error

v X'03': Control connection
closed prematurely

v X'04': Sequence received on
control connection was not
valid

This field is valid only when the
value of the
SMF119FT_FSREvent field is T.

48 (X'30') SMF119FT_FSREvent 1 Binary Session event

v I: Session start; client is
logged into server

v T: Session has ended

49 (X'31') Reserved 3 Binary Reserved

52(X'34') SMF119FT_FSRSTime 4 Binary Session start time in hundreths
of a second since midnight
[using Coordinated Universal
Time (UTC)].

56 (X'38') SMF119FT_FSRSDate 4 Binary Session start date (format:
0cyydddF). If the date is not
available, the value specified is
X'0000000F'. (FTP sessions start
date).

60 (X'3C') SMF119FT_FSRETime 4 Binary Session end time in hundreths
of a second since midnight
[using Coordinated Universal
Time (UTC)]. This field is
defined only when the value of
the SMF119FT_FSREvent field is
T.

64 (X'40') SMF119FT_FSREDate 4 Binary Session end date (format:
0cyydddF). If the date is not
available, the value specified is
X'0000000F'. This field is defined
only when the value of the
SMF119FT_FSREvent field is T.

68 (X'44') SMF119FT_FSRCConnID 4 Binary TCP connection ID of FTP
control connection

72 (X'48') SMF119FT_FSRSessionID 15 EBCDIC FTP activity logging session ID

87 (X'57') 1 N/A Reserved

566 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 102 describes the FTP server security section.

Table 102. FTP server security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FSMechanism 1 EBCDIC Possible values are:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FSCProtect 1 EBCDIC Control connection protection
level. Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FSDProtect 1 EBCDIC Data connection protection level.
Possible values are:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FSLoginMech 1 EBCDIC Login method:

v P: Password

v C: Certificate

v T: Kerberos ticket

4 (X'4') SMF119FT_FSProtoLevel 8 EBCDIC Protocol level (present only if
Protocol Mechanism is TLS or
AT-TLS).

Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

Chapter 14. Network management interfaces 567

|

|

|

|

|

Table 102. FTP server security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FSCipherSpec 20 EBCDIC Cipher specification (present only
if the value of Protocol
Mechanism is TLS or AT-TLS).

Possible values when Protocol
Level is SSLV2:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-Bit

v Triple DES US

Possible values when Protocol
Level is SSLV3, TLSV1, TLSV1.1,
or TLSV1.2:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FSProtoBufSize 4 Binary Negotiated protection buffer size

36 (X'24') SMF119FT_FSCipher 2 EBCDIC Hexadecimal value of Cipher
Specification (present only if
Protocol Mechanism is TLS or
AT-TLS). If the value is 4X, the
Cipher Specification must be
obtained from the
SMF119FT_FSNCipher4 field.

38 (X'26') SMF119FT_FSFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39 (X'27') SMF119FT_FSCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only
if Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FSSessReuse 1 EBCDIC SSL session reuse:

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FSCSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP control connection

46(X'2E') SMF119FT_FSCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FSDSSLSessIDLen 2 Binary Length of the SSL session ID of
FTP data connection

80(X'50') SMF119FT_FSDSSLSessID 32 Binary SSL session ID of FTP data
connection

568 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|

|

|

|

|||||
|
|

|||||
|

|||||
|

|||||
|

|||||
|

Resolver NMI (EZBREIFR)
z/OS Communications Server provides a high-speed low-overhead callable
programming interface for network management applications to access data related
to the resolver. Use the EZBREIFR network management interface to monitor
resolver configuration information and GLOBALTCPIPDATA file contents.

This section describes the details for invoking the EZBREIFR interface with the
defined input parameters and for processing the output it provides. The following
topics are addressed:
v “Resolver NMI: Overview”
v “Resolver NMI: Configuration and enablement”
v “Resolver NMI: Using the EZBREIFR requests”
v “Resolver NMI: Request and response formats” on page 573
v “Resolver NMI: Requests” on page 575
v “Resolver NMI: Responses” on page 575
v “Resolver NMI: Request and response data structures” on page 582
v “Resolver NMI: Examples” on page 582

Resolver NMI: Overview
You can invoke the EZBREIFR interface to return data related to the resolver at a
given point in time. You cannot specify any filters on the resolver NMI requests to
limit the returned information to a specific set of information.

You can obtain the resolver setup information, including the contents of the
GLOBALTCPIPDATA file if one is defined, from the resolver.

Resolver NMI: Configuration and enablement
There is no configuration required to enable the resolver interface.

Resolver NMI: Using the EZBREIFR requests
This topic describes the program requirements for invoking the resolver callable
NMI and it includes examples of the invocations.

EZBREIFR requirements
Table 103 identifies the authorization requirements for EZBREIFR requests.

Table 103. EZBREIFR requests

Minimum authorization Supervisor state, or system key, or APF authorization

Dispatchable unit mode Task or SRB

Cross memory mode PASN=SASN=HASN

AMODE 31-bit or 64-bit

ASC mode Primary

Interrupt status Enabled for I/O and external interrupts

Locks Not applicable

Control parameters Must be in an addressable area in the primary address space
and must be accessible using caller's execution key

Chapter 14. Network management interfaces 569

EZBREIFR format
For C/C++ callers, invoke EZBREIFR as shown in the following example:
EZBREIFR(RequestResponseBuffer,

&RequestResponseBufferAlet,
&RequestResponseBufferLength,
&ReturnValue,
&ReturnCode,
&ReasonCode);

For assembler callers, invoke EZBREIFR as shown in the following example:
CALL EZBREIFR,(RequestResponseBuffer,

RequestResponseBufferAlet,
RequestResponseBufferLength,
ReturnValue,
ReturnCode,
ReasonCode)

EZBREIFR parameters
RequestResponseBuffer

Supplied parameter.

Type: Character

Length: Variable

The name of the storage area that contains an input request. The input
request must be in the format of a request header (NMSHeader), as
specified in the EZBRENMC header file. When the request completes
successfully, the storage contains an output response in the same format.

RequestResponseBufferAlet
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the access list entry token (ALET) of
the RequestResponseBuffer parameter. If a nonzero ALET is specified, the
ALET must represent a valid entry in the dispatchable unit access list
(DU-AL) of the caller.

RequestResponseBufferLength
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the length of request/response buffer.

If the buffer length is too short to contain all of the requested information,
the request fails with the return code ENOBUFS. The length that is
required to contain all of the information is provided in the
NMSHBytesNeeded field of the NMSHeader data structure of the
response. If the buffer length is not the minimum size for the request, the
request fails with the return code ENOBUFS; however, the value that is
required is not provided in the NMSHBytesNeeded field. The minimum
size is the length of the NMSHeader data structure.

570 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

ReturnValue
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBREIFR service returns one of the
following:
v 0 or positive integer, if the request is successful. A value greater than 0

specifies the number of output data bytes copied to the response buffer.
See “Resolver NMI: Request and response formats” on page 573 for
additional details about processing request completions.

v -1, if the request is not successful.

ReturnCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBREIFR service stores the return
code (errno). The EZBREIFR service returns the ReturnCode parameter only
if the ReturnValue value is -1.

ReasonCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBREIFR service stores the reason
code (errnojr). The EZBREIFR service returns the ReasonCode parameter
only if the ReturnValue value is -1. The ReasonCode parameter further
qualifies the ReturnCode value.

The EZBREIFR service sets the return codes and reason codes described in
Table 104. See z/OS UNIX System Services Messages and Codes for the
hexadecimal values of the return and reason codes.

Table 104. EZBREIFR service return codes and reason codes

ReturnValue ReturnCode ReasonCode Meaning

0 0 0 The request was successful.

Chapter 14. Network management interfaces 571

Table 104. EZBREIFR service return codes and reason codes (continued)

ReturnValue ReturnCode ReasonCode Meaning

-1 ENOBUFS JRBuffTooSmall The request was not successful.
The request/response buffer is too
small to contain all of the
requested information. Some of the
requested information might be
returned.

If the buffer was large enough for
a complete NMSHeader to be
returned, the NMSHeader
NMSHBytesNeeded field might
contain the buffer size to return all
of the requested information. See
the description of the
RequestResponseBufferLength
parameter for an explanation of
when the NMSHBytesNeeded
value is provided.

-1 EACCES JRSAFNotAuthorized The request was not successful.
The caller is not authorized.

-1 EAGAIN JRInactive The request was not successful.
The resolver is not active.

-1 EFAULT JRReadUserStorageFailed The request was not successful. A
program check occurred while
copying input parameters or while
copying input data from the
request/response buffer.

-1 EFAULT JRWriteUserStorageFailed The request was not successful. A
program check occurred while
copying output parameters or
while copying output data to the
request/response buffer.

-1 EINVAL JRInvalidValue The request was not successful. An
invalid value was specified in the
request/response header, or a filter
was provided on the request.

-1 EMVSERR JRUnexpectedErr The request was not successful. An
unexpected error occurred.

An application can use any of the following methods to invoke the EZBREIFR
service:
v Issue a LOAD macro to obtain the EZBREIFR service entry point address, and

then issue a CALL macro specifying that address. The EZBREIFR load module
must reside in a linklist dataset (for example, the SEZALOAD load library of
TCP/IP), or in the LPA.

v Issue a LINK macro to invoke the EZBREIFR service. The EZBREIFR load
module must reside in a link list data set (for example, the SEZALOAD load
library of TCP/IP), or in the link pack area (LPA).

v Link-edit EZBREIFR directly into the application load module, and then issue a
CALL macro specifying EZBREIFR. Include SYS1.CSSLIB(EZBREIFR) in the
application load module link-editing.

572 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v For 64-bit C/C++ applications, link-edit the EZBREIF4 program directly into the
application load module, and then issue a CALL macro specifying EZBREIFR.
Include SYS1.CSSLIB(EZBREIF4) in the application load module link-editing.

Resolver NMI: Request and response formats
Resolver NMI requests and responses share a common format. A resolver NMI
request or response consists of a header followed by zero or more records.

The structures described in the following tables are part of the Network
Management Service component.

Table 105 describes the fields in the buffer header (NMSHeader) structure.

Table 105. Buffer header (NMSHeader) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSHeaderIdent 0 4 EBCDIC Header identifier. Set to NMSHeaderIdentifier
(EBCDIC 'NMSH').

NMSHeaderLength 4 4 Binary Length of record. For a request, the client
application should set this field to be the
length of the NMS header. The server returns
the same value in the response data.

NMSHVersion 8 2 Binary Network monitor version. Currently, only
version 1 is supported by this interface
(NMSHVersion1).

NMSHType 10 2 Binary Network monitor type. For a request, this
indicates the type of the request. For a
response, this indicates the type of response
data and is identical to the request type. See
“Resolver NMI: Requests” on page 575 for a
description of the request types.

NMSHBytesNeeded 12 4 Binary Length of buffer required to contain all
requested data. For a request, the server
ignores this field. For a response, the server
sets this field to the number of bytes that the
client application must provide to obtain all
the resolver configuration data. If the client
application provides a smaller buffer than the
value that is specified in the
NMSHBytesNeeded field, the server provides
only the records that fit in the buffer.

Reserved 16 20 N/A N/A

NMSHInputDataDescriptors 36 12 Binary Input section descriptors. The client sets this
field to 0 on input because EZBREIFR does
not accept input section descriptors on the
request. This descriptor is described by the
NMSTriplet structure. See Table 106 on page
574 for details.

Chapter 14. Network management interfaces 573

Table 105. Buffer header (NMSHeader) structure (continued)

Field
Offset
decimal

Length in
bytes Format Description

NMSHSetup 48 16 Binary Output record descriptor. The client
application should set this field to 0 on input.
The server completes this field with
information describing the records that
contain the setup record data. This descriptor
is described by the NMSQuadruplet structure.
See Table 107 for details.

NMSHGlobalTcpip 64 16 Binary Output record descriptor. The client
application should set this field to 0 on input.
The server completes this field with
information describing the records that
contain the global TCPIP.DATA record data.
This descriptor is described by the
NMSQuadruplet structure. See Table 107 for
details.

Table 106 describes the fields in the triplet (NMSTriplet) structure.

Table 106. Triplet (NMSTriplet) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSTOffset 0 4 Binary Offset to section

NMSTLength 4 4 Binary Length of each section

NMSTNumber 8 4 Binary Number of sections

Table 107 describes the fields in the quadruplet (NMSQuadruplet) structure.

Table 107. Quadruplet (NMSQuadruplet) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSQOffset 0 4 Binary Offset to section

NMSQLength 4 4 Binary Length of each section

NMSQNumber 8 4 Binary Number of each section

NMSQMatch 12 4 Binary Number of sections that matched filters

A buffer header is followed by zero or more records. Records can vary in length.
Each record consists of a record header, followed by one or more section
descriptors that describe the sections in the record, followed by one or more
sections that contain the actual record data.

Table 108 describes the fields in the record header (NMSRecHeader) structure.

Table 108. Record header (NMSRecHeader) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSRecHdrIdent 0 4 EBCDIC Record identifier; always the value NMSR.

574 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 108. Record header (NMSRecHeader) structure (continued)

Field
Offset
decimal

Length in
bytes Format Description

NMSRecType 4 4 EBCDIC Record type. One of two values:

RSET setup record data

RGTD global TCPIP.DATA record data

NMSRecLength 8 4 Binary Total record length

NMSRecNumber 12 4 Binary Number of sections descriptors

Each section descriptor is mapped by triplet (NMSTriplet) structure; see Table 106
on page 574.

The records for a request or response can differ in length because some data is
present or absent, or because there is variable-length data. The size of any given
structure that is contained in a section can increase from one release to the next,
but the format of the data from the earlier release does not change. If new data is
added to a section for a given release, it is added at the end of the section so that
existing data mappings continue to resolve correctly without recompiling
applications. If applications check the validity of a section length, the applications
should always test for a length that is greater than or equal to the expected length
to ensure that applications are compatible with future releases

Resolver NMI: Requests
The GetResolverConfig (NMSHGetResolverConfig) request is supported by
EZBREIFR. The request obtains resolver setup information, including the contents
of the GLOBALTCPIPDATA file, if that file is defined. The request constant, which
is specified in the NMSHType field in the NMSHeader data structure, follows the
request name.

The general format of a resolver NMI request consists of a request header. There
are currently no input filters defined for EZBREIFR; the
NMSHInputDataDescriptors field should be set to 0. If you specify a filter on an
EZBREIFR request, the request fails.

Resolver NMI: Responses
The GetResolverConfig (NMSHGetResolverConfig) response is provided by
EZBREIFR. The response returns information about resolver setup information,
including the contents of the GLOBALTCPIPDATA file, if that file is defined. The
response constant, which is specified in the NMSHType field in the NMSHeader
data structure, follows the response name.

The general format of a resolver NMI response is as follows:
v The response header that is mapped by buffer header (NMSHeader) structure;

see Table 106 on page 574
v One or more response records

The response header contains the number of bytes required to contain all the
requested data (NMSHBytesNeeded). When the return code is ENOBUFS, use the
number of bytes value to allocate a larger request or response buffer and reissue
the request.

GetResolverConfig response contents: The GetResolverConfig response consists
of two records:

Chapter 14. Network management interfaces 575

v A setup record
v Optionally, a global TCPIP.DATA record

A global TCPIP.DATA record is provided whenever the GLOBALTCPIPDATA
resolver setup statement is specified in the resolver setup file, unless the resolver is
unable to access the file. For example, the global TCPIP.DATA record might be
provided if the MVS sequential file specified on the GLOBALTCPIPDATA
statement is being edited when the resolver attempts to read the file contents. The
resolver notifies you of the failure to read the global TCPIP.DATA file contents by
issuing message EZZ9297E UNABLE TO ACCESS FILE filename - RC returncode.
See z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM) for
information about this message and for suggestions about how to correct the file
access problems.

A setup record consists of a record header that contains six section descriptors (see
Table 109 for details) and one section of resolver configuration data.

Table 109. Setup record (NMSSetupRecord) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSSetupHeader 0 16 Binary Setup record heading mapping for setup
record. See Table 108 on page 574 for
details.

NMSSetupDataSection 16 12 Binary Setup data record section descriptor. The
server completes this field with
information describing the setup record
data section. This descriptor is described
by the NMSTriplet structure; see Table 106
on page 574 for details.

NMSSetupGlobalTcpipData 28 12 Binary Setup global TCPIP.DATA data record
section descriptor. The server completes
this field with information describing the
setup file name section that maps the
GLOBALTCPIPDATA statement. This
descriptor is described by the NMSTriplet
structure; see Table 106 on page 574 for
details.

NMSSetupDefaultTcpipData 40 12 Binary Setup default TCPIP.DATA data record
section descriptor. The server completes
this field with information describing the
setup file name section that maps the
DEFAULTTCPIPDATA statement. This
descriptor is described by the NMSTriplet
structure; see Table 106 on page 574 for
details.

NMSSetupGlobalIpnodes 52 12 Binary Setup global IPNODES record section
descriptor. The server completes this field
with information describing the setup file
name section that maps the
GLOBALIPNODES statement. This
descriptor is described by the NMSTriplet
structure; see Table 106 on page 574 for
details.

576 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 109. Setup record (NMSSetupRecord) structure (continued)

Field
Offset
decimal

Length in
bytes Format Description

NMSSetupDefaultIpnodes 64 12 Binary Setup default IPNODES record section
descriptor. The server completes this field
with information describing the setup file
name section that maps the
DEFAULTIPNODES statement. This
descriptor is described by the NMSTriplet
structure; see Table 106 on page 574 for
details.

NMSSetupFile 76 12 Binary Resolver setup file name. The server
completes this field with the name of the
optional resolver setup file name (either
an MVS data set or a z/OS UNIX file)
that contains resolver configuration
statements. This descriptor is described
by the NMSTriplet structure; see Table 106
on page 574 for details.

Table 110 describes the fields in the setup record data section (NMSSetupData)
structure.

Table 110. Setup record data section (NMSSetupData) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSSOptions 0 4 Binary Options that were specified in the resolver
setup file, if one is in use.
v bit 0 = CACHE
v bit 1 = NOCACHE
v bit 2 = CACHESIZE
v bit 3 = COMMONSEARCH
v bit 4 = NOCOMMONSEARCH
v bit 5 = DEFAULTIPNODES
v bit 6 = DEFAULTTCPIPDATA
v bit 7 = GLOBALIPNODES
v bit 8 = GLOBALTCPIPDATA
v bit 9 = MAXTTL
v bit 10 = UNRESPONSIVETHRESHOLD
v bit 11 = AUTOQUIESCE (see Note)
v bit 12 = CACHEREORDER
v bit 13 = NOCHACHEREORDER

NMSSDefaults 4 4 Binary Options that were not specified in the
resolver setup file but that have default
settings that were used.
v bit 0 = CACHE
v bit 2 = CACHESIZE
v bit 4 = NOCOMMONSEARCH
v bit 9 = MAXTTL
v bit 10 = UNRESPONSIVETHRESHOLD
v bit 13 = NOCACHEREORDER

Chapter 14. Network management interfaces 577

|
|

|

Table 110. Setup record data section (NMSSetupData) structure (continued)

Field
Offset
decimal

Length in
bytes Format Description

NMSSFlags 8 4 Binary Flag options that indicate which resolver
functions are active, based on the contents
of the resolver setup file.
v bit 0 = CACHE
v bit 1 = NOCACHE
v bit 3 = COMMONSEARCH
v bit 4 = NOCOMMONSEARCH
v bit 11= AUTOQUIESCE (see Note)
v bit 12 = CACHEREORDER
v bit 13 = NOCACHEREORDER

Reserved 12 4 N/A N/A

NMSSetupCacheSize 16 8 Binary CACHESIZE value, in numbers of bytes

NMSSetupMaxTTL 24 4 Binary MAXTTL value, in seconds

NMSSetupUnresponsiveThreshold 28 4 Binary UNRESPONSIVETHRESHOLD value

Note: If the GLOBALTCPIPDATA statement is not coded, although the NMSSOptions field indicates that the
AUTOQUIESCE operand is set in the resolver setup file, the NMSSFlags field will indicate that the AUTOQUIESCE
function is not active.

There are zero to five instances of setup record file name section
(NMSSetupFileNames) structure; see Table 111 for details about the fields. Each of
the instances either maps the resolver setup file name or one of the following four
resolver setup statements that specify a file name:
v GLOBALTCPIPDATA
v DEFAULTTCPIPDATA
v GLOBALIPNODES
v DEFAULTIPNODES

You must use the section descriptors that are described in Table 109 on page 576 to
identify the use of a given instance of the record file name section structure.

Table 111. Setup record file name section (NMSSetupFileNames) structure

Field
Offset
decimal Length in bytes Format Description

NMSSetupFileName 0 Variable EBCDIC Setup record file name

A global TCPIP.DATA record consists of the following sections:
v A record header that contains four section descriptors; see Table 112 on page 579

for details.
v One section of TCPIP.DATA configuration information from the

GLOBALTCPIPDATA file; see Table 113 on page 580 for details.
v Zero or more Domain Name System (DNS) name server IP addresses; see

Table 114 on page 582 for details.
Each DNS address represents a value that is coded on either a NSINTERADDR
or a NAMESERVER TCPIP.DATA statement. Use the settings in the
NMSGOptions field to identify which TCPIP.DATA statement was used to code
the addresses returned in the resolver NMI response. The resolver can return up
to sixteen DNS address sections.

578 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|

v Zero or more domain search names; see Table 115 on page 582 for details.
Each domain search name represents a value coded on a DOMAIN,
DOMAINORIGIN, or SEARCH TCPIP.DATA statement. Use the settings in the
NMSGOptions field to identify which TCPIP.DATA statement was used to set
the values mapped in the resolver NMI response. There can be up to six domain
search name sections. Names shorter than the value specified for the
NMSTLength in the NMSGtdNameSection field are padded with null characters.

v Zero or more DCBS table names; see Table 116 on page 582 for details.
Each table name represents a value coded on the LOADDBCSTABLES
TCPIP.DATA statement. The resolver can return up to nine table name sections.
Table names shorter than 8 characters are padded with null characters.

Table 112. Global TCPIP.DATA record (NMSGtdRecord) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSGtdHeader 0 16 Binary Record heading mapping for global
TCPIP.DATA record. See Table 108 on page
574 for details.

NMSGtdDataSection 16 12 Binary Resolver global TCPIP.DATA data section.
The server completes the field with
information describing the Network
Management global TCPIP.DATA record data
section. This descriptor is described by the
NMSTriplet structure; see Table 106 on page
574 for details.

NMSGtdNsadSection 28 12 Binary Resolver global TCPIP.DATA record
NAMESERVER values section. The server
completes the field with information
describing the global TCPIP.DATA record
DNS addresses section. This descriptor is
described by the NMSTriplet structure; see
Table 106 on page 574 for details.

NMSGtdNameSection 40 12 Binary Resolver global TCPIP.DATA record SEARCH
values section. The server completes the field
with information describing the global
TCPIP.DATA record domain search names
section. This descriptor is described by the
NMSTriplet structure; see Table 106 on page
574 for details.

NMSGtdLoadDbcsTables 52 12 Binary Resolver global TCPIP.DATA record
LOADDBCSTABLES values. The server
completes the field with information
describing global TCPIP.DATA record DCBS
table names section. This descriptor is
described by the NMSTriplet structure; see
Table 106 on page 574 for details.

Table 113 on page 580 describes the fields in the global TCPIP.DATA record data
section (NMSGtdData) structure.

Chapter 14. Network management interfaces 579

Table 113. Global TCPIP.DATA record data section (NMSGtdData) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSGOptions 0 8 Binary Options specified in the global TCPIP.DATA
file.
v Bit 0 = ALWAYSWTO NO
v Bit 1 = ALWAYSWTO YES
v Bit 2 = DATASETPREFIX
v Bit 3 = DOMAIN
v Bit 4 = DOMAINORIGIN
v Bit 5 = HOSTNAME
v Bit 6 = LOADDBCSTABLES
v Bit 7 = LOOKUP DNS
v Bit 8 = LOOKUP DNS LOCAL
v Bit 9 = LOOKUP LOCAL
v Bit 10 = LOOKUP LOCAL DNS
v Bit 11 = MESSAGECASE MIXED
v Bit 12 = MESSAGECASE UPPER
v Bit 13 = NOCACHE
v Bit 14 = NAMESERVER
v Bit 15 = NSINTERADDR
v Bit 16 = NSPORTADDR
v Bit 17 = OPTIONS DEBUG
v Bit 18 = OPTIONS NDOTS
v Bit 19 = RESOLVERTIMEOUT
v Bit 20 = RESOLVERUDPRETRIES
v Bit 21 = RESOLVEVIA TCP
v Bit 22 = RESOLVEVIA UDP
v Bit 23 = SEARCH
v Bit 24 = SOCKDEBUG
v Bit 25 = SOCKNOTESTSTOR
v Bit 26 = SOCKTESTSTOR
v Bit 27 = SORTLIST
v Bit 28 = TCPIPJOBNAME
v Bit 29 = TCPIPUSERID
v Bit 30 = TRACE RESOLVER
v Bit 31 = TRACE SOCKET
v Bit 32 = NOCACHEREORDER

NMSGDefaults 8 8 Binary The default values of the options specified
in the global TCPIP.DATA file.
v Bit 0 = ALWAYSWTO NO
v Bit 2 = DATASETPREFIX
v Bit 5 = HOSTNAME
v Bit 8 = LOOKUP DNS LOCAL
v Bit 11 = MESSAGECASE MIXED
v Bit 13 = NOCACHE
v Bit 16 = NSPORTADDR
v Bit 18 = OPTIONS NDOTS
v Bit 19 = RESOLVERTIMEOUT
v Bit 20 = RESOLVERUDPRETRIES
v Bit 22 = RESOLVEVIA UDP
v Bit 25 = SOCKNOTESTSTOR
v Bit 28 = TCPIPJOBNAME
v Bit 32 = NOCACHEREORDER

580 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|

Table 113. Global TCPIP.DATA record data section (NMSGtdData) structure (continued)

Field
Offset
decimal

Length in
bytes Format Description

NMSGFlags 16 8 Binary Flag options that indicate which capabilities
are in effect, based on the contents of the
global TCPIP.DATA file.
v Bit 0 = ALWAYSWTO NO
v Bit 1 = ALWAYSWTO YES
v Bit 7 = LOOKUP DNS
v Bit 8 = LOOKUP DNS LOCAL
v Bit 9 = LOOKUP LOCAL
v Bit 10 = LOOKUP LOCAL DNS
v Bit 11 = MESSAGECASE MIXED
v Bit 12 = MESSAGECASE UPPER
v Bit 13 = NOCACHE
v Bit 17 = OPTIONS DEBUG
v Bit 21 = RESOLVEVIA TCP
v Bit 22 = RESOLVEVIA UDP
v Bit 24 = SOCKDEBUG
v Bit 25 = SOCKNOTESTSTOR
v Bit 26 = SOCKTESTSTOR
v Bit 30 = TRACE RESOLVER
v Bit 31 = TRACE SOCKET
v Bit 32 = NOCACHEREORDER

NMSGtdHostName 24 64 EBCDIC HOSTNAME value. The name is padded
with null characters.

NMSGtdOptionsNdots 88 2 Binary OPTIONS NDOTS value.

NMSGtdNsPortAddr 90 2 Binary NSPORTADDR value.

NMSGtdResolverTimeout 92 4 Binary RESOLVERTIMEOUT value, in seconds.

NMSGtdResolverTimeoutMsecs 96 4 Binary RESOLVERTIMEOUT value, in
milliseconds.

NMSGtdResolverUdpRetries 100 4 Binary RESOLVERUDPRETRIES value

NMSGtdSortList (4) 104 32 Binary Up to four SORTLIST values.

Each individual SORTLIST entry contains
the following two values:
v Bits 0 - 31 = SORTLIST IPv4 address
v Bits 32 - 63 = SORTLIST network mask

NMSGtdTcpipNames 136 9 EBCDIC TCPIPJOBNAME or TCPIPUSERID value.
Use the settings in the NMSGOptions field
or the NMSGDefaults field to identify
which statement was used. The name is
padded with null characters.

NMSGtdDatasetPrefix 145 27 EBCDIC DATASETPREFIX value. The name is
padded with null characters.

Reserved 172 20 N/A N/A

Guideline: Do not specify OPTIONS DEBUG or TRACE RESOLVER in your global
TCPIP.DATA file.

Table 114 on page 582 describes the fields in the global TCPIP.DATA record DNS
addresses (NMSGtdDnsAddresses) structure.

Chapter 14. Network management interfaces 581

|

Table 114. Global TCPIP.DATA record DNS addresses (NMSGtdDnsAddresses) structure

Field
Offset
decimal

Length in
bytes Format Description

NMSGtdSockAddrs 0 28 Socket
address

DNS names server IP addresses.

Table 115 describes the fields in the global TCPIP.DATA record structure.

Table 115. Global TCPIP.DATA record structure

Field
Offset
decimal

Length in
bytes Format Description

NMSGtdSearchNameSize 0 2 Binary Length of domain search name.

NMSGtdSearchName 2 Variable EBCDIC Domain search name.

Table 116 describes the fields in the global TCPIP.DATA record DCBS table names
section (NMSGtdDbcsNames).

Table 116. Global TCPIP.DATA record DCBS table names section (NMSGtdDbcsNames)

Field
Offset
decimal

Length in
bytes Format Description

NMSGtdDbcsName 0 8 EBCDIC DBCS table name.

Resolver NMI: Request and response data structures
The resolver NMI request and response data structures for C/C++ and assembler
programs are located as shown in Table 117. The header files and macros are
included in the SEZANMAC data set. The header file is also included in the z/OS
UNIX file system directory, /usr/include. When you compile or assemble a
program in an MVS batch job, the SEZANMAC data set must be available in the
MVS batch job concatenation.

Table 117. Location of resolver NMI request and response data structures for C/C++ and assembler programs

Header file for C/C++ programs
Macros for assembler
programs Contents

EZBRENMC EZBRENMA The resolver callable NMI (EZBREIFR)
request and response data structure
definitions.

Resolver NMI: Examples
The following C/C++ code fragment shows how to format a request to obtain
current resolver configuration information:
/**/
/* */
/* NMI data definitions */
/* */
/**/
typedef struct {
NMSHeader NMIheader;
} NMIbuftype;
NMIbuftype *NMIbuffer;
unsigned int NMIalet;
int NMIlength;

582 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

int RV;
int RC;
unsigned int RSN;
#define NMIBUFSIZE 8192
NMIbuffer=malloc(NMIBUFSIZE);
NMIalet=0;
NMIlength=NMIBUFSIZE;
/**/
/* */
/* Format the header */
/* */
/**/
NMIbuffer->NMIheader.NMSHeaderIdent=NMSHIDENTIFIER;
NMIbuffer->NMIheader.NMSHeaderLength=sizeof(NMSHeader);
NMIbuffer->NMIheader.NMSHVersion=NMSHVERSION1;
NMIbuffer->NMIheader.NMSHType=NMSHGETRESOLVERCONFIG;
NMIbuffer->NMIheader.NMSHBytesNeeded=0;
/**/
/* */
/* Resolver NMI does not currently have filters */
/* */
/**/
NMIbuffer->NMIheader.NMSHInputDataDescriptors.\

NMSHFilters.NMSTOffset=0;
NMIbuffer->NMIheader.NMSHInputDataDescriptors.\

NMSHFilters.NMSTLength=0;
NMIbuffer->NMIheader.NMSHInputDataDescriptors.\

NMSHFilters.NMSTNumber=0;
/**/
/* */
/* Invoke NMI service */
/* */
/**/
NMService(NMIbuffer,&NMIalet,&NMIlength,&RV,&RC,&RSN);

The following assembler code fragment shows how to format a request to obtain
current resolver configuration information:
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

BAKR R14,R0 SAVE REGISTER
LARL R11,STATIC_AREA LTORG AND STATIC AREA
USING (STATIC_AREA,STATIC_AREA_END),R11 ADDRESSEBILITY
LA R0,WORKL LENGTH OF DYNAMIC STORAGE AREA
GETMAIN R,LV=(0) ALLOCATE DYNAMIC STORAGE
LR R13,R1 WHERE DID WE FIND IT
USING WORK,R13 ADDRESSABILITY FOR IT
L R0,=A(262344) 256K + 200 BYTES
GETMAIN RU,LV=(R0),LOC=ANY ALLOCATE NMI BUFFER AREA
LR R2,R1 SAVE ITS ADDRESS

* *
* FORMAT THE HEADER *

Chapter 14. Network management interfaces 583

* *

USING NMSHEADER,R2 BASE IT ON OBTAINED STORAGE
XC NMSHEADER(NMSHEADERSIZE),NMSHEADER CLEAR HEADER AREA
MVC NMSHEADERIDENT,=A(NMSHEADERIDENTIFIER) MOVE IN ITS ID
MVC NMSHEADERLENGTH,=A(NMSHEADERSIZE) SET HEADER SIZE
L R0,=A(NMSHCURRENTVER) CURRENT VERSION
STH R0,NMSHVERSION INTO HEADER FIELD
L R0,=A(NMSHGETRESOLVERCONFIG) RESOLVER CONFIG TYPE
STH R0,NMSHTYPE INTO HEADER FIELD
XC NMSHBYTESNEEDED,NMSHBYTESNEEDED CLEAR BYTESNEEDED

* *
* RESOLVER NMI DOES NOT CURRENTLY HAVE FILTERS *
* *

XC NMSHFILTERS,NMSHFILTERS CLEAR IT

* INVOKE RESOLVER NMI SERVICE *
* *

CALL EZBREIFR, *
((R2),NMIALET,NMILENGTH,RV,RC,RSN),MF=(E,WORK512)

PR RETURN
DROP R2
DROP R13
EJECT

STATIC_AREA DS 0D
MINUSONE DC F’-1’ RETURN VALUE INDICATES FAILURE
NMIALET DC A(0) NO ALET USED
NMILENGTH DC A(8192) 8K IS BIG ENOUGH

LTORG
STATIC_AREA_END DS 0D
WORK DSECT
WORK512 DS XL512 PARM LIST AREA
RV DC F’0’ RETURN VALUE
RC DC F’0’ RETURN CODE
RSN DC A(0) REASON CODE

LTORG ,
WORKL EQU *-WORK

EZBRENMA DSECT=YES,LIST=YES,TITLE=NO,NMSLIST=YES

SMF records
Installations can use Systems Management Facilities (SMF) records for purposes
such as performance management, capacity planning, auditing, and accounting.
z/OS Communications Server provides the following SMF record types:
v Type 109, Syslogd SMF records
v Type 118, event and interval records for TCP/IP and several applications; these

records are no longer enhanced
v Type 119, event and interval records for TCP/IP and several applications; these

records are continuing to be enhanced

These records can be processed from the MVS SMF data sets or from SMF exits.
Some of the records can also be processed programmatically by using the real-time
SMF NMI. See “Real-time TCP/IP network monitoring NMI” on page 527 for more
information. See Appendix C, “Type 109 SMF records,” on page 729, Appendix D,
“Type 118 SMF records,” on page 731, and Appendix E, “Type 119 SMF records,”
on page 743 for detailed layouts of the records.

For general information about the uses of SMF records see z/OS Communications
Server: IP Configuration Guide.

584 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

SMF type 109 records
SMF type 109 records are created by the syslog daemon (syslogd). TCP/IP server
applications and components use syslogd to write log messages and trace
messages. If $SMF is specified as a destination for the messages, then syslogd
creates an SMF type 109 record that contains the message. For information about
configuring syslogd to create SMF type 109 records, see the information about the
syslog daemon in z/OS Communications Server: IP Configuration Reference. See
Appendix C, “Type 109 SMF records,” on page 729 for the layout of the record.

SMF type 118 records
TCP/IP can create SMF type 118 records for certain events.

Tip: You should use SMF type 119 records instead of SMF type 118 records. SMF
type 118 records have been stabilized and no new information is being added to
them. SMF type 119 records include all the latest enhancements to SMF
information created by TCP/IP.

If you are running multiple stacks, SMF does not always allow you to distinguish
among them. Consider the following issues:
v There is no stack identity in SMF type 118 records. SMF records that are written

by the system address space or by standard servers may be identified as
belonging to one stack or another, based on address space naming conventions.

v SMF records written by client address spaces cannot be identified as belonging
to a single stack based on the address space naming conventions used in
standard servers.

v The only technique currently available to distinguish among records written by
various client address spaces is to assign unique SMF type 118 record subtype
intervals to each stack:
– FTP server: One or nine subtypes in FTP.DATA
– Telnet server: Two subtypes on TELNETPARMS
– API: Two subtypes on SMFPARMS
– FTP, Telnet client: One subtype on SMFPARMS

If you choose to assign subtypes, there will be an obvious impact on your local
accounting programs. SMF type 118 subtype changes and additions must be
coordinated with persons responsible for managing the use of SMF.

SMF type 118 records do not support IPv6 addresses. Thus, if you choose to exploit
IPv6 in your environment, migrate your SMF processing to use the SMF type 119
records, which do support IPv6 addresses.

An external mapping (EZASMF76 macro) is available for customers to parse the
SMF type 118 records that TCP/IP generates. EZASMF76 produces assembler level
DSECTs for the Telnet (server and client), FTP (server and client), and API SMF
records.

To create the Telnet SMF Record layout, code:
EZASMF76 TELNET=YES

To create the FTP SMF Record layout, code:
EZASMF76 FTP=YES

To create the API SMF Record layout, code:

Chapter 14. Network management interfaces 585

EZASMF76 API=YES

SMF type 119 records
SMF type 119 records contain unique stack identification sections designed to
eliminate the confusion of the type 118 records. They provide uniformity of date
and time (UTC), common record format (self-defining section and TCP/IP
identification section), and support for IPv6 addresses and expanded field sizes (64
bit versus 32 bit) for some counters. The following kinds of SMF type 119 records
are available:
v TCP connection initiation and termination
v UDP socket close
v TCP/IP interface and server port statistics
v TCP/IP stack start/stop
v FTP server transfer completion
v FTP server logon failure
v FTP client transfer completion
v TN3270E Telnet server session initiation and termination
v Telnet client connection initiation and termination
v IKE tunnel activation, refresh, and expire
v Dynamic tunnel activation, refresh, installation, and removal
v Manual tunnel activation and deactivation
v TCP/IP profile
v TN3270E Telnet server profile
v CSSMTP processing of configuration files, spool files, mail messages, connections

and statistical records
v DVIPAs and sysplex distributor targets
v Shared Memory Communication - RDMA (SMC-R) link initiation and

termination
v SMC-R link, link group, and interface statistics

The SMF type 119 records utilize a common structure. Each record is organized as
follows:
v SMF header
v Self-defining section containing pointers to:

– TCP/IP identification section (identifies system, stack etc)
– Sections containing the data for the record

You can parse the SMF type 119 records that TCP/IP generates by using macros
and header files.
v For assembler applications, use the following macros:

– EZASMF77, which is installed in SYS1.MACLIB.
– EZBNMMPA, which is installed in TCP/IP data set SEZANMAC. This macro

is needed only for the TCP/IP profile record.
v For C/C++ applications, use the following header files:

– ezasmf.h
– ezbnmmpc.h

This header file is needed only for the TCP/IP profile record.

586 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

These header files are installed in TCP/IP data set SEZANMAC, and in the
/usr/include file system directory.

The OpenSSH element of z/OS also creates SMF 119 records. The EZASMF77
macro and the ezasmf.h header file contain reserved SMF 119 record subtype
definitions for these records. For a description of these records, see z/OS OpenSSH
User's Guide.

SNA network monitoring NMI
z/OS Communications Server VTAM provides a single AF_UNIX socket interface
for allowing network management applications to obtain the following types of
data:
v Enterprise Extender (EE) connection data

This data contains information about all EE connections or a desired set of EE
connections as specified by the application using the local IP address or host
name, the remote IP address or host name, or both.

v Enterprise Extender summary data
This data contains information comprising a summary of EE activity for this
host.

v High Performance Routing (HPR) connection data
This data contains information about specific HPR connections Rapid Transport
Protocol physical units (RTP PUs) as specified by the application using either 1)
the RTP PU name, or 2) the RTP partner CP name with an optional APPN COS
specification. These RTP PUs are not limited to those using EE connections.

v Common Storage Manager (CSM) statistics
This data always contains CSM storage pool statistics and CSM summary
information and can optionally contain CSM storage owner statistics.

A client network management application polls for information through specific
requests using an AF_UNIX stream socket connection that uses VTAM as the
server for that socket. The requested data is provided to the application directly
using the AF_UNIX stream socket connection.

SNA network monitoring NMI configuration
The z/OS system administrator might restrict access to this interface by defining
the RACF (or equivalent external security manager product) resource
IST.NETMGMT.sysname.SNAMGMT in the SERVAUTH class (sysname represents
the MVS system name where the interface is being invoked).

For applications that use the interface, the MVS user ID is permitted to the defined
resource. If the resource is not defined, then only superusers (users permitted to
BPX.SUPERUSER resource in the FACILITY class) are permitted to it. If you are
developing a feature for a product to be used by other parties, include instructions
in your documentation indicating that either administrators must define and give
appropriate permission to the given security resource to use that feature, or you
must run your program as superuser.

Requirements:

v The administrator must define an OMVS segment for VTAM if one is not
already defined.

v The VTAM OMVS user ID must have write access to the /var directory.

Chapter 14. Network management interfaces 587

|
|
|
|

SNA network monitoring NMI: Enabling and disabling the
interface

You can enable the SNA Network Monitoring data interface by setting the VTAM
start option SNAMGMT to YES, and you can disable the interface by setting the
VTAM start option SNAMGMT to NO. The default for this start option is NO, and
the start option is modifiable after VTAM is started. This start option can be
specified in any of the following ways:
v Using the START command for VTAM

1. IBM default value is NO

2. Within the default VTAM start option list ATCSTR00 (ATCSTR00 is always
used regardless of whether LIST=xx was entered to specify a supplemental
VTAM start option list)

3. Within the supplemental VTAM start list (ATCSTRxx, if LIST=xx entered) as
SNAMGMT=YES or SNAMGMT=NO

4. From the backup start option list (specified by the LISTBKUP start option)
5. START command options entered by operator as SNAMGMT=YES or

SNAMGMT=NO
6. START command options reentered by the operator
See Sources of start options in z/OS Communications Server: SNA Network
Implementation Guide for more information.

v Using the MODIFY VTAMOPTS command
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=YES
MODIFY vtamprocname,VTAMOPTS,SNAMGMT=NO

The current value of the SNAMGMT start option is displayable using any of the
following VTAM DISPLAY commands:

DISPLAY NET,VTAMOPTS
DISPLAY NET,VTAMOPTS,OPTION=SNAMGMT
DISPLAY NET,VTAMOPTS,FUNCTION=VTAMINIT

SNA network monitoring NMI: Communicating with the server
Applications that need to communicate with the VTAM AF_UNIX server can do so
by creating an AF_UNIX stream socket using either the Language Environment
C/C++ API or UNIX System Services BPX callable services. The VTAM server
provides a well-known AF_UNIX stream socket with a socket path name of
/var/sock/SNAMGMT that applications can use in connecting to the server.

Perform the following steps to communicate with the VTAM server:
1. Open an AF_UNIX socket.
2. Connect to the VTAM server using the socket path name /var/sock/

SNAMGMT.
3. Read any data on the socket.
4. Build the NMI request packet.
5. Send the packet to the VTAM server.
6. Read the reply.
v If the reply is a termination record, perform any application cleanup.
v If the reply is a response to the request, process the response.

7. Repeat the process beginning with step 4 or close the connection.

588 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Tips:

v When an application establishes a successful connection to the VTAM server, the
server responds by sending an initialization record to the application. The
application must read this record before it can start processing request
responses.

v When VTAM needs to close the connection with the application, it attempts to
send a termination record to the application before closing the connection.
VTAM closes the connection when VTAM terminates, when the interface is
disabled by an operator, or when there are severe formatting errors in the data
requests sent by the application to the VTAM server.

v Both the initialization and termination records conform in structure to the
solicited response records sent by VTAM to the application; see “SNA network
monitoring NMI request/response format” for details.

SNA network monitoring NMI request/response format
This interface uses a request/response method over the socket. The application
builds and sends an NMI request over the socket. The request specifies the type of
information to be received and might contain data filters. The application must
issue a receive to get the NMI response over the socket. The NMI response
provides either 1) data that satisfies the request (matching any input filters
specified on the request), or 2) an error response. A severe formatting error in the
application's NMI request results in VTAM sending a termination record and
closing the connection.

The SNA Network Management Interface provides the formatted response data
directly to the application over the AF_UNIX socket. This is in contrast to the
NMIs described in “Real-time TCP/IP network monitoring NMI” on page 527,
which return a token to a response buffer that the application must use as input to
one of the TMI copy buffer interfaces, to obtain the formatted response data.

The NMI request and response mappings are provided for programming to this
interface.

SNA network monitoring NMI request format
All SNA NMI requests flow on the socket from the client application to the VTAM
server. The general format of an SNA NMI request is:
v The request header includes the request type and the request section descriptors

(triplets). The following request types can be made:
– EE Connection Request — obtain information about some or all Enterprise

Extender connections.
– EE Summary Request — obtain summary information about all Enterprise

Extender connections.
– HPR Connection Request — obtain information about one or more HPR

connections.
– CSM Statistics Request — obtain information about global CSM statistics and

optionally, about CSM storage owner statistics.
A triplet consists of the offset (in bytes) of the request section relative to the
beginning of the request header, the number of elements in the request section,
and the length of a request section element.

v The request sections. The only type of request section that can be specified is a
filter element.
– In an EE Connection Request, either zero or one filter element can be

included. The set of all EE connections can be selected either by not including

Chapter 14. Network management interfaces 589

a filter element in the request or by supplying a filter element with no filter
parameters specified. A subset of EE connections can be selected by supplying
a filter element that includes any combination of the filter parameters in
Table 118. z/OS Communications Server does not perform name resolution (to
an IP address) on any supplied host name, but simply looks for connections
that were established using the given host name.

Table 118. EE connection request filter parameters

Parameter Description

Local Hostname An EBCDIC name, right-padded with nulls or blanks if less
than 64 characters long (applicable to CS for z/OS version
V1R5 and later releases only). The Local Hostname parameter
is ignored if Local IP Address is specified.

Local IP Address A 32-bit IPv4 address or a 128-bit IPv6 address. (IPv6 address
is applicable to z/OS Communications Server V1R5 and later
releases only.)

Remote Hostname An EBCDIC name, right-padded with nulls or blanks if less
than 64 characters long. The Remote Hostname parameter is
ignored if a Remote IP Address value is specified.

Remote IP Address A 32-bit IPv4 address or a 128-bit IPv6 address. (IPv6 address
is applicable to z/OS Communications Server V1R5 and later
releases only).

– An EE Summary Request cannot contain any filter elements; no filters are
applicable to an EE summary request.

– In an HPR Connection Request, you select a subset of HPR connections based
on any combination of the following items that includes, at a minimum,
either the RTP PU Name or the Partner CP Name (1 - 4 filter elements can be
specified per request):

RTP PU Name An EBCDIC name, right-padded with nulls or blanks if less
than 8 characters long.

Partner CP Name A fully qualified EBCDIC name, right-padded with nulls or
blanks if less than 17 characters long. Partner CP Name is
ignored if RTP PU Name is specified. If a network identifier is
not supplied, the Partner CP Name is qualified with the host's
network ID.

Use a question mark (?) as a wildcard for a single character or
an asterisk (*) as a wildcard for zero or more characters.

For example, the value A?C* matches all names with a first
character equal to A and a third character equal to C, but does
not match 2-character names or names beginning with
characters B through Z.

To request all known connections, use the string *.*. To request
all known connections in the same network as this host, use as
asterisk (*).

COS Name An EBCDIC name, right-padded with nulls or blanks if less
than 8 characters long. COS is ignored if RTP PU Name is
specified.

– A CSM Statistics Request can contain 1 – 4 filter elements to request CSM
storage ownership statistics. To request statistics about all users that own
CSM storage, include a filter element in the request that has an ASID set to

590 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

the value 0. To request statistics about a subset of users that own CSM
storage, supply filter elements that include a nonzero value filter parameter in
Table 119.
If no filter element is provided on the CSM Statistics Request, no CSM storage
ownership statistics are included in the response. The CSM Global Pool
Output Section record and the CSM Summary Output Section record are
always returned as part of a CSM Statistics Response, regardless of whether
filters are included on the request or not.

Restriction: ASID filter parameters are applicable only to z/OS
Communications Server V1R11 and later. If the initialization record that was
received by the client when the connection was opened specifies that CSM
Statistics Request filters are not supported by this VTAM level (any VTAM
level prior to z/OS V1R11), then the server rejects any request that contains a
filter on the CSM Statistics Request.

ASID A 16-bit integer.

Specify the ASID value 0 to request all storage owner statistics.

Table 119 shows which filter parameters are required, optional, or not applicable
(N/A) for each request type. If you specify inapplicable filters for a particular
request type, an EE Connection Request, HPR Connection Request, or CSM
Statistics Request, they are ignored. EE Summary Requests that contain filter
elements are rejected by VTAM.

Table 119. Required filter parameters

Request Type Local IP Address or
Hostname

Remote IP Address
or Hostname

RTP PU name or
Partner CP name

COS name ASID

EE Connection
Request

Optional; Local
Hostname ignored if
local IP address is
specified

Optional; Remote
Hostname is ignored
if remote IP address
is specified

N/A N/A N/A

EE Summary
Request

N/A N/A N/A N/A N/A

HPR
Connection
Request

N/A N/A One is required;
Partner CP name
ignored if RTP PU
name is specified

Optional;
ignored if RTP
PU name is
specified

N/A

CSM Statistics
Request

N/A N/A N/A N/A Optional; if a
filter is
provided, an
ASID value is
required

Every valid request record that is sent to VTAM by the client has the following
general request format structure:

Common Request/Response Header

Input Triplet information: a single triplet is defined

v Offset from start of request header to first input section

v Length of each input section of this type

v Number of input sections of this type

Chapter 14. Network management interfaces 591

Start of input information (offset from the start of the request header to this data indicated
in the Input Triplet)

SNA network monitoring NMI response format
All SNA NMI responses flow on the socket from the VTAM server to the client
application. The general format of an NMI response is as follows:
v The response header, which includes the response type, the return code and

reason code, the request section descriptors (triplets), and the response section
descriptors (quadruplets). A quadruplet consists of the offset (in bytes) of the
response section relative to the beginning of the response header, a reserved
field, the number of elements in the response section, and the total number of
elements that passed the request filter checks.

Tip: This last field in the quadruplet is applicable only to responses that have a
corresponding request. Initialization and termination records do not have
corresponding requests. Therefore, this field is reserved and is set to the value 0
on responses that contain initialization and termination records.

v The request sections.
v The response sections.

– Response sections of the following solicited response types are returned if
data is found that matches the corresponding filtered or unfiltered request (if
no matches were found, no response data sections are returned):
- EE connection information
- EE summary information
- HPR connection information
- CSM statistics information

– An initialization record always contains a single response section.
– A termination record does not contain a response section (all information is

contained within the response header).

The NMI response section consists of one or more records that contain information
that passed the request filter checks.

The general format of an NMI response section record is as follows:
v The record header, which contains the overall length of the record and one or

more subrecord descriptors (triplets). The record triplet consists of the offset in
bytes, relative to the start of the response section record, for the first instance of
a given subrecord; the length in bytes of this particular subrecord; and the total
number of instances of this subrecord.

v The subrecord sections that are associated with this response section record.

An application that navigates an NMI response must use the overall length value
in the response section record to move to the next variable length record. The
application should use the response section record triplet data to navigate within
the record itself.

The following response section records are returned for the solicited response
types:
v EE Summary Response

1. One EE Summary Global Data Section record
2. One or more EE Summary IP Address Data Section records

592 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v EE Connection Response
1. One or more EE Connection Data Section records

v HPR Connection Response
1. One HPR Connection Global Data Section record
2. One or more HPR Connection Specific Data Section records

v CSM Statistics Response
1. One CSM Global Pool Output Section record
2. One CSM Summary Output Section record
3. Zero or one CSM Storage Owner Output Section record

Every response record sent by VTAM to the client looks like the format that
follows.

Common Request/Response Header

Input Triplet information (copied from corresponding request, if any): a single triplet is
defined.

v Offset from start of response data to first input record

v Length of each input section of this type

v Number of input sections of this type

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Number of output records included in this response. If this value is less than the
number of records matching the filters supplied on the corresponding request (if any),
then some data was not reported as the result of storage constraints.

v Number of output records matching the filters supplied on corresponding request, if any

Start of input information (copied from corresponding request, if any — offset from start of
response data saved in Input Triplet)

Start of output information (offset from start of response data saved in Output Quadruplet)

SNA network monitoring NMI request and response data
structures and records
The SNA network monitor request and response data structures for C/C++ and
assembler programs are located as follows:

Header files for C/C++
programs

Macros for assembler
programs

Contents

ISTEEHNC ISTEEHNA The NMI request and
response header,
initialization record, and
termination record structure
definitions

ISTEESUC ISTEESUA The EE summary response
data structure definitions

ISTEECOC ISTEECOA The EE connection response
data structure definitions

ISTHPRCC ISTHPRCA The HPR connection
response data structure
definitions

Chapter 14. Network management interfaces 593

Header files for C/C++
programs

Macros for assembler
programs

Contents

ISTCSMGC ISTCSMGA The CSM statistics response
data structure definitions

These header files and macros are included in SYS1.MACLIB. This data set must
be available in the concatenation when compiling or assembling a part that makes
use of these definitions.

SNA network monitoring NMI initialization record:
The structure of the initialization record follows.

Enterprise Extender initialization record format

Common Request/Response Header

Input Triplet information (no corresponding input request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type: 0

v Number of input sections of this type: 0

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Number of output records included in this response: 1

v 0

Start of output information (offset from start of response data saved in Output
Quadruplet), specifically one:

v Enterprise Extender initialization record

Record Identifier (4 characters): NMII

VTAM Level, from ATCVT (8 bytes)

TOD VTAM Started, from ATCVT (8 bytes)

SNA Network Management Component Name: SNAMGMT

Functions Supported (8 bits)

v IPv6 addresses supported (1 bit)

– 0 = IPv6 addresses not supported

– 1 = IPv6 addresses supported

v Local Hostname filter parameter supported (1 bit)

– 0 = Local Hostname filter parameter not supported

– 1 = Local Hostname filter parameter supported

v CSM Statistics filters supported (1 bit)

– 0 = Filters are not accepted on the CSM Statistics request

– 1 = Filters are accepted on the CSM Statistics request

v Reserved (5 bits): '00000'B

Reserved (15 bytes): 0

SNA network monitoring NMI termination record:
The following table describes the structure of the termination record. The
termination record contains no output data other than the return code and reason
code in the response header.

594 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Enterprise Extender termination record format

Common Request/Response Header

Input Triplet information (no corresponding input request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type: 0

v Number of input sections of this type: 0

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Number of output records included in this response: 0

v 0

SNA network monitoring NMI EE summary response record:
The structure of the EE Summary response follows.

Enterprise Extender Summary Response format

Common Request/Response Header

Input Triplet information (copied from request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type

v Number of input sections of this type

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0 (because the records that follow are variable length records)

v Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was
not reported due to storage constraints)

v Number of output records matching the filters supplied on the corresponding request

Start of input information (copied from request, offset from start of response data saved in
Input Triplet)

Start of output information (offset from start of response data saved in Output
Quadruplet), specifically a collection of:

v Enterprise Extender Summary Global Output Record (one instance)

v One or more Enterprise Extender Summary IP Address Output Records (one instance
per IP address being reported)

Enterprise Extender Summary Global Output Record

Record Identifier (4 characters) — EESG

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 1

Output Record Triplet information

v Offset from start of the record to first section of this type within the output record (4
bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender Summary static information section (one instance)

Chapter 14. Network management interfaces 595

Enterprise Extender Summary IP Address Output Record

Record Identifier (4 characters): EESI

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 2

Output Record Triplet information

v Offset from start of the record to first section of this type within the output record (4
bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender Summary IP address information section (one instance)

Start of Enterprise Extender Summary Hostname information section (one per host name
used to obtain this IP address, zero if no host name resolution was performed)

SNA network monitoring NMI EE connection response record:
The structure of the response record is as follows:

Common Request/Response Header

Input Triplet information (copied from request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type

v Number of input sections of this type

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Total number of output records

v Number of output records included in this response (if this value is not equal to total,
then some data was not reported)

Start of input information (copied from request, offset from start of response data saved in
Input Triplet)

Start of output information (offset from start of response data saved in Output
Quadruplet), specifically a collection of:

v One or more Enterprise Extender Connection Specific Output Records (one instance per
EE connection reported)

Enterprise Extender connection-specific output record

Record Identifier (4 characters): EECO

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 6

Output Record Triplet information

v Offset from start of the record to first section of this type within the output record (4
bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of Enterprise Extender connection static information section (one instance)

596 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Enterprise Extender connection-specific output record

Start of one or more Enterprise Extender connection hostname sections (0–2 possible
instances, one for local and one for remote host name if applicable)

Start of Enterprise Extender connection associated VRN name section (one instance,
included only if the EE connection is across a virtual routing node)

Start of one or more Enterprise Extender connection associated RTP PU name sections (one
instance per RTP PU that is using this EE connection)

Start of one or more Enterprise Extender connection health verification sections (one
instance per route that is used by the EE connection, included only if EE health verification
is available)

Start of Enterprise Extender connection health verification policy-based routing (PBR)
section (one instance, included only if the EE connection is using PBR and it is available)

SNA network monitoring NMI HPR connection response record:

HPR Connection Response format

Common Request/Response Header

Input Triplet information (copied from request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type

v Number of input sections of this type

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was
not reported as the result of storage constraints)

v Number of output records matching the filters supplied on the corresponding request

Start of input information (copied from request, offset from start of response data saved in
Input Triplet)

Start of output information (offset from start of response data saved in Output
Quadruplet), specifically a collection of:

v HPR Connection Global Output Record (one instance)

v One or more HPR Connection Specific Output Records (one instance per HPR
connection reported)

HPR Connection Global Output Record

Record Identifier (4 characters): HPRG

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 1

Output Record Triplet information

v Offset from start of the response data to first section of this type within the output
record (4 bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of HPR Connection Global data

Chapter 14. Network management interfaces 597

HPR Connection Specific Output Record

Record Identifier (4 characters): HPRC

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 3

Output Record Triplet information

v Offset from start of the record to first section of this type within the output record (4
bytes

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of HPR Connection static information section (one instance)

Start of HPR Connection Route Selection Control Vector (SNA Control Vector X'2B') section
(one instance, potentially none if connection is in the process of performing a pathswitch)

Start of HPR Connection Pathswitch information section (present only if pathswitch had
ever occurred on this connection, one instance if present)

SNA network monitoring NMI CSM statistics response record:
The structure of the CSM Statistics response is as follows:

CSM Statistics Response format

Common Request/Response Header

Input Triplet information (copied from request): a single triplet is defined.

v Offset from start of response data to first input section

v Length of each input section of this type

v Number of input sections of this type

Output Quadruplet information: a single quadruplet is defined.

v Offset from start of response data to first output record

v 0

v Number of output records included in this response (if this value is less than number of
records matching the filters supplied on the corresponding request, then some data was
not reported as the result of storage constraints)

v Number of output records matching the filters supplied on the corresponding request

Start of input information (copied from request, offset from start of response data saved in
Input Triplet)

Start of output information (offset from start of response data saved in Output
Quadruplet), specifically a collection of:

v CSM Global Pool Output Section record that contains multiple CSM Global Buffer Pool
Data data records (CSMPoolGData), one per pool

v CSM Summary Output Section record that contains a single CSM Summary Data record
(CSMSummGData) that represents CSM system-wide summary information

v (optionally) CSM Storage Owner Output Section record that contains one or more CSM
Storage Owner Data records (CSMStorOData), one per reported owner

CSM Global Pool Output Section Record

Record Identifier (4 characters): CSMP

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 1

598 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

CSM Global Pool Output Section Record

Output Record Triplet information

v Offset from start of the response data to first section of this type within the output
record (4 bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of CSM Global Buffer Pool Data records (CSMPoolGDdata), one per CSM pool

CSM Summary Output Section Record

Record Identifier (4 characters): CSMS

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 1

Output Record Triplet information

v Offset from start of the response data to first section of this type within the output
record (4 bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of CSM Summary Data record (CSMSummGData), one single system wide record

CSM Storage Owner Output Section Record

Record Identifier (4 characters): CSMO

Length of overall record (4 bytes)

Reserved field (2 characters)

Number of triplets for this output record (2 bytes): 1

Output Record Triplet information

v Offset from start of the response data to first section of this type within the output
record (4 bytes)

v Length of every section of this type within the output record (2 bytes)

v Number of output sections of this type within the output record (2 bytes)

Start of CSM Storage Owner Data records (CSMStorOData), one per reported owner

NMI request errors
The following table describes the errors in an NMI request for which VTAM sends
a termination record with the given return code and reason code, and then closes
the connection.

Return Code Reason Code Meaning

EINVAL (121) X'00007110' Request header too short.

EINVAL (121) X'00007111' Unsupported version number in request header.

EINVAL (121) X'00007112' Triplet format is not valid; first request section is
not contiguous to request header.

EINVAL (121) X'00007112' Triplet format is not valid; length of the filter
element is insufficient for the request.

EINVAL (121) X'00007113' Length of request header plus length of request
sections does not equal total length of request.

Chapter 14. Network management interfaces 599

Return Code Reason Code Meaning

EINVAL (121) X'00007114' Eyecatcher in request header is not valid.

The following table describes the error in an NMI request for which VTAM returns
a negative response of the same type as the request. VTAM leaves the connection
active after returning the negative response for these errors.

Return Code Reason Code Meaning

EINVAL (121) X'00007115' Unrecognized request type.

EINVAL (121) X'00007116' Too many filter elements (request sections)
included for request type.

EINVAL (121) X'00007117' Too few filter elements (request sections)
included for request type.

EINVAL (121) X'00007118' Undefined filter parameter indicator set in filter
element.

EINVAL (121) X'00007119' Required filter parameter missing from filter
element.

EINVAL (121) X'0000711A' Unsupported filter parameter indicator set in
filter element.

EINVAL (121) X'0000711B' Request not valid for HPR or EE information in
a pure subarea VTAM node.

EINVAL (121) X'0000711C' Request not valid for HPR or EE information if
VTAM was started with HPR=NONE start
option.

TCP/IP callable NMI (EZBNMIFR)
z/OS Communications Server provides a high-speed low-overhead callable
programming interface for network management applications to access data related
to the TCP/IP stack. Use the EZBNMIFR network management interface to
perform the following functions:
v Drop one or more TCP connections
v Drop one or more UDP endpoints
v Monitor Shared Memory Communications over Remote Direct Memory Access

link groups and links within each group
v Monitor TCP or UDP endpoints
v Monitor TCP/IP stack interface and global statistics
v Monitor TCP/IP stack profile statement settings
v Monitor TCP/IP storage
v Monitor TCP/IP sysplex networking data
v Monitor TN3270E Telnet server performance
v Obtain configuration data of active FTP daemons
v Obtain configuration data of active TN3270E severs

This section describes the details for invoking the EZBNMIFR interface with the
defined input parameters and for processing the output it provides. The following
topics are addressed:
v “EZBNMIFR overview” on page 601

600 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v “EZBNMIFR: Configuration and enablement” on page 602
v “Using the EZBNMIFR requests” on page 602
v “TCP/IP NMI request format” on page 606
v “TCP/IP NMI response format” on page 618
v “TCP/IP NMI request and response data structures” on page 627
v “TCP/IP NMI examples” on page 628

EZBNMIFR overview
You can invoke the EZBNMIFR interface to perform two types of requests:
poll-type requests and action-type requests.

EZBNMIFR: Poll-type requests
For poll-type requests, EZBNMIFR is a callable interface that returns data related
to the TCP/IP stack at a given point in time. In most cases, the caller can specify
filters that limit the returned data to a specific set of information.

Poll-type requests enable you to obtain the following types of information from the
TCP/IP stack:
v Active TCP connections
v Active UDP endpoints
v Active TCP listeners
v TCP/IP storage utilization
v TN3270E Telnet server monitor groups
v TN3270E Telnet server connection performance data
v Sysplex XCF data
v Dynamic VIPA addresses
v Dynamic VIPA port distribution
v Dynamic VIPA routes
v Dynamic VIPA connections
v TCP/IP profile statement settings
v Interface attributes and IP addresses
v Interface standard and extended statistics
v TCP/IP stack global statistics
v FTP daemon configuration
v TN3270E Telnet server profile statement settings
v Active SMC-R link groups and links within each group

EZBNMIFR: Action-type requests
Requests to drop TCP connections or UDP endpoints are requests for an action.
The caller must specify the connection identifier, local IP address, local port,
remote IP address and remote port for the TCP connections, or local IP address
and local port for UDP endpoints to drop. The remote IP address, remote port, and
connection identifier are ignored for UDP endpoints.

The callable interface that drops a TCP connection or UDP endpoint is similar to
the Netstat DRop/-D command, which can be invoked from the TSO, z/OS UNIX,
and MVS operator environments. The major difference is that the callable interface
can drop multiple connections at a time. The caller must specify the connection
identifier, local IP address, local port, remote IP address, and remote port for TCP
and local IP addresses and local port for UDP endpoints.

Chapter 14. Network management interfaces 601

Tip: When a TCP connection or UDP endpoint is dropped, the associated socket is
not closed. The application that owns the associated socket must close the socket.

The following action-type request tells the TCP/IP stack to perform an action:
v Drop TCP connections or UDP endpoints

EZBNMIFR: Configuration and enablement
There is no configuration required to enable this interface when it is used as a
poll-type interface.

Authorization to drop a TCP connection or UDP endpoint is identical to the TSO,
z/OS UNIX, and MVS Operator Netstat Drop commands. An application can use
this interface to drop a TCP connection or UDP endpoint only if the
MVS.VARY.TCPIP.DROP security profile in the OPERCMDS class is defined and
the user ID associated with the application is permitted to this resource. Therefore,
if a user ID is already permitted to issue Netstat DRop/-D, the user ID can use the
EZBNMIFR callable interface to drop a TCP connection or UDP endpoint.

Using the EZBNMIFR requests
This material describes how to use EZBNMIFR requests with the TCP/IP stack or
the TN3270E Telnet server.

EZBNMIFR requirements

Minimum authorization: Supervisor state, executing in system key, APF-authorized, or
superuser

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=SASN=HASN

AMODE: 31-bit or 64-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Not applicable

Control parameters: Must be in an addressable area in the primary address space and
must be accessible using the execution key of the caller

EZBNMIFR format
Invoke EZBNMIFR, as follows.

For C/C++ callers:
NWMServices(JobName,

RequestResponseBuffer,
&RequestResponseBufferAlet,
&RequestResponseBufferLength,
&ReturnValue,
&ReturnCode,
&ReasonCode);

For assembler callers:
CALL EZBNMIFR,(JobName,

RequestResponseBuffer,
RequestResponseBufferAlet,

602 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RequestResponseBufferLength,
ReturnValue,
ReturnCode,
ReasonCode)

EZBNMIFR parameters
JobName

Supplied and returned parameter.

Type: Character

Length: Doubleword

The name of an 8-character field that contains the EBCDIC job name of the
target TCP/IP stack or TN3270E Telnet server. If the first character of the
supplied job name is an asterisk (*), the call is made to the first active
TCP/IP stack and its job name is returned.

Tips:

v You can use the GetTCPListeners request to find all active TN3270E
Telnet servers. The returned listener list indicates which application
names are TN3270E Telnet server-type applications. Use the results from
all TCP/IP stacks to determine which TN3270E Telnet servers have
affinity to a particular stack and which servers have no affinity.

v For the GetFTPDaemonConfig request, you can use the GetTCPListeners
request to find all the active FTP daemons. The application data in the
returned listener list indicates which applications are FTP daemon
applications. See GetFTPDaemonConfig (NWMFTPDConfigType) for
more information. Use the results from all TCP/IP stacks to determine
which FTP daemons have affinity to a particular stack and which servers
have no affinity.

RequestResponseBuffer
Supplied parameter

Type: Character

Length: Variable

The name of the storage area that contains an input request. The input
request must be in the format of a request header (NWMHeader) as
defined in the EZBNMRHA macro or EZBNMRHC header file. On
successful completion of the request, the storage will contain an output
response in the same format.

Rule: For C/C++ applications, the LANGLVL(EXTENDED) compiler
option must be specified because of the definition of anonymous unions in
header file EZBNMRHC.

RequestResponseBufferAlet
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the ALET of RequestResponseBuffer. If
a nonzero ALET is specified, the ALET must represent a valid entry in the
caller's dispatchable unit access list (DU-AL).

Chapter 14. Network management interfaces 603

RequestResponseBufferLength
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the request/response
buffer. If the buffer length is too short to contain all of the requested
information, the request fails with the return code ENOBUFS. The length
that is needed to contain all of the information is provided in the
NWMHeader data structure of the response, in the NWMBytesNeeded
field. If the buffer length is not the minimum size for the request, the
request fails with the return code ENOBUFS, but the value that is needed
is not provided in the NWMBytesNeeded field. The minimum size is the
length of the NWMHeader data structure.

ReturnValue
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBNMIFR service returns one of the
following values:
v 0 or positive, if the request is successful. A value greater than 0 indicates

the number of output data bytes copied to the response buffer. See
“TCP/IP NMI response format” on page 618 for additional details about
processing request completions.

v -1, if the request is not successful.

ReturnCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBNMIFR service stores the return
code (errno). The EZBNMIFR service returns ReturnCode only if
ReturnValue is -1.

ReasonCode
Returned parameter.

Type: Integer

Length: Fullword

The name of a fullword in which the EZBNMIFR service stores the reason
code (errnojr). The EZBNMIFR service returns ReasonCode only if
ReturnValue is -1. ReasonCode further qualifies the ReturnCode value.

Table 120 on page 605 shows the return codes and reason codes that the
EZBNMIFR service sets.

604 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 120. EZBNMIFR service return codes and reason codes

ReturnValue ReturnCode ReasonCode Meaning

0 0 0 The request was successful.

-1 ENOBUFS JRBuffTooSmall The request was not successful. The
request/response buffer is too small to
contain all of the requested information.
Some of the requested information might be
returned.

If the buffer was large enough for some
information to be returned, the NWMHeader
NWMBytesNeeded field might contain the
buffer size needed to return all of the
requested information. See the description of
the RequestResponseBufferLength parameter
for an explanation of when the
NWMBytesNeeded value is provided.

-1 EACCES JRSAFNotAuthorized The request was not successful. The caller is
not authorized. For the DropConnection
request, this might be returned if the user is
not permitted to the MVS.VARY.TCPIP.DROP
security profile in the OPERCMDS class.

-1 EAGAIN JRTCPNOTUP The request was not successful. The target
TCP/IP stack or TN3270E Telnet server was
not active.

-1 EAGAIN JRMustBeSysplex The request was not successful. The target
TCP/IP stack has not joined a sysplex.

-1 EFAULT JRReadUserStorageFailed The request was not successful. A program
check occurred while copying input
parameters, or while copying input data
from the request/response buffer.

-1 EFAULT JRWriteUserStorageFailed The request was not successful. A program
check occurred while copying output
parameters, or while copying output data to
the request/response buffer.

-1 EINVAL JRInvalidValue The request was not successful. A value that
is not valid was specified in the
request/response header.

-1 EINVAL JRInvalidFilter The request was not successful. A filter
specified is not valid. This ReasonCode is set
only by the GetFTPDaemonConfig request.
This request requires one input filter that
contains the ASID of the FTP daemon
address space.

-1 ETCPERR JRTcpError The request was not successful. An
unexpected error occurred.

Network management applications can use any of the following methods to invoke
the EZBNMIFR service:
v Issue a LOAD macro to obtain the EZBNMIFR service entry point address, and

then CALL that address. The EZBNMIFR load module must be in a linklist data
set (for example, the SEZALOAD load library of TCP/IP), or in the LPA.

Chapter 14. Network management interfaces 605

v Issue a LINK macro to invoke the EZBNMIFR service. The EZBNMIFR load
module must be in a linklist data set (for example, the SEZALOAD load library
of TCP/IP), or in the LPA.

v Link-edit EZBNMIFR directly into the application load module, and then CALL
the EZBNMIFR service. Include SYS1.CSSLIB(EZBNMIFR) in the application
load module link-edit.

v For 64-bit C/C++ applications, link-edit the EZBNMIF4 program directly into
the application load module, and then invoke NWMServices. Include
SYS1.CSSLIB(EZBNMIF4) in the application load module link-edit.

TCP/IP NMI request format
The following section describes the format and details of the poll-type requests
provided with EZBNMIFR. A second section describing action-type requests
follows.

Format and details for poll-type requests
The following poll-type requests are provided by EZBNMIFR. The request
constant, which is specified in the NWMType field in the NWMHeader data
structure, follows the request name. Some requests support filters. See “Filter
request section” on page 611 for a description of each filter and the information
about which filters are supported by each request.
v GetConnectionDetail (NWMTcpConnType)

Use this request to obtain information about active TCP connections, including
SMC-R information for TCP connections that traverse SMC-R links.
Guideline: When you use filters with this request, you can experience a
performance improvement in retrieving the connection details if every filter
contains a 4-tuple (local address, local port, remote address and remote port) for
a connection. Additional filter values can be specified in each filter along with
the 4-tuple.

v GetDVIPAConnRTab (NWMDvConnRTabType)

Use this request to obtain information about dynamic virtual IP addresses
(DVIPA) connections. This call returns a list of IPv4 and IPv6 DVIPA TCP
connections. Entries are returned for the following:
– All DVIPA interfaces for which MOVEABLE IMMEDIATE or

NONDISRUPTIVE was specified.
– On a sysplex distributor routing stack, every connection that is being routed

through this distributor.
– On a stack taking over a DVIPA, every connection to the DVIPA.
– On a sysplex distributor target stack or a stack that is in the process of giving

up a DVIPA, every connection for which the stack is an endpoint.

If none of these apply, then an empty response buffer is returned with a
successful reason value, return code, and reason code. If the invoked TCP/IP
stack has not joined a sysplex, then return value -1, return code EAGAIN, and
reason code JRMustBeSysplex are returned without any other data.

v GetDVIPAList (NWMDvListType)

Use this request to obtain information about dynamic virtual IP addresses
(DVIPAs). This request returns a list of all IPv4 and IPv6 DVIPAs for the
invoked TCP/IP stack. For each DVIPA, the MVS system name, TCP/IP job
name, and various status information are returned.

v GetDVIPAPortDist (NWMDvPortDistType)

606 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Use this request to obtain information about dynamic virtual IP address (DVIPA)
port distribution. This request returns a list of IPv4 and IPv6 distributed DVIPAs
and ports. For each distributed DVIPA and port pair, one or more entries are
returned for each target TCP/IP stack. If the invoked TCP/IP stack has not
joined a sysplex, then return value -1, return code EAGAIN, and reason code
JRMustBeSysplex are returned without any other data. If the TCP/IP stack is not
a distributing stack, then an empty response buffer is returned with a successful
return value, return code, and reason code. If the same DVIPA and port pair are
affected by more than one QOS Policy, then an entry with the same DVIPA and
port is returned for each QOS policy.

v GetDVIPARoute (NWMDvRouteType)

Use this request to obtain information about dynamic virtual IP address (DVIPA)
routes. This request returns a list of information that is defined on VIPAROUTE
profile statements. Each entry includes the dynamic XCF address of a target
TCP/IP stack and the corresponding target IP address that is used to route
connection requests to that TCP/IP stack. Output is returned only by a
distributing TCP/IP stack, or by a backup TCP/IP stack for a distributed DVIPA
when the backup TCP/IP stack is assuming ownership of the distributed
DVIPA. If the invoked TCP/IP stack has not joined a sysplex, then return value
-1, return code EAGAIN, and reason code JRMustBeSysplex are returned
without any other data. If the invoked TCP/IP stack is neither a distributing
stack nor a backup stack, then an empty response buffer is returned with a
successful return value, return code, and reason code.

v GetFTPDaemonConfig (NWMFTPDConfigType)

Use this request to obtain configuration data from one active FTP daemon.

Rules: You must supply only one filter when using this request type. If the filter
number is not 1 in the request header, the following information is returned:
– Return value -1
– Return code EINVAL
– Reason code JRInvalidValue

The filter must contain the ASID of the specific FTP daemon for which you want
to obtain the configuration data. If no ASID is specified in the filter, the
following information is returned:
– Return value -1
– Return code EINVAL
– Reason code JRInvalidFilter

To obtain the ASID for the FTP daemon, take the following steps:
– Invoke EZBNMIFR for the GetTCPListener request to each TCP/IP stack to

obtain the active FTP daemons.
– Specify a filter with the application data (NWMFilterApplData) value of

EZAFTP0D in the first 8 bytes to filter the active FTP daemons from other
listeners. A daemon might be listening on multiple stacks.

– Extract the ASID (NWMTCPLAsid) of each FTP daemon returned by the
GetTCPListener request for which the GetFTPDaemonConfig request is
issued.

– Invoke EZBNMIFR for the GetFTPDaemonConfig request.
– Specify a filter that contains the ASID of the FTP daemon to obtain the

configuration data of the FTP daemon.
v GetGlobalStats (NWMGlobalStatsType)

Chapter 14. Network management interfaces 607

Use this request to obtain TCP/IP stack global statistics for IP, ICMP, TCP,
SMC-R, and UDP processing. The statistics that are returned by the request are
similar to those in the output of the Netstat STATS/-S report. This request does
not support filtering.

v GetIfs (NWMIfsType)

Use this request to obtain TCP/IP stack interface attributes and IP addresses.
The attributes and IP address information that are returned by the request are
similar to those in the output of the Netstat DEVLINKS/-d and HOME/-h
reports. Detailed attribute information is supported only for strategic interface
types. The strategic interface types are:
– Loopback
– OSA-Express QDIO Ethernet
– HiperSockets™

– Multipath Channel Point-to-Point
– Static VIPA
IBM 10GbE RoCE Express interfaces are also strategic interfaces. Some
information about 10GbE RoCE Express interfaces is reported on this request,
but the majority of the 10GbE RoCE Express attributes can be obtained from the
GetRnics (NWMRnicType) NMI request.
Dynamic VIPA interfaces are also strategic interfaces but their attributes can be
obtained from the dynamic VIPA (DVIPA) NMI requests that are previously
described in this topic. For non-strategic interface types, only the following
information is provided:
– Interface name from the LINK profile statement
– Interface index
– Associated device name from the DEVICE profile statement
– Interface type
– Interface status at the DEVICE and LINK level
– Time stamp of last interface status change at the LINK level

This request does not support filtering.
v GetIfStats (NWMIfsStatsType)

Use this request to obtain TCP/IP stack interface statistics for all interface types
except for 10GbE RoCE Express interfaces. See GetRnics (NWMRnicType) NMI
request for information about 10GbE RoCE Express interfaces. The statistics that
are returned by the request are similar to those in the output of the Netstat
DEVLINKS/-d report with the addition of SNMP counters that are defined in
the IF-MIB. For information about the IF-MIB, see RFC 2233. For information
about how to access RFCs, see Appendix J, “Related protocol specifications,” on
page 1075. Statistics are provided for all strategic interface types except for VIPA
interfaces; the stack does not maintain counters for VIPA interfaces. This request
also provides a time stamp of when the counters were last reset. This request
does not support filtering.

v GetIfStatsExtended (NWMIfsStatsExtType)

Use this request to obtain data link control (DLC) tuning statistics for datapath
devices that are used by active OSA-Express QDIO Ethernet and HiperSockets
interfaces. The statistics that are returned by the request are similar to those in
the output of the VTAM TNSTATS function and the SMF type 50 record.
Counters are provided for each read and write queue for each datapath device.
Because of performance considerations, the counters are not maintained by
default as part of TCP/IP stack initialization. The first GetIfStatsExtended

608 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

request causes the counters to be maintained for all active interfaces. Therefore,
the read and write queue counters can be 0 in the response for the first request.
This request also provides a time stamp of when the counters were last reset.
The counters are reset if all the interfaces that are using a datapath device are
deactivated. This request does not support filtering.

v GetProfile (NWMProfileType)

Use this request to obtain information about the current TCP/IP profile
statement settings. This request does not support filtering. To detect changes to
the profile statement settings, callers can use this callable request to obtain an
initial set of current profile settings, and then do one of the following actions:
– Repeat the request, over a time interval, comparing returned data from a

previous response to the returned data from the last response.
– Obtain the SMF Type 119 subtype 4 TCP/IP profile event records. These

records provide information about changes to the profile settings that are
made by using the VARY TCPIP,,OBEYFILE command processing.
- If the records are requested on the SMFCONFIG or NETMONITOR profile

statements, they are created.
- If the records are requested on the SMFCONFIG profile statement, they are

written to the MVS SMF data sets.
- If the records are requested on the NETMONITOR profile statement, they

can be obtained from the real-time SMF data network management
interface (NMI).

For more information about the real-time SMF NMI, see “Real-time TCP/IP
network monitoring NMI” on page 527. For more information about the
TCP/IP profile SMF record, see “TCP/IP profile event record (subtype 4)” on
page 767. The SMF record might be created even if some errors occurred
during the VARY TCPIP,,OBEYFILE command processing. To determine
whether profile changes actually occurred, application programs that process
these records must compare the sections of changed information to the
previous profile settings.

v GetRnics (NWMRnicType)

Use this request to obtain information about 10GbE RoCE Express interfaces.
– The 10GbE RoCE Express interface information that the request returns is

similar to the information that is provided in the Netstat DEvlinks/-d report.
– The VTAM tuning statistics that the request returns are for active 10GbE

RoCE Express interfaces only. These statistics are similar to those in the
output of the VTAM TNSTAT function and the SMF type 50 record.
Considering the performance, the counters are not maintained by default as
part of VTAM or TCP/IP stack initialization. The first GetRnics request causes
the counters to be maintained for all active 10GbE RoCE Express interfaces.
Therefore, the counters can be 0 in the response for the first request.

This request also provides a time stamp of the last time when the 10GbE RoCE
Express interface counters and the VTAM tuning statistics were reset. The values
are reset if the 10GbE RoCE Express interface is deactivated.
This request does not support filtering.

v GetSmcLinks (NWMSmcLinkType)

Use this request to obtain information about SMC-R link groups and the SMC-R
links in each group. The SMC-R link group and SMC-R link information that is
returned by the request is similar to the information provided in the Netstat
DEvlinks/-d report. This request does not support filtering.

v GetStorageStatistics (NWMStgStatsType)

Chapter 14. Network management interfaces 609

Use this request to obtain information about TCP/IP storage utilization and
SMC-R send and receive buffer utilization. This request does not support
filtering.

v GetSysplexXCF (NWMSyXcfType)

Use this request to obtain information about all TCP/IP stacks in the subplex.
This request returns a list of all TCP/IP stacks in the same subplex as the
invoked TCP/IP stack. For each TCP/IP stack, the MVS system name and one
or more dynamic XCF IP addresses are returned. There are no filters defined for
this request. If the invoked TCP/IP stack has not joined a sysplex, then return
value -1, return code EAGAIN, and reason code JRMustBeSysplex are returned
without any other data.

v GetTCPListeners (NWMTcpListenType)

Use this request to obtain information about active TCP listeners.
v GetTnConnectionData (NWMTnConnType)

Use this request to obtain information about TN3270E Telnet server connection
performance data.

v GetTnMonitorGroups (NWMTnMonGrpType)

Use this request to obtain information about TN3270E Telnet server monitor
groups.

v GetTnProfile (NWMTnProfileType)

Use this request to obtain information about the current TN3270E Telnet server
profile statement settings.
This request does not support filtering. To detect changes to the profile
statement settings, callers can use this request to obtain an initial set of the
current profile settings, and then do one of the following actions:
– Repeat the request, over a time interval, comparing returned data from a

previous response to the returned data from the last response.
– Obtain the SMF Type 119 subtype 24 TN3270E Telnet server profile event

records. These records provide information about changes to the profile
settings that are made by using the VARY TCPIP,tnproc,OBEYFILE command
processing.
- If the records are requested by the TELNETGLOBALS SMFPROFILE profile

statement or the TCP/IP stack NETMONITOR profile statement, they are
created.

- If the records are requested by the TELNETGLOBALS SMFCONFIG profile
statement, they are written to the MVS SMF data sets.

- If the records are requested by the NETMONITOR profile statement, they
can be obtained from the real-time SMF data network management
interface (NMI).

For more information about the real-time SMF NMI, see “Real-time TCP/IP
network monitoring NMI” on page 527. For more information about the
TCP/IP profile SMF record, see “TN3270E Telnet server profile event record
(subtype 24)” on page 857. The SMF record might be created even if some
errors occurred during the VARY TCPIP,tnproc,OBEYFILE command
processing. To determine whether profile changes occurred, application
programs that process these records must compare the sections of information
in the new record with the previous profile settings.

– The NWMTnGrpDtl option flag allows the caller to obtain all the range data
in the various groups that a Telnet profile defines. The call can return
multiple entries and can use SMF119TN_xxRngNum to determine the number
of ranges that are returned in each entry. If the flag is not set, the call returns

610 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

one entry that contains only the first SMF119TN_xxRngMax ranges for a
group. Based on the profile, specifying NWMTnGrpDtl can require a large
amount of memory to hold the entire profile.

Tip: Regardless of the number of entries that are returned for a group, the
SMF119TN_xxRngCnt field indicates the total number of ranges that the
group defines, and the SMF119TN_xxCount field indicates the total number of
LUs or elements in the group.

v GetUDPTable (NWMUdpConnType)

Use this request to obtain information about active UDP sockets.

The general format of the request consists of the request header and the request
section descriptors (triplets), which define the input data. A triplet describes the
input filters and contains the offset, in bytes, of the request section relative to the
beginning of the request buffer, the number of elements in the request section, and
the length of an element in the request section.

Filter request section
For requests that support filters, you can use filters to limit the data that is
returned to data that matches the specified filter values. Not all filters are
supported for all requests.

The following request types do not support any filters. If you specify filters for
these requests, the filters are ignored.
v GetGlobalStats
v GetIfs
v GetIfStats
v GetIfStatsExtended
v GetProfile
v GetRnics
v GetSmcLinks
v GetStorageStatistics
v GetSysplexXCF
v GetTnMonitorGroups
v GetTnProfile

The following table describes all possible filters.

Chapter 14. Network management interfaces 611

Table 121. Available EZBNMIFR poll-type request filters

Filter item Filter item value

Application data An EBCDIC character string (right-padded with blanks if less
than 40 characters in length) associated with a TCP socket by
the owning application using the SIOCSAPPLDATA IOCTL. The
application data filter can have wildcard characters. Use a
question mark (?) as a wildcard for a single character and an
asterisk (*) as a wildcard for zero or more characters.

For z/OS Communications Server applications, see Appendix G,
“Application data,” on page 995 for applications that use the
SIOCSAPPLDATA ioctl as a source for information about the
content, format, and meaning of the application data that the
applications associate with the sockets that they own. For other
applications, see the documentation that is supplied by the
application.

See Chapter 18, “Miscellaneous programming interfaces,” on
page 711 for more information about associating application
data with a socket.

Application name An EBCDIC application name (right-padded with blanks if less
than 8 characters in length) of the SNA application name in
session with the TN3270E secondary LU representing the client.
The application name can have wildcard characters. Use a
question mark (?) as a wildcard for a single character, and an
asterisk (*) as a wildcard for 0 or more characters. For example,
the value A?C* matches all application names with a first
character A and a third character C, but does not match
2-character names, names beginning with B through Z, or
names with anything other than C in the third position.

ASID A 16-bit address space number of a socket application address
space.

Destination XCF IP
address and family

A 32-bit IPv4 address or a 128-bit IPv6 address. The destination
XCF IP address family field must also be set to indicate whether
the destination XCF IP address filter value is an IPv4 address or
an IPv6 address. For IPv4 addresses, the destination XCF IP
address filter value can be specified as either an IPv4 address
(for example, 9.1.2.3) or an IPv4-mapped IPv6 address (for
example, ::FFFF:9.1.2.3). A null address can be specified as
either an IPv4 address (0.0.0.0), an IPv4-mapped IPv6 address
(::FFFF:0.0.0.0), or an IPv6 address (::). The destination XCF IP
address family field must be set to AF_INET for an IPv4
address or AF_INET6 for an IPv6 address.

Destination XCF IP
address prefix

A 16-bit signed binary value that specifies the number of
destination XCF IP address bits to use. For example, the value
12 specifies that the first 12 bits of a destination XCF IP address
are compared to the first 12 bits of the destination XCF IP
address filter value. The value 0 specifies that all address bits
are compared. A value greater than 32 for an IPv4 address, or
greater than 128 for an IPv6 address, specifies that all address
bits are compared.

612 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 121. Available EZBNMIFR poll-type request filters (continued)

Filter item Filter item value

Dynamic virtual IP
address and family

A 32-bit IPv4 address or a 128-bit IPv6 address. The dynamic
VIPA address family field must also be set to indicate whether
the DVIPA filter value is an IPv4 address or an IPv6 address.
For IPv4 addresses, the DVIPA filter value can be specified as
either an IPv4 address (for example, 9.1.2.3) or an IPv4-mapped
IPv6 address (for example, ::FFFF:9.1.2.3). A null address can be
specified as either an IPv4 address (0.0.0.0), an IPv4-mapped
IPv6 address (::FFFF:0.0.0.0), or an IPv6 address (::). The
dynamic virtual IP address family field must be set to AF_INET
for an IPv4 address or AF_INET6 for an IPv6 address.

Dynamic virtual IP
address port

A 16-bit unsigned binary port number.

Dynamic virtual IP
address prefix

A 16-bit signed binary value that specifies the number of
dynamic virtual IP address bits to use. For example, the value
12 means that the first 12 bits of a dynamic VIPA are compared
to the first 12 bits of the dynamic VIPA filter value. The value 0
means that all address bits are compared. A value greater than
32 for an IPv4 address, or greater than 128 for an IPv6 address,
means that all address bits are compared.

Interface name An EBCDIC interface name (right-padded with blanks if less
than 16 characters in length) of an IPv4 or IPv6 interface. The
interface name can have wildcard characters. Use a question
mark (?) as a wildcard for a single character, and use an asterisk
(*) as a wildcard for zero or more characters. For example, the
value A?C* matches all interface names with a first character A
and a third character C, but does not match 2-character names,
names beginning with B through Z, or names that have
anything other than the character C in the third position.

Local or source IP
address

A 32-bit IPv4 address or a 128-bit IPv6 address. The local or
source IP address filter value is specified as the IP address field
within a sockaddr structure. The sockaddr address family field
must be set to indicate whether the local IP address filter value
is an IPv4 address or an IPv6 address. For IPv4 connections, the
local IP address filter value can be specified as either an IPv4
address (for example, 9.1.2.3) or an IPv4-mapped IPv6 address
(for example, ::FFFF:9.1.2.3). For all connections, a null address
can be specified as either an IPv4 address (0.0.0.0), an
IPv4-mapped IPv6 address (::FFFF:0.0.0.0), or an IPv6 address
(::).

Local or source IP
address prefix

A 16-bit signed binary value that specifies the number of local
or source IP address bits to use. For example, the value 12
means that the first 12 bits of a local or source IP address are
compared to the first 12 bits of the local IP address filter value.
The value 0 means that all address bits are compared. A value
greater than 32 for an IPv4 address, or greater than 128 for an
IPv6 address, means that all address bits are compared.

Local or source port A 16-bit unsigned binary port number.

Chapter 14. Network management interfaces 613

Table 121. Available EZBNMIFR poll-type request filters (continued)

Filter item Filter item value

LU name An EBCDIC LU name (right-padded with blanks if less than 8
characters in length) of the TN3270E LU representing the client.
Use a question mark (?) as a wildcard for a single character and
an asterisk (*) as a wildcard for zero or more characters. For
example, the value A?C* matches all names with a first
character A and a third character C, but does not match
2-character names, names beginning with B through Z, or
names with anything other than C in the third position.

Monitor group identifier A 32-bit unsigned binary value assigned by the TN3270E Telnet
server to identify up to 255 unique monitor groups. Any
parameter change within an existing monitor group or a new
monitor group causes the TN3270E Telnet server to assign a
new identifier. The identifier is reported in the monitor group
table and connection data allowing a comparison between
monitoring criteria and actual connection performance. The
monitor group identifier can be obtained by issuing the
GetTnMonitorGroups request.

Remote or destination IP
address

A 32-bit IPv4 address or a 128-bit IPv6 address. The remote or
destination IP address filter value is specified as the IP address
field within a sockaddr structure. The sockaddr address family
field must be set to indicate whether the remote IP address
filter value is an IPv4 address or an IPv6 address. For IPv4
connections, the remote IP address filter value can be specified
as either an IPv4 address (for example, 9.1.2.3) or an
IPv4-mapped IPv6 address (for example, ::FFFF:9.1.2.3). For all
connections, a null address can be specified as either an IPv4
address (0.0.0.0), an IPv4-mapped IPv6 address (::FFFF:0.0.0.0),
or an IPv6 address (::).

Remote or destination IP
address prefix

A 16-bit signed binary value specifying the number of remote
or destination IP address bits to use. For example, the value 12
means that the first 12 bits of a remote or destination IP address
are compared to the first 12 bits of the remote IP address filter
value. The value 0 means that all address bits are compared. A
value greater than 32 for an IPv4 address, or greater than 128
for an IPv6 address, means that all address bits are compared.

Resource ID A 32-bit unsigned binary TCP/IP resource identifier (Client ID
in Netstat displays).

Resource name An EBCDIC job name, right-padded with blanks if less than 8
characters long, of a socket application address space (Client
Name in Netstat displays). A question mark can be used to
wildcard a single character, and an asterisk can be used to
wildcard zero or more characters. For example, the value A?C*
matches all names with a first character A and a third character
C, but does not match two-character names or names beginning
with B through Z.

Remote or destination
port

A 16-bit unsigned binary port number.

Server resource ID A 32-bit unsigned binary TCP/IP resource identifier of the
related server listening connection.

614 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 121. Available EZBNMIFR poll-type request filters (continued)

Filter item Filter item value

Target IP address and
family

A 32-bit IPv4 address or a 128-bit IPv6 address. The target IP
address family field must also be set to indicate whether the
target IP address filter value is an IPv4 address or an IPv6
address. For IPv4 addresses, the destination XCF IP address
filter value can be specified as either an IPv4 address (for
example, 9.1.2.3) or as an IPv4-mapped IPv6 address (for
example, ::FFFF:9.1.2.3). A null address can be specified as
either an IPv4 address (0.0.0.0), as an IPv4-mapped IPv6
address (::FFFF:0.0.0.0), or as an IPv6 address (::). The target IP
address family field must be set to AF_INET for an IPv4
address or AF_INET6 for an IPv6 address.

Target IP address prefix A 16-bit signed binary value that specifies the number of target
IP address bits to use. For example, the value 12 means that the
first 12 bits of a target IP address are compared to the first 12
bits of the target IP address filter value. The value 0 means that
all address bits are compared. A value greater than 32 for an
IPv4 address, or greater than 128 for an IPv6 address, means
that all address bits are compared.

You can specify 1 - 4 filter elements. Each filter element can contain any
combination of the items that are listed in Table 121 on page 612. A filter element
that does not have any applicable items matches all data for the request. The data
must match all items that are specified in a filter element to pass that filter check;
data must pass at least one filter check to be selected.

If you do not specify any filters (triplet offset field is 0, or triplet element count
field is 0, or triplet element length field is 0), then the caller is requesting all
information that is applicable to that request except for the GetFTPDaemonConfig
request type.

The following list shows the applicable filter items that each request type supports.
If you specify inapplicable filters for a particular request type, they are ignored.
v GetConnectionDetail

– Application data
– ASID
– Local or source IP address
– Local or source IP address prefix
– Local or source port
– Remote or destination IP address
– Remote or destination IP address prefix
– Remote or destination port
– Resource ID
– Resource name
– Server resource ID

v GetDVIPAConnRTab
– Destination XCF IP address and family
– Destination XCF IP address prefix
– Local or source IP address
– Local or source IP address prefix

Chapter 14. Network management interfaces 615

– Local or source port
– Remote or destination IP address
– Remote or destination IP address prefix
– Remote or destination port

v GetDVIPAList
– Dynamic virtual IP address and family
– Dynamic virtual IP address prefix
– Interface name

v GetDVIPAPortDist
– Destination XCF IP address and family
– Destination XCF IP address prefix
– Dynamic virtual IP address and family
– Dynamic virtual IP address port
– Dynamic virtual IP address prefix

v GetDVIPARoute
– Destination XCF IP address and family
– Destination XCF IP address prefix
– Target IP address and family
– Target IP address prefix

v GetFTPDaemonConfig
– ASID of an FTP daemon address space.

v GetTCPListeners
– Application data
– ASID
– Local or source IP address
– Local or source IP address prefix
– Local or source port
– Resource ID
– Resource name

v GetTnConnectionData
– Application name
– Local or source IP address
– Local or source IP address prefix
– Local or source port
– LU name
– Monitor group identifier
– Remote or destination IP address
– Remote or destination IP address prefix
– Remote or destination port
– Resource ID
– Server resource ID

v GetUDPTable
– ASID
– Local or source IP address
– Local or source IP address prefix

616 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

– Local or source port
– Resource ID
– Resource name

Filter example
Two filters are defined:
v Local IP Address = 9.0.0.1, Local Port = 5000
v Resource Name = FTP*

The following TCP connections exist:
v Resource Name = FTP1, Local IP Address = 9.0.0.2, Local Port = 5001
v Resource Name = FTP2, Local IP Address = 9.0.0.1, Local Port = 5000
v Resource Name = USR1, Local IP Address = 9.0.0.1, Local Port = 5002

When a GetConnectionDetail request is made, connection 1 is selected because it
matches filter 2, connection 2 is selected because it matches filter 1, and connection
3 is not selected because it does not match either filter.

Format and details for action-type requests
The following section describes the format and details of the action-type requests
provided with EZBNMIFR:

DropConnection
Drop one or more TCP connections or UDP endpoints.

The general format of the input for this request consists of the request
header and the request section descriptors (triplets), which define the input
data. In this case, a triplet describes the input and output buffer. It consists
of the offset, in bytes, of the request section relative to the beginning of the
request buffer, the number of elements in the request section, and the
length of an element in the request section.

To drop a connection, the NWMDropConnEntry structure describes the
input and output to the DropConnection request. Each element must input
a resource ID, local address, local port, remote address, remote port, and
protocol. It is possible that for a particular connection or endpoint
specification, the drop attempt will fail. For this reason, the
NWMDropConnEntry structure contains a return code and reason code to
describe the reason for the failure. The following table describes the
NWMDropConnEntry structure.

Table 122. NWMDropConnEntry description

Descriptor Type Description

Resource ID Input A 32-bit unsigned binary TCP/IP resource identifier
(Client ID in Netstat displays). This descriptor is
required for TCP connections and is ignored for UDP
endpoints.

Chapter 14. Network management interfaces 617

Table 122. NWMDropConnEntry description (continued)

Descriptor Type Description

Local IP address Input A 32-bit IPv4 address or a 128-bit IPv6 address. The
local IP address value is specified as the IP address field
within a sockaddr structure. The sockaddr address
family field must be set to indicate whether the local IP
address value is an IPv4 address or an IPv6 address. For
IPv4 connections, the local IP address value can be
specified as either an IPv4 address (for example, 9.1.2.3)
or as an IPv4-mapped IPv6 address (for example,
::FFFF:9.1.2.3). For all connections, a null address can be
specified as either an IPv4 address (0.0.0.0), as an
IPv4-mapped IPv6 address (::FFFF:0.0.0.0), or as an IPv6
address (::). The sockaddr length field value must be set
to the correct length for the specified socket family. This
descriptor is required.

Local port Input A 16-bit unsigned binary port number. The local port
value is specified as the port field within the sockaddr
structure. This descriptor is required.

Remote IP
address

Input A 32-bit IPv4 address or a 128-bit IPv6 address. The
remote IP address filter value is specified as the IP
address field within a sockaddr structure. The sockaddr
address family field must be set to indicate whether the
remote IP address value is an IPv4 address or an IPv6
address. For IPv4 connections, the remote IP address
value can be specified as either an IPv4 address (for
example, 9.1.2.3) or as an IPv4-mapped IPv6 address (for
example, ::FFFF:9.1.2.3). For all connections, a null
address can be specified as either an IPv4 address
(0.0.0.0), an IPv4-mapped IPv6 address (::FFFF:0.0.0.0), or
an IPv6 address (::). The sockaddr length field value
must be set to the correct length for the specified socket
family. This descriptor is required for TCP connections
and is ignored for UDP endpoints.

Remote port Input A 16-bit unsigned binary port number. The remote port
value is specified as the port field within the sockaddr
structure. This descriptor is required for TCP
connections and is ignored for UDP endpoints

Protocol Input An 8-bit character representing either IPPROTO_TCP or
IPPROTO_UDP.

Return code Output A 4-byte value, NWMDropConnRc. If this value is
nonzero, it indicates that the drop attempted for this
connection failed. This return code describes the reason
for failure.

Reason code Output A 4-byte value, NWMDropConnRs. When the Return
Code is set, this value might provide more detailed
information about why the drop request failed for this
connection.

See “TCP/IP NMI response format” for information about processing the
result of a DropConnection request.

TCP/IP NMI response format
The following list describes the general format of the response:

618 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v The response header, which is defined by the NWMHeader structure, the
request section descriptors (triplets), and the response section descriptors
(quadruplets). Processing is slightly different for the request types (poll-type and
action-type) as described in the following topics.

v The request sections.
v The response output. See the following topics about the poll-type and

action-type response output for a description.

Guideline: Some of the data in the response output uses data structures in a
variable size. Do not rely on the documented size of the data structure for
accessing data. You must use the length field of the response output section
descriptors (triplets) to determine the correct size of each response.

Tip: Connection elements for TN3270E Telnet server connection performance
data are returned only if the connection is being monitored by a MonitorGroup
that is mapped to the connection. See Connection monitoring mapping statement
in z/OS Communications Server: IP Configuration Guide for details.

Processing poll-type request responses

The format of the response output depends on the specific request.
v The following requests return one or more response section elements of the same

type.

Table 123. Poll-type request responses

Request Response

GetConnectionDetail NWMTCPConnEntry (assembler),
NWMConnEntry (C/C++)

GetDVIPAConnRTab NWMDvConnRTabEntry

GetDVIPAList NWMDvListEntry

GetDVIPAPortDist NWMDvPortDistEntry

GetDVIPARoute NWMDvRouteEntry

GetIfStats NWMIfStatsEntry

GetStorageStatistics NWMStgStatEntry

GetSysplexXCF NWMSyXcfEntry

GetTCPListeners NWMTCPListenEntry

GetTnConnectionData NWMTnConnEntry

GetTnMonitorGroups NWMTnMonGrpEntry

GetUDPTable NWMUDPConnEntry

v The following requests return one or more records. Each record begins with an
NWMRecHeader structure that describes the record. See the specific request
topics for a detailed description of the response output of each request.
– GetFTPDaemonConfig
– GetGlobalStats
– GetIfs
– GetIfStatsExtended
– GetProfile
– GetRnics

Chapter 14. Network management interfaces 619

– GetSmcLinks
– GetTnProfile

The response output is described by the response section quadruplet in the
NWMHeader structure. The quadruplet consists of the following fields:
v The offset, in bytes, of the first response section element or record. This offset is

relative to the beginning of the response buffer.
v The number of elements in the response section or the number of records that

are returned.
v The length of a response section element for requests that return one or more

response section elements of the same type. For requests that return one or more
records, the value of this field is 0. The NWMRecHeader structure for each
returned record contains the actual length of each record.

v The total number of elements that passed the requested filter checks.

The response header contains the number of bytes required to contain all the
requested data. When the return code is ENOBUFS, use this value to allocate a
larger request/response buffer and reissue the request.

GetFTPDaemonConfig response format

For the GetFTPDaemonConfig request, the output is returned as one record. The
response section quadruplet contains the following values:
v The offset, which is in the response buffer, of the output record.
v The length of each element. It is always 0.
v The number of elements that are returned is always 1, which indicates that only

one record was returned.
v The number of elements that matched the filters is always 1, which indicates

that one record was matched.

The output record consists of the following fields:

Record header
The record header is mapped by the NWMRecHdr structure and consists
of the following fields:
v An EBCDIC identifier.
v The total length of the record.
v The number, which is always 3, of section descriptors that are included

in this record. The section descriptors are mapped by the NWMTriple
structure.

Section descriptor triplets
The following three section descriptors that describe the returned
information for each section type are always included. For each section
type, only one section is included.
v FTP daemon identification section
v FTP daemon general configuration section
v FTP daemon configuration data section

The sections of data that this request provides are identical to the corresponding
sections in the SMF 119 subtype 71 record. See “FTP daemon configuration record
(subtype 71)” on page 940 for the layout of these sections:

620 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FTP daemon identification section - SMF119FT_FD
This section provides information that identifies which FTP daemon this
record is collected for.

FTP daemon general configuration section - SMF119FT_FDCF
This section provides configuration information for the statements whose
value has a fixed length.

FTP daemon configuration data section - SMF119FT_FDCD
This section provides configuration information for the statements whose
value has a variable length. This section is a set of entries with a variable
length for each statement. Each entry contains the following fields:
v Total length of the entry.
v Key of the entry. This value identifies the statement that the entry

represents.
v Value that is specified for the statement.

In this section, only statements that are explicitly specified or have default
values are provided. You can use the SMF119FT_FDCD_Key value of each
configuration data entry in this section to determine which statements are
contained.

GetGlobalStats response format

For the GetGlobalStats request, the output is returned as one record. The response
section quadruplet contains the following values:
v The offset, which is in the response buffer, of the output record.
v The length of each element. It is always 0.
v The number of elements in the response section. It is set to 1 to indicate that

only one record was returned.
v The total number of matching elements. It is set to 1 because filters are not

supported.

The output record consists of the following fields:
v Record header. The record header is mapped by the NWMRecHdr structure and

consists of the following fields:
– An EBCDIC identifier
– The total length of the record
– The number of section descriptors (mapped by the NWMTriple structure) that

are present in this record
v Section descriptor triplets for each set of statistic counters. The returned statistic

counters are similar to the counters in the output of the Netstat STATS/-S report.
See Netstat STATS/-S report in z/OS Communications Server: IP System
Administrator's Commands for a description of each field. The following section
descriptors that describe the returned information for each section type are
always included:
– IP counters section - A section for IPv4 counters is always returned. If the

TCP/IP stack is IPv6-enabled, a section for IPv6 counters is also returned.
– IP general counters section - Only one section of this type is included.
– TCP counters section - Only one section of this type is included. If Shared

Memory Communications over Remote Direct Memory Access (SMC-R) was
ever configured, this section includes SMC-R statistics.

– UDP counters section - Only one section of this type is included.

Chapter 14. Network management interfaces 621

– ICMP global counters section - A section for IPv4 counters is always returned.
If the TCP/IP stack is IPv6-enabled, a section for IPv6 counters is also
returned.

– ICMP type counters section - One section is returned for each ICMP and
ICMPv6 type. For more information about these types, see
http://www.iana.org/assignments/icmp-parameters and
http://www.iana.org/assignments/icmpv6-parameters.

v IP counters sections (NWMIpStatsEntry) - Sections for IPv4 and IPv6 counters.
v IP general counters section (NWMIpGenStatsEntry)
v TCP and SMC-R counters section (NWMTcpStatsEntry)
v UDP counters section (NWMUdpStatsEntry)
v ICMP global counters sections (NWMIcmpStatsEntry)
v ICMP type counters sections (NWMIcmpTypeStatsEntry)

GetIfs response format

For the GetIfs request, the output is returned as one record per interface. The
response section quadruplet contains the following values:
v The offset, which is in the response buffer, of the first output record.
v The length of each element. It is always 0.
v The number of elements in the response section. It is set to the total number of

records that are returned.
v The total number of matching elements. It is set to the number of records that

are returned because filters are not supported.

All fields that contain EBCDIC values are padded with EBCDIC blanks (x'40') and
are set to EBCDIC blanks if the field does not contain a value.

Each output record consists of the following fields:
v Record header. The record header is mapped by the NWMRecHdr structure and

consists of the following fields:
– An EBCDIC identifier
– The total length of the record
– The number of section descriptors (mapped by the NWMTriple structure) that

are present in this record
v Section descriptor triplets. Two section descriptors that describe the returned

information for each section type are always included:
– Base section - Only one section of this type is included per interface.
– IP address section - Only one section of this type is included for every IP

address for the interface. If an interface does not have an IP address, the
section descriptor triplet fields are all set to 0.

v Base section (NWMIfEntry). This section provides the interface name, status, and
attributes.

v One or more IP address sections (NWMIpadEntry)

GetIfStatsExtended response format

For the GetIfStatsExtended request, the data link control (DLC) tuning statistics
output is returned as one record per data subchannel address that is used by an
OSA-Express QDIO ethernet or HiperSockets interface. The response section
quadruplet contains the following values:

622 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www.iana.org/assignments/icmp-parameters
http://www.iana.org/assignments/icmpv6-parameters

v The offset, which is in the response buffer, of the first output record.
v The length of each element. It is always 0.
v The number of elements in the response section. It is set to the total number of

records that are returned.
v The total number of matching elements. It is set to the number of records that

are returned because filters are not supported.

All fields that contain EBCDIC values are padded with EBCDIC blanks (x'40').

Each output record consists of the following fields:
v Record header. The record header is mapped by the NWMRecHdr structure and

consists of the following fields:
– An EBCDIC identifier
– The total length of the record
– The number of section descriptors (mapped by the NWMTriple structure) that

are present in this record
v Section descriptor triplets. Four section descriptors that describe the information

that is returned for each section type are always included:
– Base section - Only one section of this type is included per data subchannel

address.
– Interface section - One section of this type is included for each interface that

shares the data subchannel address.
– Read queue counters section - There is one of these sections for the Primary

read queue.per read queue supported for the data subchannel address. For
more information about the OSA-Express read queues, see QDIO inbound
workload queueing in z/OS Communications Server: IP Configuration Guide.
HiperSockets interfaces support only one read queue.

– Write queue counters section - One section of this type is included for each of
one to four possible write priority queues that are supported for the data
subchannel address.

v Base section (NWMIFStExtBaseEntry). This section provides information about
the data, read control, write control subchannel addresses, the TRLE name, and
OSA-Express ports. This section also includes a time stamp of when the counters
were last reset.

v Interface section (NWMIFStExtIntfEntry)
v Read queue sections (NWMIfStExtReadEntry)
v Write queue sections (NWMIfStExtWriteEntry)

GetProfile response format

For the GetProfile request, the output is returned as one record. The response
section quadruplet contains the following values:
v Offset is the offset, into the response buffer, of a GetProfile record header.
v The length of each element is always 0.
v The number of elements in the response section is always 1 to indicate that only

one record was returned.
v The total number of matching elements is always 1, because filters are not

supported.

The record header is mapped by the NWMRecHdr structure. The header consists
of the following fields:
v An EBCDIC identifier

Chapter 14. Network management interfaces 623

v The total length of the record
v The number of section descriptors (triplets) that are present in this record.

Twenty-one section descriptors are always returned. The section descriptor
triplets are mapped by the NWMTriple structure.

The section descriptors (triplets) immediately follow the record header, and the
sections immediately follow the section descriptors. If there is no profile
information for a section, the section descriptor triplet fields for that section all
contain 0.

The section structures in the GetProfile response are identical to the section
structures in the TCP/IP profile SMF 119 subtype 4 event records. If you already
have an application that processes the SMF record section structures, you can also
use it for processing the GetProfile response section structures. See “TCP/IP profile
event record (subtype 4)” on page 767 for a layout of this SMF record.

In the GetProfile response, the Profile Information Common and Data Set Name
sections primarily contain information about the initial profile, not about the last
change to the profile; however, the following fields contain the date and time of
the last change to the profile:
v NMTP_PICOChangeTime
v NMTP_PICOChangeDate

GetRnics response format

For the GetRnics request, the output is returned as one record per interface. The
response section quadruplet contains the following values:
v The offset, which is in the response buffer, of the output record.
v The length of each element. It is always 0.
v The number of elements in the response section. It is set to the number of

records that are returned.
v The total number of matching elements. It is set to the number of records that

are returned because filters are not supported on the GetRnics request.

All fields that contain EBCDIC values are padded with EBCDIC blanks (X'40').

Each output record consists of the following fields:
v Record header. The record header is mapped by the NWMRecHdr structure and

consists of the following fields:
– An EBCDIC identifier
– The total length of the record
– The number of section descriptors (mapped by the NWMTriple structure) that

are present in this record
v Section descriptor triplets. Two section descriptors that describe the returned

information for each section type are always included:
– Base 10GbE RoCE Express interface section; only one section of this type is

included per interface.
– VTAM tuning statistics section; only one section of this type is included per

interface.
v Base 10GbE RoCE Express interface section (NWMRnicBaseEntry). This section

provides the interface name, status, and attributes.

624 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v VTAM tuning statistics section (NWMRnicTuningEntry). This section provides
the VTAM tuning statistics information.

GetSmcLinks response format

For the GetSmcLinks request, the output is returned as one record per SMC-R link
group. The response section quadruplet contains the following values:
v The offset, which is in the response buffer, of the output record.
v The length of each element. It is always 0.
v The number of elements in the response section. It is set to the number of

records that are returned.
v The total number of matching elements. It is set to the number of records that

are returned because filters are not supported on the GetSmcLinks request.

All fields that contain EBCDIC values are padded with EBCDIC blanks (X'40').

Each output record consists of the following fields:
v Record header. The record header is mapped by the NWMRecHdr structure and

consists of the following fields:
– An EBCDIC identifier
– The total length of the record
– The number of section descriptors (mapped by the NWMTriple structure) that

are present in this record
v Section descriptor triplets. Two section descriptors that describe the returned

information for each section type are always included:
– SMC-R link group section; only one section of this type is included per

SMC-R link group.
– SMC-R link section; one section of this type is included for every SMC-R link

that is a member of an SMC-R link group.
v SMC-R link group section (NWMSmcGrpEntry). This section provides the

SMC-R link group identifier and statistics related to the SMC-R link group.
v SMC-R link section (NWMSmcLnkEntry). This section provides the SMC-R link

local and remote identifiers and additional statistics related to the individual
link.

GetTnProfile response format

For the GetTnProfile request, the output is returned as one record. The response
section quadruplet contains the following values:
v Offset is the offset, into the response buffer, of a GetTnProfile record header.
v The length of each element is always 0.
v The number of elements in the response section is always 1 to indicate that only

one record was returned.
v The total number of matching elements is always 1 because filters are not

supported.

The NWMRecHdr structure maps the record header. The header consists of the
following fields:
v An EBCDIC identifier.
v The total length of the record.

Chapter 14. Network management interfaces 625

v The number of section descriptors (triplets) that are present in this record.
Management section descriptors are always returned. The NWMTriple structure
maps the section descriptors.

The section descriptors immediately follow the record header, and the sections
immediately follow the section descriptors. If no profile information for a section is
available, the section descriptor fields for that section are all 0.

The section structures in the GetTnProfile response are identical to the section
structures in the TN3270E Telnet server profile SMF 119 subtype 24 event records.
If you have an application that processes the SMF record section structures, you
can use it to process the GetTnProfile response section structures. See “TN3270E
Telnet server profile event record (subtype 24)” on page 857 for a layout of this
SMF record.

In the GetTnProfile response, the Profile Information and Data Set Name sections
contain information about the last profile. The following fields contain the date and
time when the last profile was activated:
v SMF119TN_PIProfStck
v SMF119TN_PIProfTime
v SMF119TN_PIProfDate

If the NWMTnGrpDtl flag is set, multiple entries for a group are generated. If the
flag is not set, only the first entry of each group is available.

Processing action-type request responses

Processing the response for the DropConnection action-type request is described in
this section.

For this type of request, the quadruplet contains the offset and number of
elements, which is the same as the offset and number of elements in the triplet
(output is the same as the input). If the call to EZBNMIFR returns a nonnegative
return value, and the value for NWMQMatch returned in the quadruplet section is
equal to the number of entries input, NWMQNumber, then all of the connections
or endpoints were dropped successfully. If the call to EZBNMIFR returns a
nonnegative return value, and if NWMQMatch is less than NWMQNumber, then
not all of the connections or endpoints were successfully dropped. In this case, the
program should examine the return code that is set in each NWMDropConnEntry
field. If the value of the return code is nonzero, then this connection was not
dropped; if the value of the return code is 0, then the connection was dropped.

The following describes the codes:

Table 124. Return code values

NWMDropConnRC NWMDropConnRSN Description

ENOENT JRGetConnErr The connection was not in
the correct state for
retrieving or the connection
was not found.

EMVSERR JRPATDELErr Deletion of a restricted port
entry failed.

EACCES JRPORTACCESSAUTH User does not have authority
to access this port.

626 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 124. Return code values (continued)

NWMDropConnRC NWMDropConnRSN Description

EMVSERR JRPATFNDErr Search for a restricted port
failed or the connection was
not found.

ENOENT JRPATFNDErr Search for a restricted port
failed or the connection was
not found.

ENOENT JRGETCONNERR The connection was not in
the correct state for
retrieving.

EAGAIN JRUDPNOTUP TCP/IP was not initialized

EAGAIN JRTCPNOTUP The request was not
successful. The target
TCP/IP stack was not active.

EINVAL JRINVALIDVALUE The request was not
successful. A value that is
not valid was specified in the
request/response header.

Guideline: Input to the DropConnection request will most likely be from the
output result of a GetUDPTable or GetConnectionDetail request where the filtered
connection information might return connections that are not intended for
termination. Applications that support the DropConnection request should be
coded to ensure that the connections input for termination have been examined
carefully by programming logic that selects connections that meet a specific
criteria, such as state.

Example

One NWMDropConnEntry is submitted:
Resource ID =003A, Local IP Address=9.0.0.1, Local Port=5003,
Remote IP Address=9.0.0.5, Remote Port=3000, Protocol=TCP

The following TCP connections exist:
v Resource Name = FTP1, Resource ID = 001A, Local IP Address = 9.0.0.2, Local

Port = 5000,Remote IP Address = 9.0.0.5, Remote Port = 3001
v Resource Name = FTP2, Resource ID = 002A, Local IP Address = 9.0.0.1, Local

Port = 5001,Remote IP Address = 9.0.0.5, Remote Port = 3002
v Resource Name = USR1, Resource ID = 004F, Local IP Address = 9.0.0.1, Local

Port = 5002,Remote IP Address = 9.0.0.5, Remote Port = 3003
v Resource Name = USR7, Resource ID = 003A, Local IP Address = 9.0.0.1, Local

Port = 5003, Remote IP Address = 9.0.0.5, Remote Port = 3000

When a DropConnection request is made, connection 4 is dropped because it
matches the five required items.

TCP/IP NMI request and response data structures
The NMI request and response data structures for C/C++ and assembler programs
are located as follows:

Chapter 14. Network management interfaces 627

Header file for C/C++ programs Macros for assembler programs Contents

EZBNMRHC EZBNMRHA The NMI request and response data structure definitions.

EZBNMMPC EZBNMMPA The GetProfile request data structure definitions for the
sections of profile information in the response.

EZASMF EZASMF77 The GetFTPDaemonConfig and GetTnProfile request data
structure definitions for the sections of FTP daemon and
Telnet profile information in the response.

These header files and macros are included in the SYS1.MACLIB and SEZANMAC
data set and the header files are also included in the z/OS UNIX file system
directory, /usr/include. When you compile or assemble a program in an MVS
batch job, the SEZANMAC data set must be available in the MVS batch job
concatenation. For an example of the mappings of the request and response data
structures, see http://www-01.ibm.com/support/docview.wss?rs=852
&uid=swg27043584.

TCP/IP NMI examples
Example 1

The following C/C++ code fragment shows how to format a request to obtain TCP
connection information using the filters in the filter definition example (see “Filter
example” on page 617):
/**/
/* */
/* NMI data definitions */
/* */
/**/
typedef struct {

NWMHeader NMIheader;
NWMFilter NMIfilter[2];

} NMIbuftype;
NMIbuftype *NMIbuffer;
unsigned int NMIalet;
int NMIlength;
int RV;
int RC;
unsigned int RSN;
#define NMIBUFSIZE 8192
NMIbuffer=malloc(NMIBUFSIZE);
NMIalet=0;
NMIlength=NMIBUFSIZE;
/**/
/* */
/* Format the header */
/* */
/**/
NMIbuffer->NMIheader.NWMHeaderIdent=NWMHEADERIDENTIFIER;
NMIbuffer->NMIheader.NWMHeaderLength=sizeof(NWMHeader);
NMIbuffer->NMIheader.NWMVersion=NWMVERSION1;
NMIbuffer->NMIheader.NWMType=NWMTCPCONNTYPE;
NMIbuffer->NMIheader.NWMBytesNeeded=0;
NMIbuffer->NMIheader.NWMInputDataDescriptors.\

NWMFiltersDesc.NWMTOffset=sizeof(NWMHeader);
NMIbuffer->NMIheader.NWMInputDataDescriptors.\

NWMFiltersDesc.NWMTLength=sizeof(NWMFilter);
NMIbuffer->NMIheader.NWMInputDataDescriptors.\

NWMFiltersDesc.NWMTNumber=2;
/**/
/* */
/* Format filter 1 */
/* */

628 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www-01.ibm.com/support/docview.wss?rs=852&uid=swg27043584
http://www-01.ibm.com/support/docview.wss?rs=852&uid=swg27043584

/**/
NMIbuffer->NMIfilter[0].NWMFilterIdent=NWMFILTERIDENTIFIER;
NMIbuffer->NMIfilter[0].NWMFilterFlags=NWMFILTERLCLADDRMASK|\

NWMFILTERLCLPORTMASK;
NMIbuffer->NMIfilter[0].NWMFilterLocal.\

NWMFilterLocalAddr4.sin_family=AF_INET;
NMIbuffer->NMIfilter[0].NWMFilterLocal.\

NWMFilterLocalAddr4.sin_port=5000;
NMIbuffer->NMIfilter[0].NWMFilterLocal.\

NWMFilterLocalAddr4.sin_addr.s_addr=0x09000001;

/**/
/* */
/* Format filter 2 */
/* */
/**/
NMIbuffer->NMIfilter[1].NWMFilterIdent=NWMFILTERIDENTIFIER;
NMIbuffer->NMIfilter[1].NWMFilterFlags=NWMFILTERRESNAMEMASK;
memcpy(NMIbuffer->NMIfilter[1].NWMFilterResourceName,"FTP* ",8);
/**/
/* */
/* Invoke NMI service */
/* */
/**/
NWMServices(TcpipJobName,NMIbuffer,&NMIalet,&NMIlength,&RV,&RC,&RSN);

Guideline: In z/OS releases prior to V1R7, the current version is 1. In z/OS
version V1R7 and later, the current version is 2. Applications coded with
NWMVERSION1 (as in example 1) will have the version accepted in z/OS version
V1R4 and later. However, applications coded with NWMCURRENTVER and
compiled using the version 2 headers work only on z/OS version V1R7 and later
releases. Applications using NWMCURRENTVER in z/OS version V1R7 and later
releases should recognize that the current version might not be accepted on prior
releases of the operating system. When these applications receive an error code
indicating an error in the version, they should drop back to the prior (or lowest)
version number and verify that that version is acceptable with the current
operating system.

The version used does not restrict which functions are available. If an application
using version 1 and compiled with a version 2 header is executed on a prior
release of the operating system, the application will receive the data corresponding
to the release of the operating system on which it executes. Therefore, if the
application is executing on a system running version 2 and specifies version 1, it
still receives all data including the new version 2 data (STOKEN). If the same
application is executed on a release that supports only version 1, it receives
everything except the new version 2 data.

Example 2

The following C/C++ code fragment shows how to drop a connection using the
following values:

Resource ID = 003A
Local IP Address = 9.0.0.1
Local Port = 5003
Remote IP Address = 9.0.0.5
Remote Port = 3000
/**/
/* */
/* NMI data definitions */

Chapter 14. Network management interfaces 629

/* */
/**/
typedef struct {

NWMHeader NMIheader;
NWMDropConnEntry NMIDropConnEntry;

} NMIbuftype;
NMIbuftype NMIbuffer;
unsigned int NMIalet;
int NMIlength = sizeof(NMIbuffer);
int RV;
int RC;
unsigned int RSN;
/**/
/* */
/* Format the header */
/* */
/**/
memset(&NMIbuffer, 0, sizeof(NMIbuffer));
NMIbuffer.NMIheader.NWMHeaderIdent=NWMHEADERIDENTIFIER;
NMIbuffer.NMIheader.NWMHeaderLength=sizeof(NWMHeader);
NMIbuffer.NMIheader.NWMVersion=NWMCURRENTVER;
NMIbuffer.NMIheader.NWMType=NWMDROPCONNTYPE;
NMIbuffer.NMIheader.NWMBytesNeeded=0;
NMIbuffer.NMIheader.NWMInputDataDescriptors.\

NWMIODesc.NWMTOffset=sizeof(NWMHeader);
NMIbuffer.NMIheader.NWMInputDataDescriptors.\

NWMIODesc.NWMTLength=sizeof(NWMDropConnEntry);
NMIbuffer.NMIheader.NWMInputDataDescriptors.\

NWMIODesc.NWMTNumber=1;
/**/
/* */
/* Format the NMIDropConnEntry */
/* */
/**/
NMIbuffer.NMIDropConnEntry.NWMDropConnIdent=NWMDROPCONNIDENTIFIER;
NMIbuffer.NMIDropConnEntry.NWMDropConnId = 0x003a;
NMIbuffer.NMIDropConnEntry.NWMDropConnLocalAddr4.sin_family=AF_INET;
NMIbuffer.NMIDropConnEntry.NWMDropConnLocalAddr4.sin_port=5003;
NMIbuffer.NMIDropConnEntry.NWMDropConnLocalAddr4.sin_addr.s_addr=0x09000001;

NMIbuffer.NMIDropConnEntry.NWMDropConnRemoteAddr4.sin_family=AF_INET;
NMIbuffer.NMIDropConnEntry.NWMDropConnRemoteAddr4.sin_port=3000;
NMIbuffer.NMIDropConnEntry.NWMDropConnRemoteAddr4.sin_addr.s_addr=0x09000005;
NMIbuffer.NMIDropConnEntry.NWMDropProtocol = IPPROTO_TCP;

/**/
/* */
/* Invoke NMI service */
/* */
/**/
NWMServicesEZBNMIFR(TcpipJobName,NMIbuffer,&NMIalet,&NMIlength,&RV,&RC,&RSN);

/**/
/* */
/* Check the return code */
/* */
/**/
if (rc != sizeof(NMIbuffer)
{

printf("EZBNMIFR drop rc=%d\n", rc);
}

else
/* Ensure that the number of entries input for drop match the */
/* number of entries actually dropped */
if (NMIbuffer.NMIHeader.NWMDropConnDesc.NWMQMatch !=

NMIbuffer.NMIheader.NWMInputDataDescriptors.NWMIODesc.NWMTNumber)
{

630 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

printf("EZBNMIFR drop for connection 0x%8.8x errno=%d / 0x%8.8X\n",
NMIbuffer.MWMDropConnEntry.NWMDropConnIdent,
NMIbuffer.NMIDropConnEntry.NWMDropConnRc,
NMIbuffer.NMIDropConnEntry.NWMDropConnRs);

}
else
{

printf("EZBNMIFR drop for connection 0x%8.8x successful\n",
NMIbuffer.MWMDropConnEntry.NWMDropConnIdent);

}

Example 3

The following assembler code fragment shows how to format a request to obtain
TCP connection information using the filters in the filter definition example (see
“Filter example” on page 617):
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

STORAGE OBTAIN,LENGTH=@DYNSIZE,ADDR=(R13),LOC=ANY
USING NMIdata,R13
ST R13,NMIbuffer

* *
* Format the header *
* *

LA R2,NMIheader
USING NWMHeader,R2
XC NWMHeader,NWMHeader
MVC NWMHeaderIdent,=A(NWMHeaderIdentifier)
LHI R0,NWMHeaderSize
ST R0,NWMHeaderLength
LHI R0,NWMVersion1
STH R0,NWMVersion
LHI R0,NWMTcpConnType
STH R0,NWMType
XC NWMBytesNeeded,NWMBytesNeeded
LA R3,NWMInputDataDescriptors
USING NWMTriplet,R3
LHI R0,NWMHeaderSize
ST R0,NWMTOffset
LHI R0,NWMFilterSize
ST R0,NWMTLength
LHI R0,NMIfilter#
ST R0,NWMTNumber
DROP R3
DROP R2

* *
* Format filter 1 *
* *

Chapter 14. Network management interfaces 631

LA R2,NMIfilter1
USING NWMFilter,R2
XC NWMFilter,NWMFilter
MVC NWMFilterIdent,=A(NWMFilterIdentifier)
MVC NWMFilterFlags(4),=A(NWMFilterLclAddrMask)
OC NWMFilterFlags(4),=A(NWMFilterLclPortMask)
LA R3,NWMFilterLocalAddr4
USING SOCKADDR,R3
LHI R0,AF_INET
STC R0,SOCK_FAMILY
LHI R0,5000
STH R0,SOCK_SIN_PORT
MVC SOCK_SIN_ADDR,=XL4’09000001’
DROP R2,R3

* *
* Format filter 2 *
* *

LA R2,NMIfilter2
USING NWMFilter,R2
XC NWMFilter,NWMFilter
MVC NWMFilterIdent,=A(NWMFilterIdentifier)
MVC NWMFilterFlags(4),=A(NWMFilterResNameMask)
MVC NWMFilterResourceName,=CL8’FTP* ’
DROP R2

* *
* Invoke NMI service *
* *

CALL EZBNMIFR, *
(TcpipJobName,(R13),NMIalet,NMIlength,RV,RC,RSN)

STORAGE RELEASE,LENGTH=@DYNSIZE,ADDR=(R13)
DROP R13
EJECT

RV DC F’0’
RC DC F’0’
RSN DC A(0)
NMIalet DC A(0)
NMIbuffer DC A(0)
NMIlength DC A(NMIBUFSIZE)
TcpipJobName DC CL8’TCPIP ’

LTORG ,
NMIdata DSECT
NMIbuftype DS CL8192

ORG NMIdata
NMIheader DS CL(NWMHeaderSize)
NMIfilter1 DS CL(NWMFilterSize)
NMIfilter2 DS CL(NWMFilterSize)
NMIfilter# EQU (*-NMIfilter1)/NWMFilterSize

ORG ,
NMIBUFSIZE EQU *-NMIdata

BPXYSOCK DSECT=YES,LIST=NO
EZBNMRHA DSECT=YES,LIST=NO,TITLE=NO,NWMLIST=YES

Trace record formatting NMI (EZBCTAPI)
Real-time trace records that are collected from the following NMIs can be
formatted programmatically with the EZBCTAPI macro:
v The SYSTCPDA (for packet and data trace) and SYSTCPOT (for OSAENTA trace)

interfaces that are described in “Real-time TCP/IP network monitoring NMI” on
page 527.

632 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v The “Real-time application-controlled TCP/IP trace NMI (EZBRCIFR)” on page
488.

This section describes how the EZBCTAPI interface can be used.

Restriction: The EZBCTAPI NMI provides only an assembler programming
interface.

The trace records are created in the form of component trace element (cte) records.
The format identification field (CteFmtId) describes the layout of data in the trace
record. The following table depicts the layout of the various records.

CteFmtId Description Header or structure IP Header

00000004 Packet Trace PTHDR_T IPv4 or IPv6

00000005 Data Trace PTHDR_T N/A

00000006 EE Trace1 PTHDR_T N/A

00000007 OSAENTA trace PTHDR_T IPv4 or IPv6

FF000001 Lost record from the staging
buffer

RCCLost N/A

FF000002 Lost record from the collection
buffer

RCCLost N/A

1 EE stands for Enterprise Extender. Read about Enterprise Extender in the Using Enterprise Extender (EE)
information in the z/OS Communications Server: SNA Network Implementation Guide.

Considerations for trace records from the Real-time TCP/IP
network monitoring NMI

For trace records created by the Real-time TCP/IP network monitoring NMI, the
ABBREV value of the PKTTRACE, DATTRACE, and OSAENTA commands
determines the amount of data that is available. The layout of CTEs in the buffer is
shown in the following figure.

Chapter 14. Network management interfaces 633

EZBCTAPI NMI: Configuration and enablement
There is no formal configuration required to enable this interface.

EZBCTAPI NMI: Invoking the interface
The EZBCTAPI macro accepts parameters to format trace records, in the form of
component trace records (cte). The data is formatted in the same fashion as is done
using the IBM-provided packet trace and data trace formatters that are available
with the IPCS CTRACE command. Note however that this interface does not
require an IPCS environment to be active.

Requirement: High-level assembler language, Version 1 Release 5 or later is
required to use this macro.

The EZBCTAPI macro enables users to pass component trace records to the format
routine for processing and to obtain the formatted output text. The macro performs
the following functions:
v SETUP - Define the formatting environment with the various parameters.
v FORMAT - Pass a record to the formatting interface.
v TERM - Delete the formatting environment allowing final output to be shown.
v QUIT - Delete the formatting environment without any final output. Summary

and statistical reports created at the end of the processing will not be formatted.
This request should be used for quick termination of the interface when no
further output is desired.

The macros that are used with the interface are described in the following table.

CTE Fmtld=4 PTHDR_t IPv4 header protocol header data CTEEPLG

CTE Fmtld=4 PTHDR_t IPv6 header protocol header data CTEEPLG

CTE Fmtld=4 PTHDR_t IPv4 header protocol header data CTEEPLG

CTE Fmtld=5 PTHDR_t - - - - - - - - - - - - - - - - - - - data - CTEEPLG

CTE Fmtld=6 PTHDR_t CTEEPLG

X'0000'

- - - - - - - - - - - - - - - - - - - data -

Figure 31. CTE layout

634 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Macros for assembler programs Contents

EZBCTAPI Used to format the records that are created by the
SYSTCPDA interfaces.

EZBYPTO Describes packet trace options for the formatter.

These macros are included in the SEZANMAC data set. This data set must be
available in the concatenation when compiling or assembling a part that makes use
of these definitions.

EZBCTAPI NMI requirements

Minimum authorization: Problem state and any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: Must be addressable in the primary address space and have a
storage key that matches the PSW key

EZBCTAPI NMI format
name name: Symbol. Begin name in column 1.

One or more blanks must precede EZBCTAPI.

EZBCTAPI
One or more blanks must follow EZBCTAPI.

SETUP
FORMAT
TERM
QUIT

,WORKAREA=workarea workarea: RX-type address or register (2) - (12).

,API=epaaddr epaaddr: RX-type address or register (2) - (12).

,COMP=name name: RX-type address or register (2) - (12).

,CTE=record record: RX-type address or register (2) - (12).

,ENTRYID=entryId_list entryId_list: Rx-type address or register (2) - (12).

,LDTO=stcktime stcktime: RX-type address or register (2) - (12).

,LSO=stcktime stcktime: RX-type address or register (2) - (12).

,MAXLINE=number number: RX-type address or register (2) - (12).

,NMCTF=epaaddr epaaddr: RX-type address or register (2) - (12).

,OBTAIN=epaaddr epaaddr: RX-type address or register (2) - (12).

,OPTIONS=options options: RX-type address or register (2) - (12).

,PRTSRV=epaaddr epaaddr: RX-type address or register (2) - (12).

,RELEASE=epaaddr epaaddr: RX-type address or register (2) - (12).

Chapter 14. Network management interfaces 635

,RETCODE=epaaddr epaaddr: RX-type address or register (2) - (12) or (15).

,REPORT=FULL Default: REPORT=FULL

,REPORT=SHORT
,REPORT=SUMMARY
,REPORT=TALLY

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12) or (0).

,TABLE=name name: RX-type address or register (2) - (12).

,TIME=GMT Default: TIME=LOCAL
,TIME=LOCAL

,USERTOKEN=token token: RX-type address or register (2) - (12).

,MF=(L,list_addr) list_addr: RX-type address or register (2) - (12).
,MF=(L,list_addr,attr) Default: MF=(L,list_addr, 0D)
,MF=G
,MF=(M,list_addr)

,MF=(M(list_addr,COMPLETE)
,MF=(E,list_addr)

,MF=(E,list_addr,COMPLETE)

EZBCTAPI NMI parameters
The parameters are explained in this section. First, select one of the four required
parameters that define the function that the interface is to perform (SETUP,
FORMAT, TERM, QUIT). Next, select the optional parameters that you need.

The required parameters are as follows:

SETUP
Initialize the interface by allocating and initializing control blocks and
loading the component trace format table. Most of the other keywords can
be specified to define the processing options.

FORMAT
Locate the specific entry in the format table and call the format routine.
The CTE keyword identifies the record to be formatted.

TERM End the interface by calling the filter routine one last time to issue any
final reports and release all the allocated resources.

QUIT End the interface by calling the filter routine one last time to release all the
allocated resources acquired by the formatter.

The optional parameters are as follows:

,API=epaaddr
Specifies the location of a word that contains the location of the EZBCTAPI
routine. Use this keyword in the SETUP call to pass the entry pointer
address to the interface. This might be useful to avoid the overhead of
loading and deleting this reentrant interface module. If the API keyword is
not used, then the EZBCTAPI routine is loaded by the SETUP function and
deleted by the TERM or QUIT function.

,COMP=name
Specifies the location of an 8-byte character field containing the name of
the CTRACE component for trace records that are obtained from the

636 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

real-time TCP/IP networking monitoring NMI. If not specified, the
component name of SYSTCPDA is used. For trace records that are obtained
from the real-time application-controlled TCP/IP trace NMI, this parameter
is ignored.

,CTE=record
Specifies the location of a component trace record. Used with the FORMAT
function.

,ENTRYID=entryId_list
Specifies a list of entry identifiers used to select a subset of CTE entries.
The format of the list is fullword count, followed by a list of two fullword
pairs. The fullword count contains the number of fullword pairs that
follow. The first word of the pair contains the low value of the entry ID
and second word contains the high value of the entry ID. For example, to
format only type 5 data trace records, use the following code:
DC F’1,5,5’

The count is one pair of words, and the low and high values are both 5.

,LDTO=stcktime
Specifies the location of an 8-byte store clock field. This field is in units of
STCK timer units. It contains the local date time offset. This field is used to
convert STCK time stamps in the component trace records to local time. If
not specified, the field CVTLDTO is used as the default.

,LSO=stcktime
Specifies the location of an 8-byte store clock field. This field is in units of
STCK timer units. It contains the leap seconds time offset. This field is
used to convert STCK time stamps in the component trace records to GMT
time and local time. If not specified, the field CVTLSO is used as the
default.

,MAXLINE=number
Specifies the location of a word that contains the maximum line width for
formatted output. The minimum value is 60 and the maximum value is
250. The default value is 80.

,NMCTF=epaaddr
Specifies the location of a word that contains the location of the
EZBNMCTF stub routine. This might be useful to avoid the overhead of
loading and deleting this reentrant interface module. This keyword should
be used on each invocation that will invoke the interface (MF=(E)). If the
NMCTF keyword is not specified, then the EZBNMCTF routine is called by
the macro as an external reference and EZBNMCTF must be link-edited
with the application program.

,OBTAIN=epaaddr
Specifies the location of a word that contains an entry point location of a
routine used by the interface to obtain storage. The default is a routine that
uses the STORAGE (OBTAIN) macro to obtain the storage from the
operating system. If the OBTAIN keyword is specified then the RELEASE
keyword must be specified. It is passed these pointers in a parameter list
addressed by register 1:
v The work area
v The 4-word user token (see the USERTOKEN definition later in this

section)
v The word where the location of the obtained storage is returned

Chapter 14. Network management interfaces 637

v The word with the length of the storage to be obtained

The following return codes are supported:
v 00: The storage was obtained. The location of the storage is returned.
v 04: The storage could not be obtained. The address is null.

Standard calling conventions are used to call the routine in the same
environment when the EZBCTAPI interface was called.

,OPTIONS=options
Specifies the address of options to be passed to the packet trace formatter.
These options are described by EZBYPTO data area. See “EZBCTAPI NMI:
Passing options to the trace formatter” on page 648 for more information.

,PRTSRV=epaaddr
Specifies the location of a word that contains entry point location of a
routine used by the interface and formatter to print lines of text and
messages. It is passed these parameters in a parameter list addressed by
register 1:
v The BLSUPPR2 parameter list.
v The 4-word user token (see the USERTOKEN definition later in this

section).

The following return codes are supported from the print routine:
v 00: The line of text was printed.
v 04: The line was not printed and future output is to be suppressed.

Standard calling conventions are used to call the routine in the same
environment when the EZBCTAPI interface was called.

To generate the BLSUPPR2 parameter list use the BLSUPPR2 macro:
PPR2 BLSUPPR2 DSECT=YES

The BLSUPPR2 macro is described in the z/OS MVS Programming:
Assembler Services Reference ABE-HSP.

The following fields are defined as:

PPR2BUF Location of buffer containing the data to be printed

PPR2BUFL Length of data in the buffer to be printed

PPR2MSG The buffer contains a message

PPR2OVIN Overflow indentation level (0 for the first line, 2 for subsequent
lines)

The print buffer is in the EBCDIC code page. The buffer has been
translated to change unprintable characters to periods. The new line
character (X'15') is located in each data line and the print function is called
for each new line. Should the data buffer be larger than the MAXLINE
value minus 1, then the print function is called as many times as needed
with the rest of the print line with PPR2OVIN set to 2.

,RELEASE=epaaddr
Specifies the location of a word that contains the entry point location of a
routine used by the interface to release storage. The default is a routine
that uses the STORAGE (RELEASE) macro to release the storage back to
the operating system. If the RELEASE keyword is specified, then the
OBTAIN keyword must be specified. It is passed these pointers in a
parameter list addressed by register 1:

638 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v The work area
v The 4-word user token (see the USERTOKEN definition later in this

section)
v The word with the location of the storage to be released
v The word with the length of the storage to be released

The following return codes are supported:
v 00: The storage was released.
v 04: The storage could not be released.

Standard calling conventions are used to call the routine in the same
environment when the EZBCTAPI interface was called.

,RETCODE=retcode
Specifies the location where the interface return code is stored. The return
code is also in general purpose register (GPR) 15.

,REPORT=FULL

,REPORT=SHORT

,REPORT=SUMMARY

,REPORT=TALLY
Formats the report.

FULL Formats the IP protocol headers and packet data. This includes the
component mnemonic, entry identifier, date and time, and a
description of the trace record. FULL is the default report option.

SHORT
Formats the IP protocol headers. This includes the component
mnemonic, entry identifier, date and time, and a description of the
trace record.

SUMMARY
Requests two lines per trace record. Key fields from each
qualifying trace record are printed following the date, time, and
entry description.

TALLY
Requests a list of trace entry definitions for the component and
counts how many times each trace entry occurred.

,RSNCODE=rsncode
Specifies the location where the interface reason code is stored. The reason
code is also in GPR 0. EZBCTAPI provides a reason code if the return code
is other than 0.

,TABLE=name
Specifies the location of the 8-character field that contains the name for the
format table or two words. The first word contains zeros and the second
word contains the entry point address of the format table. If the parameter
is not specified or the name is not used, then the EZBPTFM4 table is
loaded. This might be useful to avoid the overhead of loading and deleting
this format table. For trace records that are obtained from the real-time
TCP/IP networking monitoring NMI, you can specify the EZBPTFM4 table
name. If the EZBPTFM4 table name is not specified or the name is not
used, the EZBPTFM4 table is loaded. For trace records that are obtained
from the real-time application-controlled TCP/IP trace NMI, you must
specify the EZBRCFMT table name.

Chapter 14. Network management interfaces 639

,TIME=GMT

,TIME=LOCAL
Specifies the conversion of the time field in the component trace records.
The default is TIME=LOCAL.

GMT The time is shown as Greenwich Mean Time.

LOCAL
The time is shown as local time.

,USERTOKEN=token
Specifies the location of a 4-word field that is copied and passed to the
print service routine and the storage functions. The default is four words
of zeros.

,WORKAREA=workarea
The location of a 16 KB work area used by the interface for its control
blocks, work area, and save areas. The work area is cleared by the SETUP
function. This work area must remain intact until the TERM or QUIT
function is called. The work area cannot be shared across tasks.
Specification is optional; if not specified, a 16 KB work area is obtained.

,MF=(L,list_addr)

,MF=(L,list_addr,attr)
Requests that an EZBCTAPI parameter list be defined. list_addr is the
name assigned to the list. attr is an optional attribute used to define the
parameter list. The default is 0D. No other keywords can be used with this
macro format.

,MF=G
Requests that the EZBCTAPI_t parameter list description be generated. No
other keywords can be used with this macro format.

,MF=(M,list_addr)

,MF=(M,list_addr,COMPLETE)
Request that the EZBCTAPI parameter list be modified. COMPLETE
requests that the parameter list be set to binary zeros before any
modifications.

,MF=(E,list_addr)

,MF=(E,list_addr,COMPLETE)
Requests that the EZBCTAPI parameter list be modified. COMPLETE
requests that the parameter list be set to binary zeros before any
modifications. In addition, for the SETUP function the EZBCTAPI interface
program is loaded, and for the TERM and QUIT functions the interface
program is deleted (see the API keyword to modify this behavior). The
interface program is then called.

Restriction: COMPLETE does not apply to TERM and QUIT functions.

The following table shows supported functions and keyword combinations.

Keyword Input/
Output

MF(E)
SETUP

MF(E)
FORMAT

MF(E)
TERM

MF(E)
QUIT

MF(M) MF(L) MF(G)

WORKAREA I X X

API I X X X X

COMP I X X X

640 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Keyword Input/
Output

MF(E)
SETUP

MF(E)
FORMAT

MF(E)
TERM

MF(E)
QUIT

MF(M) MF(L) MF(G)

CTE I R X

ENTRYID I X X

LDTO I X X

LSO I X X

NMCTF I X X X X

MAXLINE I X X

OBTAIN I X X

OPTIONS I X X

PRTSRV I R X

RELEASE I X X

REPORT I X X

RETCODE O X X X X

RSNCODE O X X X X

TABLE I X X

TIME I X X

USERTOKEN I X X

Legend:

v I: Input parameter

v O: Output parameter

v R: Required parameter

v X: Optional parameter

EZBCTAPI NMI input register information
Before issuing the EZBCTAPI macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register contents

13 The location of a 72-byte standard save area in the primary address space.

Before issuing the EZBCTAPI macro, the caller does not have to place any
information into any access register (AR).

EZBCTAPI NMI output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register contents

0 Reason code, if GPR 15 contains a nonzero return code; otherwise, used as a
work register by the system

1 Used as a work register by the system

2 - 13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Chapter 14. Network management interfaces 641

Register contents

0 - 1 Used as work registers by the system

2 - 13 Unchanged

14 - 15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

EZBCTAPI NMI ABEND codes
There are no ABEND codes.

EZBCTAPI NMI return and reason codes
When control returns from EZBCTAPI, GPR 15 (and retcode, if you coded
RETCODE) contains one of the return codes shown in Table 125. GPR 0 (and
rsncode, if you coded RSNCODE) might contain one of the reason codes shown in
Table 125.

Table 125. EZBCTAPI return and reason codes

Hexadecimal return
code
(CtApi_IRtnCd)

Hexadecimal reason
code (CtApi_IRsnCd)

Meaning

00 00 Function was successful.

04 See note The FORMAT function was not successful.

04 10 The SETUP function was not done or did
not complete.

04 11 The trace record is not the correct format.

04 17 The trace record did not match the
ENTRYID filter.

04 18 The trace record could not be identified.

04 1B The filter/analysis routine failed.

08 See note The SETUP function was not successful.

08 01 The SETUP function has already initialized
the interface.

08 02 Print callback function was not provided.

08 03 Unable to load format table.

08 04 Unable to allocate storage for tables.

08 05 Unable to load analysis/format exit.

0C xx Unknown function code xx.

10 See note Unable to load the function interface.

10 04 The EZBCTAPI interface routine could not
be found.

10 08 An error occurred loading the EZBCTAPI
interface routine.

14 See note Unable to obtain storage for a work area.

14 04 The program was not able to obtain
storage for the work area.

642 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 125. EZBCTAPI return and reason codes (continued)

Hexadecimal return
code
(CtApi_IRtnCd)

Hexadecimal reason
code (CtApi_IRsnCd)

Meaning

18 xxxxxxxx The interface routine or the analysis
routine abended; xxxxxxxx is the abend
code.

Note: The first line of a new return code is a generic line about the return code.

Table 126. EZBCTAPI formatter return and reason codes

Hexadecimal return
code
(CtApi_FRtnCd)

Hexadecimal reason
code (CtApi_FRsnCd)

Meaning

00 N/A Normal processing of the entry

04 N/A Reread the records from the first

08 N/A The current entry is bypassed

0C N/A No further calls to the format/analysis
routine

10 N/A Ending of the subcommand

These return codes are described in z/OS MVS IPCS Customization for a CTRACE
formatter filter/analysis exit. The packet trace formatter uses only a return code of
0 or 8. The interface return code (CtApi_IRtnCd) is always 0 for formatter return
codes of 0, 4, 8, and 12; otherwise, an interface return code of 4 is returned (see
interface reason code X'1B').

EZBCTAPI NMI: Programming considerations
This section provides information on designing your application to obtain and
format the trace records.

Real-time TCP/IP network monitoring NMI:
This section describes the process of obtaining packet trace and data trace records
and formatting them for users of this NMI. See “Real-time TCP/IP network
monitoring NMI” on page 527 for more information about using this NMI.

Obtaining and formatting trace records:

This section describes the steps of obtaining and formatting trace records.

Procedure

Perform the following steps to obtain trace records and format the records.
1. Start the application program. The application program performs the following

actions:
a. Defines the format options in the EZBYPTO control block, passed to

EZBCTAPI.
b. Uses the EZBCTAPI macro to set up the trace formatter interface.
c. Connects an AF_UNIX socket to the SYSTCPDA service (see “Real-time

TCP/IP network monitoring NMI” on page 527).
d. Allocates a buffer with the value in the Tmii_BufSz field.

Chapter 14. Network management interfaces 643

e. In a loop, reads a record from the AF_UNIX socket. The first word of each
record contains the length of the record. The record contains tokens that
describe a TCP/IP trace buffer that contains data to be copied.

f. Calls EZBTMIC1 to copy the TCP/IP trace buffer to the application 64 KB
buffer.

g. For a return value of zero or negative, reads the next record from the
AF_UNIX socket.

h. The return value contains the amount of data moved into the buffer. The
buffer contains a series of component trace entries (CTE). A CTE is
described by the ITTCTE data area.

i. Processes each CTE in the buffer by calling the format function of
EZBCTAPI, passing the address of the CTE.

j. The length of each CTE is the unsigned halfword at the start of each CTE. A
CTE with a length of zero indicates the end of the buffer. This last halfword
of zeros is not included in the return value of the amount of data moved.

k. Loops to read the next record from the socket.
l. At termination, the application program frees the 64 KB buffer, closes the

socket, and calls the TERM function of EZBCTAPI.
2. Issue VARY TCPIP,,PKTTRACE or VARY TCPIP,,DATTRACE commands to

collect the data of interest.

Packet trace records – format only headers:
There are two ways of passing the formatter truncated records so that trace records
contain only headers:
v Use the ABBREV keyword of the PKTTRACE command to truncate traced

records. No matter the value of ABBREV, the record always contains the IP
header and protocol header.

v Shorten the data that is passed to the formatter. Use these steps:
1. Determine whether the trace record is the first segment of packet. The

sequence number field of the header (PTH_SeqNum) is 0. The record
contains the IP header and protocol header if there is any. Otherwise, the
record contains only data.

2. Set the CTELENP field, which is the first halfword of a trace record, to the
smaller of CTELENP or the sum of the size of following fields:
– The CTEFDATA field
– The PTH_HDR field
– The IP header
– The protocol header

3. Set the PTO_SEGMENT flag to 0. The length also includes the 2-byte length
field CTELENE.

Rule: Records that are passed to the formatter must always contain at least the
ITTCTE, PTHDR_t, the IP header, and the protocol header.

Real-time application-controlled TCP/IP trace NMI:
This section describes the process of obtaining packet trace and data trace records
and formatting them for users of this NMI. See “Real-time application-controlled
TCP/IP trace NMI (EZBRCIFR)” on page 488 for more information about using
this NMI.

644 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Obtaining and formatting trace records:

This section describes the steps of obtaining and formatting trace records.

Procedure

Perform the following steps to obtain trace records and format the records.

Start the application program. The application program performs the following
actions:
1. Defines the format options in the EZBYPTO control block, passed to

EZBCTAPI.
2. Uses the EZBCTAPI macro to set up the trace formatter interface.
3. Invokes the NMI requests to open a trace instance, set the desired filters and

start the trace.
4. In a loop, invokes the RCCGetRecords request to obtain the trace records in

CTE format.
5. For each trace record, invokes the format function of EZBCTAPI, passing the

address of the record.
6. At termination, the application program invokes the TERM function of

EZBCTAPI.

Packet trace records – format only headers:
There are two ways of passing the formatter truncated records so that trace records
contain only headers:
v Set the Payload option of the RCCSetFilters request to a value of 0. This ensures

that no data is traced. The IP header and protocol headers are always be traced.
v Shorten the data that is passed to the formatter. Use these steps:

1. Determine whether the trace record is the first segment of packet. The
sequence number field of the header (PTH_SeqNum) is 0. The record
contains the IP header and protocol header if there is any. Otherwise, the
record contains only data.

2. Set the CTELENP field, which is the first halfword of a trace record, to the
smaller of CTELENP or the sum of the size of following fields:
– The CTEFDATA field
– The PTH_HDR field
– The IP header
– The protocol header

3. Set the PTO_SEGMENT flag to 0. The length also includes the 2-byte length
field CTELENE.

Rule: Records that are passed to the formatter must always contain at least the
ITTCTE, PTHDR_t, the IP header, and the protocol header.

EZBCTAPI NMI Performance implications
There are no performance implications.

EZBCTAPI NMI Example of using the EZBCTAPI NMI
The following assembler programming example illustrates how to setup and
invoke the EZBCTAPI NMI from within an application program that is using the
real-time TCP/IP network monitoring NMI.

Chapter 14. Network management interfaces 645

* COPY EZBCTAPI
EZBCTSMP CSECT

SAVE (14,12),,*
LR 12,15 SET A BASE REGISTER
USING EZBCTSMP,12
LA 15,MAINSA CHAIN THE SAVE AREA
ST 15,8(,13)
ST 13,4(,15)
LR 13,15

*/**/
/ INITIALIZE THE OPTIONS */
*/**/
PTO USING EZBYPTO,APTO MAP THE OPTIONS AREA

XC APTO,APTO ZERO THE OPTIONS FLAGS AND PTRS
LA 0,EZBYPTO_SZ SET LENGTH OF OPTIONS AREA
STH 0,PTO.PTO_LENGTH
LA 0,EZBYPTO_SZ-4
STH 0,PTO.PTO_OFFSET

* SET FORMAT(DETAIL) SEGMENT REASSEM STATS(DETAIL)
OI PTO.PTO_FORMAT,L’PTO_FORMAT
OI PTO.PTO_FMTDTL,L’PTO_FMTDTL
OI PTO.PTO_STATS,L’PTO_STATS
NI PTO.PTO_STCSUM,255-L’PTO_STCSUM SET STAT(DETAIL)
OI PTO.PTO_REASM,L’PTO_REASM
OI PTO.PTO_SEGMENT,L’PTO_SEGMENT

*
*

OPEN (PRINTDCB,OUTPUT) OPEN THE PRINT FILE
*

STORAGE OBTAIN,LENGTH=CTAPI_WKSIZE,ADDR=(8)
* GET STORAGE FOR ABDPL WORK AREA
*
* INTIALIZE THE EZBCTAPI PARAMETER LIST

EZBCTAPI WORKAREA=(8), C
COMP==CL8’SYSTCPDA’, C
PRTSRV==A(PRINTSRV), C
OPTIONS=APTO, C
REPORT=FULL, C
TIME=LOCAL, C
USERTOKEN=PRINTTKN, C
MAXLINE==A(L’PRINTBUF-1), C

* MF=(M,CTAPIL,COMPLETE)
* GET A BUFFER FOR READING BUFFERS
*

STORAGE OBTAIN,LENGTH=64*1024
ST 1,ABUFFER31

*
* SET UP THE FORMATTER INTERFACE
*

EZBCTAPI SETUP,MF=(E,CTAPIL), SET UP THE INTERFACE C
RETCODE=RETCDE,RSNCODE=RETRSN

LTR 15,15 DID THIS WORK
BNZ ERROR

*
* READ IN A TOKEN
*
LOOP1 DS 0H

CALL BPX1RED,(SOCKET, C
ABUFFER,PRIMARYALET,LBUFTKN, C
RETVAL,RETCDE,RETRSN),VL

L 15,RETVAL
LTR 15,15
BNP EOF CLOSE SOCKET AND EXIT

*
* READ IN DATA BUFFERS
*

ST 15,LBUFTKN

646 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

CALL EZBTMIC1,(BUFTOKEN,LBUFTKN,RETVAL,RETCDE,RETRSN)
L 15,RETVAL
LTR 15,15 WAS DATA MOVED?
BNZ LOOP1 NO, GET NEXT ONE

*
L 3,ABUFFER31 GET ADDRESS THE BUFFER
USING CTE,3 MAP THE BUFFERS

*
LOOP2 DS 0H
*

LH 2,CTELENP GET LENGTH OF THIS RECORD
N 2,=X’0000FFFF’ ALLOW UP TO 64K RECORDS
LTR 2,2 IS THIS THE END
BNP LOOP1 YES, DO THE NEXT BUFFER
EZBCTAPI FORMAT,CTE=CTE, C

MF=(E,CTAPIL)
ALR 3,2 POINT TO THE NEXT CTE
B LOOP2 DO THE NEXT RECORD

*
EOF DS 0H

EZBCTAPI TERM,MF=(E,CTAPIL)
STORAGE RELEASE,LENGTH=CTAPI_WKSIZE,ADDR=(8)

* RELEASE STORAGE ABDPL WORK AREA
CLOSE (PRINTDCB)
L 13,4(13)
RETURN (14,12),RC=0

*
*
ERROR DS 0H
*
*
* DATA
*

LTORG
MAINSA DC 18A(0)

EZBCTAPI MF=(L,CTAPIL)
EZBCTAPI MF=G

SOCKET DC F’0’ FILE SYSTEM SOCKET NUMBER
ABUFFER DC A(BUFTOKEN)
PRIMARYALET DC F’0’
LBUFTKN DS F LENGTH OF BUFFER TOKEN
BUFTOKEN DS CL64 A BUFFER TOKEN
RETVAL DS F
RETCDE DS F
RETRSN DS F
BUFPTR DC 0F

DC A(0,0) ALET, HI64BITS
ABUFFER31 DC A(0) ADDRESS OF THE BUFFER
*
APTO DS CL(EZBYPTO_SZ) SPACE FOR THE OPTIONS
*
PRINTTKN DC 0F TOKEN FOR PRINT SERVICE

DC A(PRINTDCB)
DC A(PRINTSA)
DC A(PRINTBUF)
DC A(0)

*
PRINTDCB DCB DDNAME=SYSPRINT,DSORG=PS,MACRF=PM, C

RECFM=FBA,LRECL=133
*
PRINTBUF DS 0CL133 A PRINT BUFFER
PRINTCC DC C’ ’
PRINTDAT DC CL132’ ’
*
PRINTSA DC 18A(0) A SAVE AREA FOR PRINT SERVICE
*
*

Chapter 14. Network management interfaces 647

*
EJECT

PRINTSRV CSECT
SAVE (14,12),,* SAVE REGISTERS
LR 12,15 SET BASE REGISTER
USING PRINTSRV,12 MAP IT
LR 2,1 COPY PARM LIST POINTER
USING PLIST,2
LM 2,3,PLIST GET PLIST POINTERS
USING PPR2,2
USING PTKN,3
LM 4,6,PTKN GET POINTERS TO STUFF

* 4 ===> DCB
* 5 ===> SAVE AREA
* 6 ===> PRINT BUFFER

USING PBUF,6 .
ST 5,8(,13) CHAIN THE SAVE AREAS
ST 13,4(,5) .
LR 13,5 .

*
L 7,PPR2BUF GET ADDRESS OF THE BUFFER
L 8,PPR2BUFL GET ITS LENGTH

*
MVI PBUFLNE-1,C’ ’ BLANK IT ALL OUT
MVC PBUFLNE,PBUFLNE-1 .
LTR 8,8 IS THERE A LINE
BNP PSRV0001 NO, JUST DO A BLANK LINE
BCTR 8,0 TO EXECUTE LENGTH
EX 8,COPYLINE COPY LINE OF TEXT

*
PSRV0001 DS 0H
* L 4,PTKNDCB GET ADDRESS OF PRINT DCB

PUT (4),PBUF PRINT THE LINE OF TEXT
L 13,4(,13) UNCHAIN THE SAVE AREAS
RETURN (14,12),RC=0 RETURN TO CALLER

* INDICATE PRINT WAS OK
COPYLINE MVC PBUFLNE(0),0(7) COPY THE PRINT LINE
*
*
PPR2 BLSUPPR2 DSECT=YES PPR2 PARAMETER LIST
PLIST DSECT ,
PLPR2 DS A POINTER TO PPR2 PARM LIST
PLTKN DS A POINTER TO OUR TOKEN
*
PTKN DSECT , OUR TOKEN
PTKNDCB DS A POINTER TO THE DCB
PTKNSA DS A POINTER TO SAVE AREA
PTKNBUF DS A POINTER TO BUFFER AREA
*
PBUF DSECT , OUTPUT BUFFER
PBUFCC DS C CARRIAGE CONTROL
PBUFLNE DS CL132 OUTPUT LINE
*

ITTCTE ,
EZBYPTO COPY FORMAT OPTIONS
END

EZBCTAPI NMI: Passing options to the trace formatter
The EZBYPTO macro describes a data area that can be passed using the EZBCTAPI
OPTIONS keyword. This data area contains flags, values, and pointers that
describe packet trace formatter options. Table 127 on page 649 shows the option
and field settings required to select the option.

These same options are available through the SYSTCPDA and SYSTCPOT CTRACE
formatter. You can find a detailed explanation in the packet trace (SYSTCPDA) for

648 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

TCP/IP stacks and OSAENTA trace (SYSTCPOT) information in z/OS
Communications Server: IP Diagnosis Guide.

Table 127. Available EZBYPTO options

Option Field setting Field format

ASCII Pto_Dump=1;Pto_DmpCd=PtoAscii; Bit flag

BASIC(DETAIL) Pto_Basic=1;Pto_BasDtl=1; Bit flag

BASIC(SUMMARY) Pto_Basic=1;Pto_BasDtl=0; Bit flag

BOTH Pto_Dump=1;Pto_DmpCd=PtoBoth; Bit flag

CLEANUP(nnnnn) Pto_Cleanup=1;Pto_GcIntvl=nnnnn; Bit flag

DEVICE(list) Pto_Device@=Addr(list);Pto_Device#=nn List of 32-bit word pairs

DISCARD(list) Pto_Discard@=Addr(list),Pto_Discard#=nn List of 16-bit word pairs

DUMP Pto_Dump=1; Bit flag

DUMP(nnnnn) Pto_Dump=1;Pto_MaxDmp=nnnnn; Bit Flag; 31-bit word

EBCDIC Pto_Dump=1;Pto_DmpCd=PtoEbcdic; Bit flag; Value

ELEMENT(list) Pto_Element@=Addr(list);Pto_Element=nn List of 32-bit word pairs

ETHTYPE(list) Pto_EthType@=Addr(list);Pto_EthType#=nn List of 32-bit word pairs

FLAGS(flags) Pto_Flags@=Addr(Pto_Flagss),
Pto_Flags#=size(Pto_Flagss);

16 bytes of bit flag used to select
packets

FLAGS(ANY|ALL) Pto_FlgAny=1 Select a packet that has any flags
in Pto_Flagss set.

FORMAT(DETAIL) Pto_Format=1;Pto_FmtDtl=1; Bit flags

FORMAT(SUMMARY) Pto_Format=1;Pto_FmtDtl=0; Bit flags

FULL Pto_Dump=1,Pto_Format=1,Pro_FmtDtl=1; Bit flags

HEX Pto_Dump=1;Pto_DmpCd=PtoHex; Bit flags

HPRDIAG Pto_HprSess=1;Pto_HprRpt=Pto_HprSummary; Bit flags

INTERFACE Pto_Links@=Addr(list),Pto_Links#=nn List of 16-byte character strings

IPADDR(list) Pto_Addr@=Addr(list);Pto_Addr#=nn List of 16-byte byte IPv6
addresses

MACADDR(list) Pto_MacAddr@=Addr(list);Pto_MacAddr#=nn List of 6-byte Mac addresses

PORT(list) Pto_Port@=Addr(list);Pto_Port#=nn List of 16-bit word pairs

PROTOCOL(list) Pto_Proto@=Addr(list);Pto_Proto#=nn List of 32-bit word pairs

REASSEMBLY(nnnnn) Pto_ReAsm=1;Pto_MaxRsm=nnnnn Bit flags

REASSEMBLY(DETAIL) Pto_ReAsm=1;Pto_RsmSum=0 Bit flags

REASSEMBLY(SUMMARY) Pto_ReAsm=1;Pto_RsmSum=1 Bit flags

NOREASSEMBLY Pto_ReAsm=0; Bit flag

SEGMENT Pto_Segment=1; Bit flag

NOSEGMENT Pto_Segment=0; Bit flag

SESSION(DETAIL) Pto_SesRpt=Pto_SesDetail; Pto_Session=1; Bit flag

SESSION(SUMMARY) Pto_SesRpt=Pto_SesSummary; Pto_Session=1; Bit flag

SESSION(STATE) Pto_SesRpt=Pto_SesState; Pto_Session=1; Bit flag

SPEED(local,remote) Pto_LSpeed=nnn;Pto_RSpeed=nnn Two 32-bit words

STATISTICS(DETAIL) Pto_Stats=1;Pto_StcSum=0; Bit flag

STATISTICS(SUMMARY) Pto_Stats=1;Pto_StcSum=1; Bit flag

Chapter 14. Network management interfaces 649

Table 127. Available EZBYPTO options (continued)

Option Field setting Field format

STREAMS(nnn) Pto_Streams=1;Pto_StrmBuf=nnn Bit flag

STREAMS(DETAIL) Pto_Streams=1;Pto_StmSum=0; Bit flag

STREAMS(SUMMARY) Pto_Streams=1;Pto_StmSum=1; Bit flag

SUBAREA(list) Pto_Subarea@=Addr(list);Pto_SubArea#=nn List of 32-bit word pairs

SUMMARY Pto_Summary=1; Bit flag

TCID(list) Pto_Tcid@=Addr(list);Pto_Tcid#=nn List of 8-byte hex strings

TH5SA(list) Pto_Th5SA@=Addr(list);Pto_Th5SA#=nn List of 8-byte hex strings

TALLY Pto_Stats=1;Pto_StcSum=0; Bit flag

VLANID(list) Pto_VlanId@=Addr(list);Pto_VlanId#=nn List of 32-bit word pairs

Notes:

1. The traced data might span multiple trace records. In this case, the related trace
records are called segmented records. See “Segmented trace records” on page
654 for more information about these trace records. When segmented records
are encountered, the SEGMENT option re-creates the traced data as a single
trace record. The traced data is not used until the last trace segment record is
passed to the formatter. Until that time, the packet is saved in a temporary
buffer. Use the NOSEGMENT option to prevent this. The CLEANUP value can
be used to free the temporary buffers for segments that will not be completed.
The QUIT or TERM function frees all unprocessed segments.

2. When the NOSEGMENT option is used, only the first segment has the IP
header and protocol headers.

3. A packet might be fragmented. When you specify the REASSEMBLY option, the
formatter saves the fragments in a temporary buffer until all the fragments
have been processed to recreate the original complete packet. The packet is not
used until the last trace record is passed to the formatter. The CLEANUP value
frees temporary buffers that have not completed, for reassembly. The QUIT or
TERM function frees all unprocessed fragments.

4. Use the NOREASSEMBLY option to prevent this saving of records.
5. If the CLEANUP value is 0, then the temporary buffers are not released until

the QUIT or TERM function.
6. You can use the EZBYPTO options control block to request multiple reports.
7. Use of the EZBCTAPI TERM function creates the SESSION, STATISTICS, and

STREAMS reports.
8. The EZBYPTO data area is not processed by the SETUP function call. The

values in the data area and values pointed from the data area must remain
intact until after the first FORMAT, TERM, or QUIT function call.

9. For packet trace records, if the first and only discard reason code in the
Pto_Discard1(1) field is 65535 (X'FFFF'), then all packets with a nonzero discard
reason code are selected. If one of the discard reason codes is 0, then packets
that were not discarded are selected.

650 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Common real-time trace record attributes
This section describes the common attributes of trace records that are obtained
from the following functions:
v TCP/IP stack traces
v Real-time application-controlled TCP/IP trace NMI
v Real-time TCP/IP network monitoring NMI

Common real-time trace record header

The packet trace header is provided as a common trace header in trace records for
the following types of traces:

Data trace
Provided in trace records that are obtained from the following functions:
v TCP/IP stack data trace
v Real-time TCP/IP network monitoring NMI
v Real-time application-controlled TCP/IP trace NMI

OSAENTA trace
Provided in trace records that are obtained from the following functions:
v TCP/IP stack OSAENTA trace
v Real-time TCP/IP network monitoring NMI

Packet trace
Provided in trace records obtained from the following functions:
v TCP/IP stack packet trace
v Real-time TCP/IP network monitoring NMI
v Real-time application-controlled TCP/IP trace NMI

The packet trace header is defined in the following programming interface files:

Structure File name Language and type Installed location

PTHDR_T EZBYPTHA Assembler macro SEZANMAC

pthdr_t or
pthdr_base_T

EZBYPTHH C/C++ header SEZANMAC

The packet trace header provides the following information:
PTH_Len Length of the packet trace header (PTH) structure. This is also the offset to

the IP header for packet trace.
PTH_Seqnum Sequence number of this packet trace record. This field applies only to

segmented records. See “Segmented trace records” on page 654 for more
information about these kind of trace records.

PTH_Flag Flag indicators
PTH_Local 0x80 PTH_Src and PTH_Dest are local IP addresses on the same TCP/IP

stack.
PTH_CfTxt 0x40 The trace record represents AT-TLS confidential data, so none of

the data is included in the trace record. The PTH fields that
provide information about the traced data length are set as
follows:
- Data trace
The PTH_Tlen field is set to 0 and the PTH_Plen and the
PTH_DtPlen fields are set to the original data length.

- Packet trace
The PTH_Tlen field is set to the length of the packet headers
and the PTH_Plen field is set to the original packet length.

PTH_ClearTxt 0x20 IPSec cleartext data was recorded in the packet trace record,
or AT-TLS cleartext data was recorded in the data trace
record. This flag is set only in trace records created by the
real-time application-controlled TCP/IP trace NMI.

Chapter 14. Network management interfaces 651

PTH_Seg_Offload 0x10 TCP Segmentation Offload
PTH_Pdu 0x08 Data from multiple PDUs. This flag is set only in outbound packet

trace records that represent TCP segments or fragmented packets.
PTH_Adj 0x04 Record size was adjusted by +1 (reflected in the

ctelene and ctelenp). The data length was odd and
a single pad byte was added.

PTH_Abbr 0x02 For records created by the TCP/IP stack packet trace, data trace,
or OSAENTA trace, this flag indicates that the ABBREV parameter
was used on the trace command. For records created by the real-time
application-controlled TCP/IP trace NMI packet trace or data trace,
this flag indicates that the payload option was specified on the
filter control block. The length of the data in the trace record
has been truncated by the payload value.

PTH_Out 0x01 IP packet was sent = 1 rcvd = 0
PTH_Devty The type of device represented by the interface being traced.

PTHLCSE 1 - Ethernet
PTHLCS8 2 - 802.3 Ethernet
PTHLCSE8 3 - Ether|802.3
PTHLCSTR 4 - Token Ring
PTHLCSFD 5 - FDDI
PTHLU62 6 - SNA LU6.2
PTHHCH 10 - HyperChannel
PTHCLWRS 21 - CLAW
PTHCTC 29 - CTC
PTHCDLC 30 - CDLC IP
PTHATM 32 - ATM
PTHVIPA 33 - VIRTUAL
PTHLOOPB 34 - LoopBack
PTHMpc 35 - MPC
PTHX25C 36 - X.25
PTHSNALN 37 - SNA LINK
PTHMPCIG 38 - MPC giga
PTHMPCIE 39 - MPC IPAQENET
PTHMPCOD 40 - MPC OSAFDDI
PTHMPCON 41 - MPC OSAFNET
PTHMPCIH 42 - MPC IPAQTR
PTHQIDIO 43 - iQdio
PTHIQDX 44 - IQDX
PTH6loopb 51 - IPv6 loopback
PTH6vipa 52 - IPv6 VIPA (VIRTUAL)
PTH6ipaqenet 53 - IPv6 MPC IPAQENET6
PTH6mpc 55 - IPv6 MPC
PTH6ipaqidio 56 - IPv6 iQdio6
PTH6IQDX 57 - IPv6 IQDX

PTH_Tlen Portion of the payload that is actually traced. For records created by the
TCP/IP stack packet trace, data trace, or OSAENTA trace, if ABBREV was not
specified on the trace command then this will be the same as the value in the
PTH_Plen field. If ABBREV was specified, then this is the value specified for
the parameter.

For records created by the real-time application-controlled TCP/IP
trace NMI packet trace or data trace, if the payload option was not specified,
this will be the same as the value in the PTH_Plen field (or, for data trace,
the PTH_DtPlen field). If the payload option was specified then, for packet
trace, this is the length of the packet headers plus the truncated data length.
For data trace, this is the value specified for the payload option.

PTH_Infname For packet trace, the name of the interface the packet was traced on in EBCDIC
character format

PTH_Jobname For data trace, the jobname for the socket request
PTH_DtDomain For data trace, the socket domain (AF_INET or AF_INET6)
PTH_DtType For data trace, the socket type (Sock#_Stream, Sock#_Dgram, Sock#_Raw)
PTH_DtProto For data trace, the socket protocol number
PTH_DtState For data trace, the Start/End of data flow
PTH_DtStartInb EQU 6 Data Flow starts for Inbound
PTH_DtStartOutb EQU 7 Data Flow starts for Outbound
PTH_DtTerm EQU 8 Data Flow ends
PTH_DtPLen For data trace, the original total data length. This field should be used

instead of the PTH_Plen field because the PTH_Plen field is not large enough
to support the larger data sizes for data trace.

PTH_Time Stored time of day clock when packet trace header was created by the trace
PTH_Src For packet and data trace, the hexadecimal source IP address of this packet

(IPv6 or IPv4)
PTH_Dst For packet and data trace, the hexadecimal destination IP address of this packet

(IPv6 or IPv4)
PTH_Sport For packet and data trace, the hexadecimal source IP port number
PTH_Dport For packet and data trace, the hexadecimal destination IP port
PTH_Trcnt Total count of records traced. This field is supported only in trace records

created by the TCP/IP stack and obtained by using the real-time TCP/IP network
monitoring NMI.

PTH_IQDX For packet trace, the packet was associated with an IQDX interface.

652 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

PTH_Tcb Task control block address of the sender of the outbound packet or data trace
data. On inbound, this will usually be task associated with the TCP/IP stack.

PTH_Asid Ascbasid of the sender of the outbound packet or data trace data. On inbound,
this will usually be the asid of the TCP/IP stack.

PTH_SeqNr OSAENTA trace sequence number
PTH_Vlan OSAENTA Vlan id field

PTH_VlanPri Vlan priority (0-7)
PTH_VlanId Vlan Id (0-4095)

PTH_NtaFlag OSAENTA Flags
PTH_OutB 1-Outbound, 0-Inbound
PTH_Lpar 1=Lpar_to_Lpar
PTH_DD Data Device is valid
PTH_GVlan VLAN frame
PTH_LS Large Send
PTH_QHdr Qdio header present
PTH_Exhdr 1=Extension header
PTH_Layer2 1=Layer2 0=Layer3

PTH_SmProto For SMC packet trace, the protocol field. This field indicates if the packet
trace contains Shared Memory Communications – RDMA (SMC-R) TCP data
(IPPROTO_TCP = 6) or SMC-R Logical Link Control data (PTH_PROTO_LLC = 252).

PTH_SmVlanid For SMC packet trace, the Vlan id field. This field is optional.
PTH_Lost Total lost record count. This field is supported only in trace records

created by the TCP/IP stack and obtained by using the real-time TCP/IP network
monitoring NMI.

PTH_LinkLen For data trace, this is the length of any ancillary data specified on the
socket request. The length is included in the PTH_Len field of the packet trace
header in which the ancillary data is provided, and the ancillary data
immediately follows the PTH in the trace record. If more than one trace record
is needed to trace all the data, the ancillary data is only provided in the
first record. The maximum length that will be traced is 1024 minus the actual
length of the PTH. For OSAENTA trace, this is the length of the MAC header.

PTH_Plen Original payload length. For packet trace, if TCP segmentation is offloaded,
then this is the total data length of all segments being offloaded plus the
length of one set of headers. For data trace, if the payload length is greater
than 65535, this field will be set to 0. Use PTH_DtPLen instead to obtain the
original payload length.

PTH_InfIx For packet trace, the interface index of the interface for the packet
PTH_Cid For data trace, the communication Id
PTH_DevId For OSAENTA trace, the device Id
PTH_DropRsn For packet trace, the packet discard reason code. PTH_DropRsn can be compared

with the discard reason code that is provided by EZBYCODE in sys1.sezanmac.
A packet can be traced twice, once at the lower level IP layer, and again as
a discarded packet in an upper level protocol layer of TCPIP. This value is
0 if the packet was not discarded.

PTH_OffSegLen For packet and OSAENTA trace, the length of each of the first N-1 segments
being offloaded, not including headers, that is, the MSS (meaningful only when
the PTH_Seg_Offload flag is on).

PTH_NxtHopAddr For packet trace, the hexadecimal next hop IP address for outbound packets
(IPv6 or IPv4)

PTH_NxtHopLen For packet trace, the length of next hop address field
PTH_NxtHopKey For packet trace, the key of next hop address field
PTH_Ext3Len For packet and OSAENTA trace, the length of the OSA-Express input queue

extension header
PTH_Ext3Key For packet and OSAENTA trace, the OSA-Express input queue Extension header key
PTH_Ext3QID For packet and OSAENTA trace, the OSA Express QID - The identifier of the

input queue on which this packet was received. The QID value is 1 when this
packet was received on the primary input queue. The QID value is greater
than 1 when this packet was received on an ancillary input queue using QDIO
inbound workload queueing. For an ancillary input queue the queue type is
indicated in the PTH_Ext3QueueType field.

PTH_Ext3QueueType For packet and OSAENTA trace, the QDIO Inbound Workload Queueing Ancillary
Queue Type - The queue type when the QID is an ancillary input queue. Queue
types are represented by the following values:

PTHMIQBULKDATA 2 Bulk Data
PTHMIQSYSDIST 3 Sysplex Distributor
PTHMIQEE 4 Enterprise Extender

PTH_Ext4Len For SMC packet trace, the length of the SMC-R extension header
PTH_Ext4Key For SMC packet trace, the SMC-R extension header key
PTH_RMBProSeq For SMC packet trace, the remote memory buffer’s (RMB) producer

sequence number. This value is incremented every time data
written into the RMB causes a wrap condition - data is written
to the end of the RMB and wraps back to the beginning.

PTH_RMBProCur For SMC packet trace, the remote memory buffer’s (RMB) producer
cursor. This is the offset into the RMB where the next data
to be written into this RMB begins.

PTH_RMBConSeq For SMC packet trace, the peer’s remote memory buffer’s (RMB) consumer
sequence number. This value is incremented every time data
read from the RMB causes the read to wrap back to the beginning
of the RMB.

PTH_RMBConCur For SMC packet trace, the peer’s remote memory buffer’s (RMB) consumer

Chapter 14. Network management interfaces 653

cursor. This is the offset into the RMB where the next data
to be read from this RMB begins.

PTH_RMBProFlg For SMC packet trace, the remote memory buffer’s (RMB) producer
flags.
Producer flags:

rmbe_wrt_blocked 1 Writer is blocked, 0 Writer is not blocked
rmbe_urg_pending 1 Writer has urgent data to send, 0 No urgent data to send
rmbe_urg_present 1 RMB contains urgent data, 0 RMB contains no urgent data

PTH_RMBConnSt For SMC packet trace, the connection state flags.
Connection state flags:

rmbe_peer_done 1 Writer is done sending data, 0 Writer is not done sending data
rmbe_closed 1 Peer has closed connection, 0 Peer has not closed connection
rmbe_abn_close 1 Peer indicates abnormal close, 0 Peer does not indicate abnormal close

PTH_RemCnidx For SMC packet trace, the peer RMB connection index
PTH_LclCnidx For SMC packet trace, the local RMB connection index
PTH_RemRkey For SMC packet trace, the peer RMB key
PTH_LclRkey For SMC packet trace, the local RMB key
PTH_LclConnId For SMC packet trace, the local SMC-R link’s connection id
PTH_RemConnId For SMC packet trace, the peer SMC-R link’s connection id
PTH_RemGID For SMC packet trace, the peer 10GbE RoCE Express global id
PTH_LclGID For SMC packet trace, the local 10GbE RoCE Express global id
PTH_RemQPnum For SMC packet trace, the peer queue pair number
PTH_LclQPnum For SMC packet trace, the local queue pair number
PTH_RMBEyecLn For SMC packet trace, the peer RMB element’s eyecatcher length
Pth_MTU For SMC packet trace, the SMC link’s MTU value
Pth_LclRMBsz For SMC packet trace, the local RMB element’s buffer size
Pth_RemRMBsz For SMC packet trace, the peer RMB element’s buffer size
Pth_Payload For SMC packet trace, the size of the payload
Pth_AlertTkn For SMC packet trace, the peer alert token
Pth_MsgSeqNum For SMC packet trace, the sequence number of the messages

IPv4 address formats in the packet trace header

All of the IP address fields in the packet trace header are large enough to
accommodate a 16-byte IPv6 address. IPv4 addresses that are provided in these
fields are placed in the last 4 bytes of the field and bytes 1 - 12 of the field contain
one of the following prefix values:

X'00000000000000000000FFFE'
Set in data trace records for AF_INET socket requests and in packet trace
records for IPv4 packets.

X'00000000000000000000FFFF'
Set in data trace records for AF_INET6 socket requests for IPv4 addresses.
This value is an IPv4-mapped IPv6 address.

Segmented trace records

The cte header field, ctelenp, provides the length of each trace record. Because
ctelenp is only a 16-bit field, the maximum size of each trace record is 65535 bytes.
For packet or data trace, if the trace record length exceeds this value, the traced
data must be segmented into multiple trace records. For packet trace, a maximum
of 2 segmented trace records can be created for a large packet. For data trace,
several segmented trace records can be created for a large socket request.
Segmented trace records have the following attributes:
v For segmented trace records that are obtained from the real-time TCP/IP

network monitoring NMI, the trace records that are subsequent to the first
segmented record do not necessarily follow the first trace record in the buffer.
Other normal trace records can be interleaved with the segmented trace records.

v The PTH_Time field contains the same value in all the segmented records. Use
this value to determine which segmented trace records belong to the same set of
trace records.

654 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|
|
|
|

v The PTH_SeqNum field in the first segmented record is set to 0. The sequence
number is incremented by 1 for each subsequent segmented record to a
maximum value of 255. Then the sequence number is reset to 1 for additional
segmented records.

v For packet trace
– Only the first trace record in the set of segmented records contains the packet

headers.
– The Pth_Plen field contains the total length of the original packet and this

value is the same in all the segmented records.
– The Pth_Tlen field contains the length of the packet data that was traced,

adjusted for the ABBREV parameter (for the TCP/IP stack packet trace), or
the payload option for the real-time application-controlled TCP/IP trace NMI.
This value is the same in all the segmented records.

v For data trace
– Only the first trace record in the set of segmented records contains any

ancillary data.
– The Pth_DtPlen field contains the total length of the original socket request

and this value is the same in all the segmented records.
– The Pth_Tlen field contains the length of the socket request data that was

traced, adjusted for the ABBREV parameter (for the TCP/IP stack data trace)
or the payload option for the real-time application-controlled TCP/IP trace
NMI. This value is the same in all the segmented records.

– To determine the amount of traced data in each of the segmented trace
records, use the following formula:
traced data len = ctelenp - size(cte) - size(cteleplg) - PTH_Len – (1 byte if PTH_Adj flag set) - PTH_LinkLen

Network management diagnosis
The interfaces that are described in this topic are designed to return error
information as either a return_value, return_code, or reason_code, where
applicable. The information in this section should be used to further diagnose the
problem that is being reported.

When the return_value is -1, the return_code and reason_code indicate the problem
that was incurred by the interface. See the section that describes the interface that
is being used for return_value, return_code, and reason_code descriptions.

If you are not able to diagnose the problem using the returned error information,
gather the following information that documents the error and contact IBM
Customer Support.

Interface Documentation

Local IPSec NMI Collect a dump of the IKED address space.

Network security services (NSS) NMI Collect a dump of the NSSD address space.

Real-time application-controlled
TCP/IP trace NMI

v Set the SYSTCPIP MISC trace as active.

v Collect a dump of the TCP/IP address space.

Real-time TCP/IP network monitoring
NMI

v Set the SYSTCPIP MISC trace as active.

v Collect a dump of the TCP/IP address space.

SNA network monitoring NMI Collect a dump of the VTAM address space.

TCP/IP callable NMI (EZBNMIFR) Collect a dump of the TCP/IP address space.

Chapter 14. Network management interfaces 655

Interface Documentation

Trace record formatting NMI Collect a dump of the TCP/IP address space.

File storage locations
The following table shows parts that are needed in order to compile Network
management interface (NMI) applications and their locations. Your compiler
should be configured to have access to these libraries.

Table 128. File storage locations

Interface File name Type Library

Real-time
application-controlled
TCP/IP NMI

EZBYPTHA (1) MACRO SEZANMAC

EZBYPTHH (1) H SEZANMAC

EZBNMCTE H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBRCIFA MACRO SEZANMAC

EZBRCIFC H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

Real-time TCP/IP network
monitoring NMI - packet
trace, data trace, and
OSAENTA trace

EZBYTMIA (1) MACRO SEZANMAC

EZBYTMIH (1) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBNMCTE H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

Packet and data trace
formatting NMI

EZBCTAPI MACRO SEZANMAC

EZBYPTO MACRO

EZBYPTHA MACRO

EZBCTHDR MACRO

EZBYCTHH H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBYPTHH H

Real-time TCP connection
SMF NMI

EZBYTMIA (1) MACRO SEZANMAC

EZBYTMIH (1) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZASMF77 MACRO SYS1.MACLIB

EZASMF (2) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

656 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 128. File storage locations (continued)

Interface File name Type Library

Allow applications to obtain
SMF records for FTP, IPSec
and CSSMTP

EZBYTMIA (1) MACRO SEZANMAC

EZBYTMIH (1) H SEZANMAC

EZASMF77 MACRO SYS1.MACLIB

EZASMF (2) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZANMFTA MACRO

EZANMFTC H SEZANMAC

Real-time SMF NMI EZASMF77 MACRO SYS1.MACLIB

EZASMF (2) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

TCP/IP callable NMI EZBNMRHA MACRO SEZANMAC

EZBNMRHC (2) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBNMMPA MACRO SEZANMAC

EZBNMMPC (2) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

Resolver callable NMI EZBRENMA MACRO SEZANMAC

EZBRENMC H SEZANMAC and the
z/OS UNIX
/usr/include
directory

SNA network monitoring
NMI

ISTEEHNC H SYS1.MACLIB

ISTEESUC H

ISTEECOC H

ISTHPRCC H

ISTCSMGC H

ISTEEHNA MACRO

ISTEESUA MACRO

ISTEECOA MACRO

ISTHPRCA MACRO

ISTCSMGA MACRO

Chapter 14. Network management interfaces 657

Table 128. File storage locations (continued)

Interface File name Type Library

Real-time TCP/IP network
monitoring NMI

EZBYTMIA (1) MACRO SEZANMAC

EZBYTMIH (1) H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZANMFTA MACRO SEZANMAC

EZANMFTC H SEZANMAC

Local IPSec NMI EZBNMSEA MACRO SEZANMAC

EZBNMSEC H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBNMIV2 H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

Network security services
(NSS) NMI

EZBNMSEA MACRO SEZANMAC

EZBNMSEC H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

EZBNMIV2 H SEZANMAC and the
z/OS UNIX
/usr/include
directory.

(1) Part used for multiple functions.

(2) These parts require the XL C/C++ Run-Time functions, macros, and header files.

658 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 15. Application Transparent Transport Layer Security
(AT-TLS)

Application Transparent Transport Layer Security (AT-TLS) creates a secure session
on behalf of an application. Instead of implementing TLS in every application that
requires a secure connection, AT-TLS provides encryption and decryption of data
based on policy statements that are coded in the Policy Agent. The application
sends and receives cleartext (unencrypted data) as usual while AT-TLS encrypts
and decrypts data at the TCP transport layer. For more information about AT-TLS
and AT-TLS policy setup, see the Application Transparent Transport Layer Security
(AT-TLS) information in z/OS Communications Server: IP Configuration Guide
and the Policy Agent information in z/OS Communications Server: IP
Configuration Reference.

Most applications do not need any awareness of the security negotiations and
encryption that is done by TCP/IP on its behalf. However, you might want some
applications to be aware of AT-TLS or have control over the security functions that
are being performed by TCP/IP. For example, if the application is a server
requesting client authentication, you might want the application to get the partner
certificate or the user ID associated with the partner certificate. Or the application
might negotiate in cleartext with its partner to decide whether a secure session is
necessary. If both agree to a secure session, then the application needs to tell
AT-TLS to set up a secure session. The SIOCTTLSCTL ioctl provides the interface
for the application to query or control AT-TLS.

Applications that are taking advantage of AT-TLS can be separated into three
different types (basic, aware and controlling) as described in Table 129. An
application's type is based on whether an awareness of the service is needed and,
if so, the amount of control that the application is given over the security
functions. Basic applications are unchanged. Aware applications are changed to
invoke the SIOCTTLSCTL ioctl to query a socket about AT-TLS status using a
TTLSi_Req_Type value of TTLS_QUERY_ONLY or TTLS_RETURN_CERTIFICATE.
Controlling applications are changed to invoke the SIOCTTLSCTL ioctl to control
the secure session on a socket using a TTLSi_Req_Type value of
TTLS_INIT_CONNECTION, TTLS_RESET_SESSION or TTLS_RESET_CIPHER.

Table 129. Application types

Application type
SIOCTTLSCTL ioctl calls
issued

ApplicationControlled
setting in AT-TLS policy

Basic application does not issue
any AT-TLS ioctl calls

Off

Aware query requests Off

Controlling query and control requests On

v A basic application is unaware that AT-TLS is performing encryption or
decryption of data. Most applications can match this model.

v An aware application is aware of AT-TLS and can query information such as
AT-TLS status, partner certificate, and derived RACF user ID without any
advanced setting in AT-TLS policy. A server that requires a RACF user ID
derived from a partner certificate matches this model.

© Copyright IBM Corp. 2000, 2015 659

v A controlling application is aware of AT-TLS and needs to control the secure
session. It must have the ApplicationControlled parameter in AT-TLS policy set
to ON. Any application that must control when the initial handshake is done or
when sessions or ciphers must be reset matches this model.

The SIOCTTLSCTL ioctl blocks during the initial handshake if the socket is in
blocking mode. If the socket is non-blocking, SIOCTTLSCTL returns EWouldBlock
during the initial handshake.

Applications that use non-blocking sockets can use the select function to wait for
the socket to become writable. When the socket becomes writable, the initial
handshake is complete.

The following APIs are supported by AT-TLS:
v Macro API (EZASMI)
v CALL instruction API (EZASOKET) supporting COBOL, PL/I, and System/370

assembler languages
v REXX socket API
v Language Environment C socket call [ioctl()]
v UNIX System Services Assembler Callable Service (BPX1IOC or BPX4IOC)
v CICS® C socket calls
v CICS CALL instruction API (EZASOKET - by including EZACICAL or

EZACICSO)
v IMS™ CALL instruction API (EZASOKET)

Restriction: The following APIs are not supported by AT-TLS:
v TCP C Socket API
v X/Open Transport Interface (XTI)
v Pascal API

CICS transaction considerations
CICS transaction security environments are not visible to AT-TLS support. The
CICS job and all of its transactions appear to the stack as a single server
application with a single z/OS UNIX callable services process ID running in the
security environment of the CICS job. Connections established, whether active or
passive, can perform TLS handshake processing as either CLIENT or SERVER. All
of the connections that are established by a single CICS job are able to share the
Session ID cache in the SSL environment. The CICS job should use a private
keyring with a server certificate. The keyring used must contain the chain of root
certificates needed to validate the server certificate it presents to the client. If the
server requires the CLIENT AUTHENTICATION call, it must also have any other
root certificates necessary to validate presented client certificates on its keyring.

TCP/IP CICS Socket Support provides a Listener transaction that has a
configuration option to get the client's certificate-associated user ID. When this
option is configured, the Listener waits for the TLS handshake to complete on the
accepted connection (select for write) and then uses the SIOCTTLSCTL ioctl to see
whether an associated user ID is present. A user ID is present when the
HandshakeRole parameter is defined in AT-TLS policy as ServerWithClientAuth,
the client passed in a certificate, and the certificate was registered with RACF with
an associated user ID. This user ID is passed into the Listener security exit, if one

660 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

is configured. The security exit can remove or change the user ID. The Listener
then starts the transaction to process the connection under this user ID.

A CICS transaction that participates in a TLS handshake as CLIENT when the
server requests CLIENT AUTHENTICATION presents a certificate identifying the
CICS job, not the transaction user.

See the Application Transparent Transport Layer Security (AT-TLS) information in
z/OS Communications Server: IP CICS Sockets Guide for more information on
configuring TCP/IP CICS socket support.

Using the SIOCTTLSCTL ioctl
An application uses the SIOCTTLSCTL ioctl to query AT-TLS information for a
connection and to control the use of AT-TLS on a connection.

Starting AT-TLS on a connection
Use the SIOCTTLSCTL ioctl with option TTLS_INIT_CONNECTION to start
AT-TLS on a connection. This starts the SSL handshake. If using non-blocking
sockets, the server can wait for the handshake to complete by waiting for the
socket to become writable. If using blocking sockets, the ioctl blocks until the
handshake is complete. If the handshake times out or fails for any reason, the
connection is reset.

Some server applications need to support some clients using cleartext security
negotiation and other clients using implicit security. This means that the SSL
handshake starts as soon as the connection is established with the server. For
server applications that support both types of clients, the
TTLS_ALLOW_HSTIMEOUT option is helpful. This option enables the server to
request an SSL handshake and keep the TCP connection active if the SSL
handshake times out. This option is most effective if the server normally sends
data to the client first. The server application must request both the
TTLS_INIT_CONNECTION and the TTLS_ALLOW_HSTIMEOUT option on the
SIOCTTLSCTL start handshake request to keep the connection active after an SSL
handshake timeout.

The server application waits for the SSL handshake to complete, either by blocking
the socket or by waiting for the socket to become writable. After the handshake
completes, the server application can check the SIOCTTLSCTL status to determine
the state of the connection, the protocol and cipher used, and other information. If
a non-blocking socket is used, the final status is queried by issuing another
SIOCTTLSCTL ioctl with option TTLS_QUERY_ONLY. If a blocking socket is used,
the final status is contained in the returned SIOCTTLSCTL. Ensure that your server
application checks the SIOCTTLSCTL status and takes appropriate action based on
the returned status.

Restriction: The TTLS_ALLOW_HSTIMEOUT option is supported only when the
HandshakeRole value is Server or ServerWithClientAuth and the HandshakeTimer
value is nonzero.

Stopping AT-TLS on a connection
Use the SIOCTTLSCTL ioctl with option TTLS_STOP_CONNECTION to stop
secure traffic on the TCP connection. The SSL session ends on the connection and
the TCP connection returns to cleartext communication. The connection retains the

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 661

policy mapping, but the connection is in the same state as before a SIOCTTLSCTL
ioctl with the TTLS_INIT_CONNECTION option was issued.

Applications that negotiate security can use this option to stop the secure
connection. For example, an application negotiates, using cleartext, that a secure
session needs to be established. Later, the application performs a separate
negotiation to stop the secure connection. After both sides agree to stop security,
the application issues the SIOCTTLSCTL ioctl with option
TTLS_STOP_CONNECTION. If non-blocking sockets are used, the application can
wait for the request to complete by waiting for the socket to become writable. If
blocking sockets are used, the ioctl blocks until the request is complete. After the
request completes, the connection state is NONSECURE.

The application must clear all application data from the connection before issuing
the TTLS_STOP_CONNECTION request. All application data must be read from
the socket. If any application data is unread, the TTLS_STOP_CONNECTION
request fails with a return code of -1, an errno of Eproto, and an errno junior of
JRTTLSStopReadDataPending. The application must read all of the data before the
TTLS_STOP_CONNECTION request completes successfully. All application write
requests must complete. If any application write requests are not complete, the
TTLS_STOP_CONNECTION request fails with a return code of -1, an errno of
Eproto, and an errno junior of JRTTLSStopWriteDataPending. The application must
wait for all outstanding write requests to complete before the
TTLS_STOP_CONNECTION request completes successfully.

Restriction: The TTLS_STOP_CONNECTION option cannot be used on SSLv2
connections.

Tip: Do not use the TTLS_STOP_CONNECTION option if the application is not
going to send or receive any clear text data after the request completes. AT-TLS
closes the SSL session when the application closes the TCP socket.

Requesting AT-TLS queries and additional functions
Use the TTLSHeader structure pointed to by the TTLSi_BufferPtr pointer to query
additional information for the secure connection. The TTLSHeader structure can be
used to obtain the TTLSRule, TTLSGroupAction, TTLSEnvironmentAction,
TTLSConnectionAction names, and the partner certificate. The application can also
provide a host name that is validated against the host name in the partner's
certificate.

Steps for implementing an aware server application
This topic describes the steps of updating the server application to implement an
aware server application.

Procedure

To implement an aware server application, create or update the server application
as follows:
1. If the server is using non-blocking sockets, the server should issue select on the

new socket to wait for the socket to become writable, which indicates that the
initial handshake is complete. If using blocking sockets, the select is not
needed.

2. When the new socket is writeable the server can issue the SIOCTTLSCTL ioctl
with TTLSi_Req_Type set to TTLS_RETURN_CERTIFICATE to retrieve the

662 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

certificate presented by the client (if provided). The ioctl should return with a
policy status of TTLS_POL_ENABLED and a connection status of
TTLS_CONN_SECURE. The server program can examine the negotiated session
attributes and the certificate that is supplied by the client (if provided). If this
certificate is registered with the security product and associated with a user ID,
then the user ID fields are also returned in the ioctl data.

Steps for implementing a controlling server application
To implement a simple aware and controlling application as a server, create or
update the server application as follows:
1. When a new connection is accepted, the server should issue an SIOCTTLSCTL

ioctl with TTLSi_Req_Type value set to TTLS_QUERY_ONLY to verify that
policy is correctly set up for this connection. The ioctl should return a policy
status of TTLS_POL_APPLCNTRL and a connection status of
TTLS_CONN_NOTSECURE. This means that the security of the connection is
application-controlled and that the connection is not yet secure. If any other
status is returned, the application cannot initiate a secure session for the
connection. See “Coding the SIOCTTLSCTL ioctl” on page 665 for an
explanation of all status values. If you are sure the connection will be set for
application control, this step can be omitted.

2. The server and client send and receive cleartext data to negotiate the use of
TLS. The negotiation protocol is the responsibility of the applications and is not
performed by the stack. Ensure that your negotiation protocol causes all
cleartext data to be read on both ends before continuing.

3. If both sides agree to use a secure connection, the server should issue an
SIOCTTLSCTL ioctl with TTLSi_Req_Type value set to
TTLS_INIT_CONNECTION to start the handshake. The client must also initiate
a secure connection at this time.

4. If using non-blocking sockets, the server can wait for the handshake to
complete by waiting for the socket to become writable. If using blocking
sockets, the ioctl will block until the handshake is complete.

5. If the server wants to verify that the session is now secure, it can issue an
SIOCTTLSCTL ioctl with TTLSi_Req_Type value set to TTLS_QUERY_ONLY to
retrieve the negotiated session attributes. The ioctl should return a connection
status of TTLS_CONN_SECURE along with additional information. To retrieve
the certificate that is presented by the client (if one is provided), use the TTLS
buffer with a TTLSK_Certificate Get request. If this certificate is registered with
the security product and associated with a user ID, then the user ID fields are
also returned in the ioctl data.

Steps for starting an aware or controlling server application

To start an aware or controlling server application, perform the following steps:
1. Code or modify existing AT-TLS policy to cover the TCP server port. Ensure

that the HandshakeRole parameter in the rule is set to Server or
ServerWithClientAuth. The action should specify one of the following:

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 663

v ApplicationControlled Off for an aware server application (this is also the
default).

v ApplicationControlled On for a controlling server application.

2. Install the policy to the appropriate TCP stack or stacks using Policy Agent. If
any policy errors are reported, you must correct them and reinstall the policy.

3. Issue the pasearch command to verify the policy rule and actions for the server.

4. Start the aware or controlling server application.

The client and server exchange data, which to them is cleartext, but which is
automatically encrypted by AT-TLS.

If at some point a controlling server application should need to reset the secure
session or the current cipher, it can issue an SIOCTTLSCTL ioctl with the
TTLSi_Req_Type value set to TTLS_RESET_SESSION or TTLS_RESET_CIPHER.

In addition to connection status and policy status, the SIOCTTLSCTL ioctl also
provides the following secure session attributes after the handshake completes:
security type, SSL protocol in use, negotiated cipher in use, certificate associated
user ID, and, if requested, partner certificate information. The certificate associated
user ID is available when the HandshakeRole parameter is specified in AT-TLS
policy as ServerWithClientAuth and the partner-supplied certificate has an
associated user ID.

Additional SIOCTTLSCTL request type options are available to reset an SSL session
ID so that it is not reused by this or another connection and to reset the cipher
used by the SSL session. AT-TLS policy also provides ways for these resets to occur
automatically based on elapsed time. Resets requested by issuing the
SIOCTTLSCTL ioctl reset the beginning of the elapsed time intervals specified in
the policy.

Figure 32 on page 665, Figure 33 on page 665, and Figure 34 on page 665 show
when the SIOCTTLSCTL ioctl can be issued and which AT-TLS functions are
performed based on the ioctl call. The SIOCTTLSCTL ioctl initiates AT-TLS
obtaining the user ID and job name of the requesting application and performing
an AT-TLS rule search if these steps have not already been performed. An AT-TLS
policy lookup assigns a rule and actions to the connection if a match is found. An
SIOCTTLSCTL ioctl with a TTLS_Init_Connection request type initiates a System
SSL environment search or creates a new environment and initiates the SSL
connection (which consists of the SSL handshake). Policy and connection status
fields are returned on all SIOCTTLSCTL ioctls.

664 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Coding the SIOCTTLSCTL ioctl
General coding guidelines for the sockets ioctl calls can be found in the following
publications:
v z/OS Communications Server: IP Sockets Application Programming Interface

Guide and Reference
– Macro API (EZASMI) for assembler programs
– CALL instruction API (EZASOKET) supporting COBOL, PL/I, and

System/370 assembler languages
– REXX socket API

v z/OS Communications Server: IP CICS Sockets Guide
– CICS C socket calls (EZACIC07 or EZACIC17, which calls EZASOKET with

entry in EZACICAL)
– CICS CALL instruction API (EZASOKET with entry in EZACICAL)

supporting COBOL, PL/I, and System/370 assembler languages
v z/OS Communications Server: IP IMS Sockets Guide

SIOCTTLSCTL

Fail: ENotConn

Connection
Established

- Connect
- Accept

no negotiated fields

SIOCTTLSCTL
handshake

event SIOCTTLSCTL

all fields

Figure 32. SIOCTTLSCTL with TTLS_Query_Only

TTLS_Init_Conn

Fail: ENotConn

Connection
Established

- Connect
- Accept No AT-TLS policy for connection or

AT-TLS policy specifies TTLSEnabled = No
Fail: EOpNotSupp

ApplicationControlled = Off
Fail: EAcces

ApplicationControlled = On
handshake initiated

TCPCONFIG NOTTLS or

TTLS_Init_Conn
handshake

event TTLS_Init_Conn

ApplicationControlled = Off
Fail: EAcces

ApplicationControlled = On
Fail: EAlready

Figure 33. SIOCTTLSCTL with TTLS_Init_Connection

TTLS_Reset...

Fail: ENotConn

Connection
Established

- Connect
- Accept No AT-TLS policy for connection or

AT-TLS policy specifies TTLS Enabled = No
Fail: EOpNotSupp

ApplicationControlled = Off
Fail: EAcces

ApplicationControlled = On
Reset Session
Reset Cipher

TCPCONFIG NOTTLS or

TTLS_Reset_Session
TTLS_Reset_Cipher

handshake
event

Fail: EProto

TTLS_Reset_Session
TTLS_Reset_Cipher

Figure 34. SIOCTTLSCTL with TTLS_Reset_Session or TTLS_Reset_Cipher

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 665

– IMS CALL instruction API (EZASOKET) supporting COBOL, PL/I, and
System/370 assembler languages

v z/OS XL C/C++ Runtime Library Reference
– z/OS IBM C/C++ sockets API within the z/OS Language Environment

v z/OS UNIX System Services Programming: Assembler Callable Services
Reference
– Assembler Callable Services (BPX1IOC or BPX4IOC)

Each programming language has its own control block structure mapping. All
mappings and header files are stored in SEZANMAC and the C language headers
are also installed in file system directory /usr/include. The following
programming languages are supported:

Assembler
Include EZBZTLSP mapping. See z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference for coding an
ioctl call in assembler or coding an ioctl call for a callable API.

See z/OS UNIX System Services Programming: Assembler Callable
Services Reference for coding BPX1IOC or BPX4IOC.

PL/I Include EZBZTLS1 mapping. See z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference, z/OS
Communications Server: IP CICS Sockets Guide, or z/OS Communications
Server: IP IMS Sockets Guide for coding an ioctl in PL/I.

COBOL
Include EZBZTLSB mapping. See z/OS Communications Server: IP Sockets
Application Programming Interface Guide and Reference, z/OS
Communications Server: IP CICS Sockets Guide, or z/OS Communications
Server: IP IMS Sockets Guide for coding an ioctl call in COBOL.

REXX No mapping or header file used. See z/OS Communications Server: IP
Sockets Application Programming Interface Guide and Reference for
coding an ioctl call in REXX.

C Include EZBZTLSC header file, which is installed in SEZANMAC and in
the file system directory /usr/include. See z/OS XL C/C++ Runtime
Library Reference or z/OS Communications Server: IP CICS Sockets Guide
for coding an ioctl call in C.

See the control block structures in SEZANMAC and in the /usr/include directory
for variable names and locations and their enumerated values.
v All ioctl calls must set the Version field. See the control block structures in

SEZANMAC for constants declared for these variables.

Guideline: The TTLS_CURRENT_VERSION constant in EZBZTLSC.h is being
deprecated and will remain defined as 1. Use a specific TTLS version level
constant, such TTLS_VERSION2, to set the TTLSi_Ver level when coding
SIOCTTLSCTL Ioctl requests.

v Any field not used must be set to 0.
v If the additional buffer is required for the SIOCTTLSCTL ioctl, the buffer pointer

is specified in TTLSi_BufferPtr and must point to the beginning of the buffer. The
length of the buffer area is specified in TTLSi_BufferLen. Obtain enough buffer
storage to hold the returned data. The buffer area can be part of the storage

666 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

obtained for the base ioctl or it can be stand-alone storage. If the buffer is not
large enough, the variable errno indicates the value ENOBUFS with the required
buffer size specified in TTLSi_Cert_Len.

SIOCTTLSCTL (X'C038D90B')
The SIOCTTLSCTL ioctl provides an interface for the application to query and
control AT-TLS for the connection. The following data items are returned by
theSIOCTTLSCTL ioctl:

TTLSi_Stat_Policy
Indicates the level of AT-TLS enablement for the connection. Possible
values include the following ones:

TTLS_POL_OFF (1)
AT-TLS was not enabled on the stack when AT-TLS policy
mapping was performed for the connection

TTLS_POL_NO_POLICY (2)
No matching policy rule was found when AT-TLS policy mapping
was performed for the connection. The application should issue a
message, if appropriate, directing the system administrator to
create a policy rule that matches this connection.

TTLS_POL_NOT_ENABLED (3)
The policy rule that matches this connection indicates that AT-TLS
should not be used. The application should issue a message, if
appropriate, directing the system administrator to change the
policy rule for this connection.

TTLS_POL_ENABLED (4)
AT-TLS is enabled for this connection, but application control has
not been granted. The application should issue a message, if
appropriate, directing the system administrator to change the
policy rule to enable application control for this connection.

TTLS_POL_APPLCNTRL (5)
AT-TLS is enabled and is application controllable.

TTLSi_Stat_Conn
Indicates the current level of secure session on the connection.

TTLS_CONN_NOTSECURE (1)
The connection does not have a secure session established.

TTLS_CONN_HS_INPROGRESS (2)
Connection initial handshake in progress.

TTLS_CONN_SECURE (3)
The connection has a secure session.

In addition to connection status and policy status, the SIOCTTLSCTL ioctl also
provides the following connection information, when available:

TTLSi_Sec_Type
Indicates the security type for the connection if AT-TLS policy is defined
for the connection. Valid values are:

TTLS_SEC_UNKNOWN (0)
The connection does not have a secure session established.

TTLS_SEC_CLIENT (1)
The security type is Client.

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 667

TTLS_SEC_SERVER (2)
The security type is Server.

TTLS_SEC_SRV_CA_PASS (3)
The security type is Server with Client Authentication. Client
Authentication Type is PassThru.

TTLS_SEC_SRV_CA_FULL (4)
The security type is Server with Client Authentication. Client
Authentication Type is Full.

TTLS_SEC_SRV_CA_REQD (5)
The security type is Server with Client Authentication. Client
Authentication Type is Required.

TTLS_SEC_SRV_CA_SAFCHK (6)
The security type is Server with Client Authentication. Client
Authentication Type is SAFCheck.

TTLSi_SSL_Prot
Indicates the SSL protocol that is in use for the connection if the connection
is secure. Valid values are:

TTLS_PROT_UNKNOWN (0x0000)
The connection does not have a secure session established.

TTLS_PROT_SSLV2 (0x0200)
SSL version 2 is in use.

TTLS_PROT_SSLV3 (0x0300)
SSL version 3 is in use.

TTLS_PROT_TLSV1 (0x0301)
TLS version 1.0 is in use.

TTLS_PROT_TLSV1_1 (0x0302)
TLS version 1.1 is in use.

TTLS_PROT_TLSV1_2 (0x0303)
TLS version 1.2 is in use.

TTLSi_FIPS140
Indicates whether Federal Information Processing Standard (FIPS) 140 is in
effect. Valid values are:

TTLS_FIPS140_OFF (0x00)
FIPS 140 support is not in effect.

TTLS_FIPS140_ON (0x01)
FIPS 140 support is in effect.

TTLSi_Neg_Cipher
Indicates the 2-character cipher in use for the connection if the connection
is secure. If the first two characters of TTLSi_Neg_Cipher4 contain '00', this
field is the same as the second two characters of TTLSi_Neg_Cipher4;
otherwise, this field contains '4X'. For the list of cipher suites that are
supported, see the gsk_environment_open() API information in z/OS
Cryptographic Services System SSL Programming.

TTLSi_UserID/TTLSi_UserID_Len
TTLSi_UserID is a null terminated character string.

TTLSi_UserID_Len indicates the number of characters returned prior to the
first null.

668 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

These fields are returned when the HandshakeRole parameter is specified
as ServerWithClientAuth, the client provides a valid certificate, and the
certificate is associated with a user ID in the DIGTCERT General Resource
Class. See the RACF and Digital Certificates topic in z/OS Security Server
RACF Security Administrator's Guide for more information on associating
user IDs with certificates.

TTLSi_Cert_Len
Indicates the size of the partner's certificate if the connection is secure and
a certificate was supplied during negotiation.

TTLSi_Neg_Cipher 4
Indicates the 4-character cipher in use for the connection if the connection
is secure. For the list of cipher suites that are supported, see the
gsk_environment_open() API information in z/OS Cryptographic Services
System SSL Programming.

If the TTLS_RETURN_CERTIFICATE request type is specified on the
SIOCTTLSCTL ioctl and the partner certificate is known, the certificate is returned
in the additional buffer provided (using fields TTLSi_BufferPtr and
TTLSi_BufferLen) with the ioctl call. The length of the returned certificate is
returned in TTLSi_Cert_Len. If the buffer provided is not large enough to hold the
certificate, then the variable errno indicates the value ENOBUFS and the required
buffer size is returned in TTLSi_Cert_Len.

The following optional behaviors can be requested on the SIOCTTLSCTL ioctl
using the TTLSi_Req_Type field:

TTLS_QUERY_ONLY (0x0000)
Query the connection status. If more advanced query information is
required, use the optional buffer that includes the TTLSHeader control
block.

Restriction: The TTLS_QUERY_ONLY option must be specified alone
without any other request option.

TTLS_RETURN_CERTIFICATE (0x0001)
Return the partner certificate used for authentication if it is available.

Restriction: This request is not valid with TTLS Version 2. For TTLS
version 2, use the TTLSHeader structure to request the partner certificate.

TTLS_INIT_CONNECTION (0x0002)
Initialize the secure SSL connection using the role defined by the
HandshakeRole parameter.

Restriction: The connection must be application controlled to use this
request.

TTLS_RESET_SESSION (0x0004)
Reset a session ID to avoid its reuse by another connection.

Restriction: The connection must be application controlled to use this
request.

TTLS_RESET_CIPHER (0x0008)
Reset and renegotiate the cipher used for the secure session. If the session
ID has timed out or has been reset, a full handshake is performed.
Otherwise, a short handshake is performed.

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 669

Restriction: The connection must be application controlled to use this
request.

TTLS_STOP_CONNECTION (0x0010)
Close the SSL connection. Data will no longer be encrypted or decrypted
on the connection. The state of the TCP connection is unchanged.

Restrictions:

v Before the TTLS_STOP_CONNECTION request is issued, the application
must read all secure application data and all application write requests
must complete. If there is outstanding application data on the
connection, the TTLS_STOP_CONNECTION request fails.

v The connection must be application-controlled to use this request.

TTLS_ALLOW_HSTIMEOUT (0x0020)
Allow the TCP connection to remain active if the SSL handshake fails
because no data was received from the client. The timeout value is
determined by the HandshakeTimeout value from the policy. The
HandshakeTimeout must be a nonzero value. This option is valid only if
the HandshakeRole value is Server or ServerWithClientAuth. Any non-SSL
data received ends the handshake request and leaves the connection state
nonsecure.

Restriction: The TTLS_INIT_CONNECTION option must be specified
when the TTLS_ALLOW_HSTIMEOUT option is requested.

Tip: Use this option for servers that send the first application data to the
client and must support SSL and non-SSL clients on the same port.

Using the TTLSHeader control block
The TTLSHeader control block extends the SIOCTTLSCTL ioctl. You can use Get
requests to obtain additional information about the AT-TLS connection. You can
use Set requests to change the AT-TLS behavior for the connection. TTLS Version 2
is required to use the TTLSHeader control block. The TTLSHeader control block
includes a fixed section and a self-defining section with variable length. The
self-defining section contains Set and Get requests followed by the set and get data
area. The set data area is not overlaid with the get data area when SIOCTTLSCTL
returns.

Rules:

v The TTLSHeader control block is processed only if the connection maps to an
AT-TLS policy. If no policy is defined for the connection, the quadruplets are not
updated. The application must verify that the TTLSi_Stat_Policy value is not
TTLS_POL_OFF or TTLS_POL_NO_POLICY before checking the TTLSHeader
output.

v Set request quadruplets must immediately follow the TTLSHeader control block
in the buffer, then be followed by Get request quadruplets. The set data area
must follow the Set and Get request quadruplets. The get data area must follow
the set data area.

The following items show the TTLSHeader control block structure:
TTLSHeader fixed section
TTLSHeader optional Set request quadruplets
TTLSHeader optional Get request quadruplets
Beginning of set data area

670 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|

|

|
|
|
|
|

|
|
|
|

Beginning of get data area

TTLSHeader fixed section:
The TTLSHeader fixed section contains control information that describes the Set
and Get requests that follow. The fixed section is defined by the TTLSHeader
structure as shown in Table 130.

Table 130. TTLSHeader fixed section

Field Offset Length Format Description

TTLSHeaderIdent 0 8 bytes EBCDIC TTLSHeader identifier; set to
TTLSHdr_Ident(EBCDIC 'TTLSHDR ')

TTLSHdrRsvd1 8 8 bytes Binary Reserved; set to 0

TTLSHdr_BytesNeeded 16 4 bytes Binary Length of the buffer needed to contain
TTLSHeader, TTLSQuadruplet structures,
data for Set requests, and data for Get
requests. This value is set on return if all data
does not fit in the buffer provided

TTLSHdr_SetCount 20 4 bytes Binary Number of Set requests in the buffer. Each
Set request is represented by a
TTLSQuadruplet

TTLSHdr_GetCount 24 4 bytes Binary Number of Get requests in the buffer. Each
Get request is represented by a
TTLSQuadruplet

TTLSHdrRsvd2 28 16 bytes Binary Reserved; set to 0

TTLSHeader variable length structure:
The variable length section is used to request options, such as the following:
v Validating a host name and get options
v Returning the partner certificate

Each Set or Get request is defined by a TTLSQuadruplet structure as shown in
Table 131.

Table 131. TTLSQuadruplet structure

Field Offset Length Format Description

TTLSQ_Key 0 4 bytes Binary Constant identifying the request

TTLSQ_Offset 4 4 bytes Binary Offset to the first value for the request, measured
in bytes from the start of the TTLSHeader
structure. For Set requests, this must be a
nonzero value. For Get requests, this value must
be 0. On return, this value is nonzero if data was
returned for this request.

TTLSQ_Length 8 4 bytes Binary On input, this is the length of the value for a Set
request or has the value 0 for a Get request. On
return for a Get request, this value is the length
of the data that is returned.

TTLSQ_Rcode 12 4 bytes Binary Return code of the request operation. See each
request operation for the possible return codes.

Set request:
Use the Set request to configure additional information about the AT-TLS
connection.

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 671

|
|
|

Table 132. Set request structure

Identifier Constant Length Format Description

TTLSK_SetSessionToken 5000 Unknown Binary Sets a token for the SSL session. The
token represents the AT-TLS
environment and session identifier
for the secure connection. The token
must be obtained previously by
using a TTLSK_GetSessionToken
request. The application can require
an SSL session be reused. This
request is valid only when
TTLS_Init_Connection is also
specified. The following values can
be returned in the TTLSQ_Rcode
field:

0 The session token was
successfully used on the
secure connection.

1 The TTLS_Init_Connection
option is not specified.
The
TTLS_Init_Configuration
option must be specified
to use
TTLSK_SetSessionToken.

2 The connection does not
map to the same SSL
environment as the
connection that the session
token was obtained from.
The connections must
share an SSL environment
to use the same session
token.

3 The policy is configured
with session caching
disabled or SSLv2 enabled.
The AT-TLS policy must
have session caching
enabled and SSLv2
disabled to use the session
token.

Get request:
Use the Get request to obtain additional information about the AT-TLS connection.

672 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

||

|||||

|||||
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|

Table 133. Get request structure

Identifier Constant Length Format Description

TTLSK_Host_Status 4000 1 byte Binary Validates the host name that is
provided with the partner
certificate. The host name must
end with a null character. The
TTLSQ_Offset field must be set
to the value of the start of the
host name that is in the buffer.
The following values can be
returned in the TTLSQ_Rcode
field:

0 The host name has
successfully validated
against the partner
certificate.

1 Partner certificate is
not available.

2 Host name did not
match the name in the
partner certificate.

3 Host name validation
failed with an
unexpected
gsk_validate_hostname
value.

4 Host name validation
failed with an
unexpected
gsk_decode_certificate
value.

TTLSK_Certificate 4001 Unknown Binary Returns the partner certificate.
The certificate length is not
known until the secure
connection is established. The
value of the TTLSi_Cert_Len
field in the SIOCTTLSCTL
structure can be used to
determine the certificate length
when the secure connection is
complete. The following values
can be returned in
TTLSQ_Rcode:

0 The request completed
successfully.

TTLSK_TTLSRule_Name 4002 48 bytes,
ending
with a
null
character

EBCDIC Returns the name of the
TTLSRule field that is mapped
to the connection. The following
value can be returned in
TTLSQ_Rcode:

0 The request completed
successfully.

TTLSK_GroupAction_Name 4003 48 bytes,
ending
with a
null
character

EBCDIC Returns the name of the
TTLSGroupAction field that is
mapped to the connection. The
following value can be returned
in TTLSQ_Rcode:

0 The request completed
successfully.

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 673

Table 133. Get request structure (continued)

Identifier Constant Length Format Description

TTLSK_EnvironmentAction_Name 4004 48 bytes,
ending
with a
null
character

EBCDIC Returns the name of the
TTLSEnvironmentAction field
that is mapped to the
connection. The following value
can be returned in
TTLSQ_Rcode:

0 The request completed
successfully.

TTLSK_ConnectionAction_Name 4005 48 bytes,
ending
with a
null
character

EBCDIC Returns the name of the
TTLSConnectionAction field that
is mapped to the connection.
The following value can be
returned in TTLSQ_Rcode:

0 The request completed
successfully.

TTLSK_GetSessionToken 4006 Unknown Base64
encoded

Obtains a token for the SSL
session. The token represents the
AT-TLS environment and session
identifier for the secure
connection. You can use the
TTLSQ_Length field to
determine the length of the
token that is returned. The
following values can be returned
in the TTLSQ_Rcode field:

0 The SessionToken was
successfully obtained
from the secure
connection.

1 The SessionToken
could not be obtained
from the secure
connection. This can
occur for several
reasons:

v The connection is
not secured with
AT-TLS.

v The AT-TLS
configuration does
not support session
caching. For
example, the session
is using SSLv2 or
has session caching
disabled.

674 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

||||
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 133. Get request structure (continued)

Identifier Constant Length Format Description

TTLSK_GetSessionId 4007 Unknown Binary Obtains the session identifier for
the SSL session. You can use the
TTLSQ_Length field to
determine the length of the
session that is returned. The
following values can be returned
in the TTLSQ_Rcode field:

0 The SessionId was
successfully obtained
from the secure
connection.

1 The SessionId could
not be obtained from
the secure connection.
This can occur for
several reasons:

v The connection is
not secured with
AT-TLS.

v The AT-TLS
configuration does
not support session
identifiers. For
example, the session
is using SSLv2.

For example, assume that an application made a secure connection to a server.
However, the application needs to verify that the certificate is from the server the
application is connected to. The application has two known server host names,
mvs.telnet.raleigh.ibm.com and mvs.prod.rtp.ibm.com. The application would use
the following TTLSHeader structure, pointed to by the TTLSI_BufPtr pointer on the
SIOCTTLSCTL ioctl request to validate the server's certificate against these host
names:

Table 134. Example TTLSHeader structure

TTLSHeader

Field Offset Format Value

TTLSHeaderIdent 0 EBCDIC TTLSHDR

TTLSHdrRsvd1 8 Binary 00000000 00000000

TTLSHdr_BytesNeeded 16 Binary 00000000

TTLSHdr_SetCount 20 Binary 00000000

TTLSHdr_GetCount 24 Binary 00000002

TTLSHdrRsvd2 28 Binary 00000000 00000000 00000000 00000000

TTLSQuadruplet Get Request buffer

TTLSQ_Key 48 Binary 00000FA0

TTLSQ_Offset 52 Binary 00000050

TTLSQ_Length 56 Binary 00000000

TTLSQ_Rcode 60 Binary 00000000

TTLSQuadruplet Get Request buffer

TTLSQ_Key 64 Binary 00000FA0

TTLSQ_Offset 68 Binary 0000006B

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 675

|||||
|
|
|
|
|
|

||
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 134. Example TTLSHeader structure (continued)

TTLSHeader

Field Offset Format Value

TTLSQ_Length 72 Binary 00000000

TTLSQ_Rcode 76 Binary 00000000

Buffer Data

Hostname 80 EBCDIC mvs.telnet.raleigh.ibm.com

Null character 106 Binary 00

Hostname 107 EBCDIC mvs.prod.rtp.ibm.com

Null Character 127 Binary 00

Assuming that the certificate listed mvs.prod.rtp.ibm.com as the hostname value,
the following TTLSHeader structure would be returned to the application:

Table 135. Example returned TTLSHeader structure

TTLSHeader

Field Offset Format Value

TTLSHeaderIdent 0 EBCDIC TTLSHDR

TTLSHdrRsvd1 8 Binary 00000000 00000000

TTLSHdr_BytesNeeded 16 Binary 00000080

TTLSHdr_SetCount 20 Binary 00000000

TTLSHdr_GetCount 24 Binary 00000002

TTLSHdrRsvd2 28 Binary 00000000 00000000 00000000 00000000

TTLSQuadruplet Get Request buffer

TTLSQ_Key 48 Binary 00000FA0

TTLSQ_Offset 52 Binary 00000050

TTLSQ_Length 56 Binary 00000000

TTLSQ_Rcode 60 Binary 00000001

TTLSQuadruplet Get Request buffer

TTLSQ_Key 64 Binary 00000FA0

TTLSQ_Offset 68 Binary 0000006B

TTLSQ_Length 72 Binary 00000001

TTLSQ_Rcode 76 Binary 00000000

Buffer Data

Hostname 80 EBCDIC mvs.telnet.raleigh.ibm.com

Null character 106 Binary 00

Hostname 107 EBCDIC mvs.prod.rtp.ibm.com

Null character 127 Binary 00

Requesting an AT-TLS connection to resume a specific secure session:
During the SSL handshake to establish a secure session, a session ID is associated
with the secure session. By using this session ID on another secure session, you
can use an abbreviated SSL handshake to resume the secure session. Resuming the
secure session reduces the number of SSL messages that flow during the SSL
handshake and the amount of cryptographic overhead incurred. Both the SSL client

676 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|
|
|

and server must agree to resume the secure session. The session ID is cached by
the AT-TLS environment that is associated with the secure session. AT-TLS
attempts to resume sessions from the cache if a secure client uses the same AT-TLS
environment to connect to the same IP address and port as the previous secure
session. For secure servers, the session is resumed if the secure client proposed a
secure session ID that is in the server's session cache.

Applications can use TTLSK_GetSessionToken and TTLSK_SetSessionToken
requests to get and set the secure session that is used. An application can resume a
secure session to the same server on a different IP address or port by using these
requests. An application can also use these requests to verify that a specific secure
session was reused.

Use the TTLSK_GetSessionToken request to obtain a token that identifies the secure
session that is used. Use the TTLSQ_Length flag to determine the size of the
returned token. This token can be used on another AT-TLS connection by using the
TTLSK_SetSessionToken request. To use the TTLSK_SetSessionToken request, the
AT-TLS policy must specify the ApplicationControlled parameter On. The
application can use the TTLSK_SetSessionToken request only when starting
security on the session with the TTLS_Init_Connection flag. The secure session
must map to the same TTLSGroupAction and TTLSEnvironmentAction as the
secure session where TTLSK_GetSessionToken was issued against.

The TTLSK_SetSessionToken request structure contains the
TTLSK_SST_ReuseRequired flag, which indicates whether the secure session is
required to use the same SSL session as the requested session token. If TTLSK
SST_ReuseRequired is specified, the SSL handshake fails if the same secure session
is not negotiated. If TTLSK_SST_ReuseRequired is not specified, the SSL handshake
completes, but a different secure session can be used. The TTLSK_GetSessionId
request can be used on each secure session to obtain the unique session identifier
for the session. The application can compare the session IDs to determine whether
the sessions are the same.

Tip: If the application acts as an SSL server, the TTLSK_SetSessionToken request
without the TTLSK_SST_ReuseRequired flag does not change the behavior of the
SSL handshake. The SSL client proposes the secure session to be resumed, and the
server attempts to resume the session if the session is in the cache.

SIOCTTLSCTL ioctl return values
The following are possible return values:

0 Successful completion.

-1 An error occurred. Check the return code and reason code. The following
are possible values:

EProtoType
Socket is not TCP.

EInval The error depends on the reason code. The following are possible
reason codes:

JrInvalidVersion
Version not valid in TTLS_IOCTL data structure.

JrSocketCallParmError
Denotes one of the following conditions:

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 677

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

v TTLS_RETURN_CERTIFICATE request type is specified
along with a zero value in either TTLSi_BufferPtr or
TTLSi_BufferLen

v TTLS_RETURN_CERTIFICATE request type is specified
and TTLS_Version is not set to 1

v TTLS_RETURN_CERTIFICATE request type is not
specified along with a nonzero value in either
TTLSi_BufferPtr or TTLSi_BufferLen and TTLS_Version is
set to 1

v Request type is not valid.
v Length of input data is not length of ioctl structure.

EPerm Denotes one of the following error conditions:
v The TTLS_INIT_CONNECTION option was requested, along

with one of the following:
– TTLS_RESET_SESSION
– TTLS_RESET_CIPHER
– TTLS_STOP_CONNECTION

v The TTLS_STOP_CONNECTION option was requested along
with the TTLS_RESET_SESSION or TTLS_RESET_CIPHER
option

v The TTLS_ALLOW_HSTIMEOUT option was requested without
the TTLS_INIT_CONNECTION option

ENotConn
The connection has not reached the established state or has been
closed.

EPipe TTLS_INIT_CONNECTION, TTLS_STOP_CONNECTION, or
TTLS_RESET_CIPHER option was requested and the connection is
no longer in established state.

EMVSERR
Internal failure while mapping AT-TLS policy.

EOpNotSupp
The TTLS_INIT_CONNECTION, TTLS_STOP_CONNECTION,
TTLS_RESET_SESSION, or TTLS_RESET_CIPHER option was
requested and one of the following is true:
v TCPCONFIG NOTTLS is configured or is the default.
v The connection has no policy.
v The AT-TLS policy for the connection specifies TTLSEnabled=No.

EAcces
The TTLS_INIT_CONNECTION, TTLS_STOP_CONNECTION,
TTLS_RESET_SESSION, or TTLS_RESET_CIPHER option was
requested and the AT-TLS policy for the connection specifies
ApplicationControlled=No.

EAlready
TTLS_INIT_CONNECTION was requested and the connection is
already secure or TTLS_STOP_CONNECTION was requested and
the connection is not secure.

EProto
Denotes one of the following reason codes:

678 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

JrGetConnErr
The TTLS_RESET_SESSION or TTLS_RESET_CIPHER
option was requested and the connection is not secure.

JrInvalidVersion
The TTLS_RESET_CIPHER or TTLS_STOP_CONNECTION
option was requested; the connection is secure but is
SSLv2.

JrConnDeniedPolicy
The TTLS_ALLOW_HSTIMEOUT option was requested but
the HandshakeRole value is client or the
HandshakeTimeout value is 0.

JrTTLSStopReadDataPending
The TTLS_STOP_CONNECTION option was requested, but
there was outstanding application data to be read on the
connection. All of the application data must be read before
the TTLS_STOP_CONNECTION option is requested.

JrTTLSStopWriteDataPending
The TTLS_STOP_CONNECTION option was requested, but
there were outstanding application write requests on the
connection. All of the outstanding application writes must
complete before the TTLS_STOP_CONNECTION option is
requested.

EInProgress
The TTLS_INIT_CONNECTION or TTLS_STOP_CONNECTION
option was requested and handshake is in progress.

EWouldBlock
The socket is a non-blocking socket and an SSL handshake is in
progress.

ENoBufs
Denotes one of the following reason codes:

JrBuffTooSmall

v For TTLS_Version1, the TTLS_RETURN_CERTIFICATE
option was requested and the buffer provided using
TTLSi_BufferPtr field is too small. See the TTLSi_Cert_Len
value for the number of bytes required to hold the
certificate.

v For TTLS_Version 2, the buffer supplied was too small.
See the TTLSHdr_BytesNeeded field value for the number
of bytes required .

SIOCTTLSCTL ioctl coding examples
The following examples show sample code for building and issuing the
SIOCTTLSCTL ioctl.

SIOCTTLSCTL ioctl assembler example
The following sample assembler code builds an SIOCTTLSCTL ioctl and issues the
ioctl using the Macro API (EZASMI). The ioctl requests initialization of the secure
connection and the return of the partner's certificate in the provided buffer.
...

* *

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 679

* Issue SIOCTTLSCTL IOCTL to start data encryption. *
* This requires AT-TLS policy with ApplicationControlled On *
* specified. *
* *

* clear ioctl buffer and then set version

XC TTLS_IOCTL(TTLS_IOCTL_V1Len),TTLS_IOCTL
MVI TTLSi_Ver,TTLS_VERSION1
L R8,=A(TTLS_INIT_CONNECTION)
O R8,=A(TTLS_RETURN_CERTIFICATE)
STH R8,TTLSi_Req_Type
LA R8,BUFFERA
ST R8,TTLSi_BufferPtr
MVC TTLSi_BufferLen,=A(L’BUFFERA)

*
EZASMI TYPE=IOCTL, ISSUE IOCTL MACRO X

S=SOCDESCA, X
COMMAND=’SIOCTTLSCTL’, X
REQARG=TTLS_IOCTL, X
RETARG=TTLS_IOCTL, X
REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
ERRNO=ERRNO, RETURN ERRNO HERE X
RETCODE=RETCODE, RETURN RETCODE HERE X
ERROR=ERROR ABEND IF MACRO ERROR

*
...

BUFFERA DS CL1024
..

EZBZTLSP DSECT=NO TTLS ioctl structure
...

SIOCTTLSCTL ioctl PL/I example
The following sample PL/I code builds and issues an SSIOCTTLSCTL ioctl that
requests secure connection initialization and the return of the partner's certificate in
the provided buffer.
...
/* get the SIOCTTLSCTL ioctl mapping and constants */
% include EZBZTLS1;
...
/* area to return the certificate data if available */
DCL CERTIF CHAR(1000) INIT(’’B);
....

/* allocate storage for the SIOCTTLSCTL ioctl */
Allocate TTLS_IOCTL;
TTLSI_VER = TTLS_VERSION1;
TTLSI_REQ_TYPE = TTLS_INIT_CONNECTION | TTLS_RETURN_CERTIFICATE;

/* if you DO NOT want to get the certificate then you must */
/* clear the following two fields */
/* TTLSi_BufferPtr = SYSNULL; */
/* TTLSi_BufferLen = 0; */

/* if you DO want to get the certificate then you must */
/* set the following two fields */
TTLSi_BufferPtr = ADDR(CERTIF);
TTLSi_BufferLen = LENGTH(CERTIF);

call ezasoket(IOCTL,
SOCKET,
SIOCTTLSCTL, /* TTLS ioctl */
TTLS_IOCTL, /* input buffer */
TTLS_IOCTL, /* output buffer */
ERRNO,
RETCODE);

680 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

if RETCODE < 0 then do;
/* do failure logic. If the socket is in non- */
/* blocking mode then you may also receive RETCODE */
/* of -1 with an ERRNO of EINPROGRESS. This does */
/* not indicate an error. Wait for the completion */
/* of the handshake with SELECT for WRITEABLE. */
...

end;

SIOCTTLSCTL ioctl COBOL example
The following sample COBOL code builds and issues an SIOCTTLSCTL ioctl that
requests the initialization of the secure connection.
...

==============
Data Division.
==============

* Variables used by the SIOCTTLSCTL IOCTL call *

01 ttls-ioctl-data.

COPY EZBZTLSB.
...

===
Procedure Division.
===

...
TTLS-Init.

move low-values to ttls-ioctl-data.
set TTLSI-BUFFERPTR to NULL.
move TTLS-VERSION1 to TTLSI-VER.
move TTLS-INIT-CONNECTION to TTLSI-REQ-TYPE.
Call ’EZASOKET’ using soket-ioctl socket-descriptor-new

SIOCTTLSCTL
TTLS-IOCTL TTLS-IOCTL
errno retcode.

* if error other than EINPROGRESS then *
IF ((RETCODE < 0) AND (ERRNO NOT = EINPROGRESS)) THEN

* handle error here
ELSE

* normal case
*
TTLS-INIT-Exit.

Exit.

SIOCTTLSCTL ioctl C example
The following sample C code builds and issues an SIOCTTLSCTL ioctl that
requests initialization of the secure connection and the return of the partner's
certificate in the provided buffer.
...
#include "ezbztlsc.h" /* SIOCTTLSCTL ioctl */
...

struct TTLS_IOCTL ioc; /* ioctl data structure */
char buff[1000]; /* buffer for certificate */

...
/* issue the SIOCTTLSCTL ioctl */
memset(&ioc,0,sizeof(ioc)); /* set all unused fields to zero */
ioc.TTLSi_Ver = TTLS_VERSION1;
ioc.TTLSi_Req_Type = TTLS_INIT_CONNECTION | TTLS_RETURN_CERTIFICATE;
ioc.TTLSi_BufferPtr = &buff
ioc.TTLSi_BufferLen = sizeof(buff);

rc = ioctl(s,SIOCTTLSCTL,(char *)&ioc);
if (rc < 0)
{

/* do failure logic. If the socket is in non- */

Chapter 15. Application Transparent Transport Layer Security (AT-TLS) 681

/* blocking mode then you may also receive rc */
/* of -1 with an errno of EINPROGRESS. This does */
/* not indicate an error. Wait for the completion */
/* of the handshake with select() for WRITEABLE. */

}

682 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 16. Trusted TCP connections

z/OS TCP/IP stacks within a sysplex or a subplex communicate using the
cross-system coupling facility (XCF). You can use XCF to exchange security
information between application endpoints, which creates a trusted TCP
connection. For more information about TCP/IP in a sysplex, see z/OS
Communications Server: IP Configuration Guide.

An application end point can retrieve either or both of the following kinds of
information for a partner end point:
v Sysplex-specific connection routing information

An application can retrieve connection routing information by invoking the
SO_CLUSTERCONNTYPE socket option or the SIOCGPARTNERINFO ioctl call.
For more information, see “Sysplex-specific connection routing information.”

v Partner security credentials
An application can retrieve partner security credentials by invoking the
SIOCGPARTNERINFO ioctl call, optionally preceded by the
SIOCSPARTNERINFO ioctl call. Partner security credentials can include the
partner user ID, partner user security token (UTOKEN), or both. For more
information, see “Partner security credentials” on page 686.

Sysplex-specific connection routing information
When all of the TCP/IP stacks in a sysplex are initialized and in a steady state,
they exchange information within the sysplex, such that each stack recognizes all
of the IP addresses that are supported by the other stacks in the sysplex, and
which particular stacks support which IP addresses. The name of the MVS image
for each stack is also made known to all other stacks. For any TCP connections, a
stack can determine from the partner IP address whether the stack that supports
the partner application is part of the same sysplex, and whether the stack is in the
same MVS image as the local stack.

Requirement: A TCP socket connection is required for an application to retrieve
connection routing information.

An application can use the SO_CLUSTERCONNTYPE socket option or the
SIOCGPARTNERINFO ioctl to obtain sysplex-specific connection routing
information for a sockets application, which might enable the application to offer
better function, performance, and scalability. The application collects and reports
this information only when you specifically request it, so that an application that
does not need the information does not incur the expense. The
SO_CLUSTERCONNTYPE socket option and the SIOCGPARTNERINFO ioctl
perform similarly when the sockets application is the listening (server) application
or the initiating (client) application.

The SO_CLUSTERCONNTYPE socket option and the SIOCGPARTNERINFO ioctl
return indicators to a sockets application when a connection is established.
Table 136 on page 684 lists the indicators and the potential benefits that TCP
sockets applications can gain from this information about a partner.

© Copyright IBM Corp. 2000, 2015 683

Table 136. Indicators and potential benefits of connection routing information

Partner indicator Potential benefit

Same MVS image Partners can share memory information that
is costly to generate (for example, security
contexts).

Same sysplex Parameter conversions can be avoided
because both sides of the connection use the
same machine architectures and data
representation (z/OS).

Internal Application security might cost less (for
example, applications might not encrypt
data).

The internal indicator is returned only when the partner is part of the same
sysplex, the data flows to the partner are over a link or interface that is never
exposed outside of the sysplex, and the link or interface is one of the following
types:
v CTC
v HiperSockets interface (iQDIO)
v MPCPTP (including XCF and IUTSAMEH)
v OSA-Express QDIO with CHPID type OSX or OSM
v Loopback
v Both connection partners are owned by the same multihomed stack

An application can use the internal indicator, for example, to avoid the cost of
encrypting and decrypting data. If an application establishes a connection for
which SSL is the appropriate protection mechanism when the partner is not in the
Sysplex, and the application has assumed or has been configured to know that
data within a sysplex is protected by physical security (controlled physical access),
then the application might implement the following logic.

Immediately after connection setup, but before the SSL handshake is initiated, use
the SO_CLUSTERCONNTYPE socket option or the SIOCGPARTNERINFO ioctl to
retrieve the connection routing information.
v If the internal indicator is not returned, initiate the SSL handshake with the

appropriate levels of encryption specified (negotiated) between the two
connection end points.

v If the internal indicator is returned and the partner security credentials are
available (see “Partner security credentials” on page 686 for more information),
retrieve the partner security information by using the SIOCGPARTNERINFO
ioctl and optionally refrain from using SSL to protect the data.

v If the internal indicator is returned, but the partner security credentials are not
available, initiate the SSL handshake as usual to authenticate the partner and
retrieve the user ID that is associated with the digital certificate of the partner.
After the internal indicator was returned, optionally specify only null encryption
as an encryption choice. Because support for null encryption is a required
feature of SSL and the SSL handshake is not destined to fail for architectural
(IETF RFC) reasons. Then the partner determines whether a negotiated null
encryption is acceptable to the partner or the connection should be closed.

Although the expensive SSL is not avoided, you can avoid encryption and
decryption of the data that is exchanged between the partners, as appropriate. If

684 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

the applications are doing bulk data transfer, and normal encryption is triple-DES,
the savings in CPU cycles can be considerable.

Results:

v The internal indicator is not returned if the destination IP address for a
connection (the partner's IP address) is a dynamic VIPA (DVIPA) or distributed
DVIPA that is in the sysplex, because traffic for these connections can be
forwarded to the target TCP/IP stacks over links or interfaces that are external
to the sysplex.

v If the TCP/IP stacks within a sysplex have been partitioned into subplexes, they
do not appear to each other to be in the same image or sysplex. Results from the
SO_CLUSTERCONNTYPE socket option or the SIOCGPARTNERINFO ioctl are
impacted in the following ways:
– Same sysplex indicator

If two stacks in the same sysplex belong to different TCP/IP subplexes, this
indicator is not set. Communication between these two stacks must cross a
network interface, as opposed to using an XCF connection.

– Same MVS image indicator
If two stacks on the same MVS system belong to different TCP/IP subplexes,
this indicator is not set.

– Internal indicator
If two TCP/IP stacks are in separate subplexes, this indicator is not set for
connections that are using CTC, MPCPTP (including XCF and IUTSAMEH),
OSA-Express QDIO with CHPID type OSX, or the HiperSockets function.
Each stack is not aware of the IP addresses for the partner stack because the
stacks belong to different subplexes.
For connections that use loopback, OSA-Express QDIO with CHPID type
OSM, or one of the local interfaces on a stack, this indicator is set.

Steps for retrieving connection routing information
A TCP socket connection in a sysplex environment is required. For information
about TCP/IP in a sysplex, see z/OS Communications Server: IP Configuration
Guide.

This topic describes how to retrieve sysplex-specific connection routing information
to a socket application.

Perform the following steps to retrieve connection routing information:
1. After the connect call in the client application, issue the

SO_CLUSTERCONNTYPE socket option or the SIOCGPARTNERINFO ioctl.
2. After the accept call in the server application, issue the

SO_CLUSTERCONNTYPE socket option or the SIOCGPARTNERINFO ioctl.

For more information about the SO_CLUSTERCONNTYPE socket option, see
“Coding the SO_CLUSTERCONNTYPE socket option” on page 689. For more
information about the SIOCGPARTNERINFO ioctl, see “SIOCGPARTNERINFO
(X'C000F612')” on page 692.

Chapter 16. Trusted TCP connections 685

Partner security credentials
Applications in a sysplex can exchange security information over a TCP sockets
connection to establish a trusted TCP connection between the applications. z/OS
sockets partners can use the retrieved security information to perform access
control checks on a TCP connection.

Use the SIOCGPARTNERINFO ioctl to enable an application to retrieve the
security credentials of a partner. Partner security credentials can include the
partner user ID, partner user security token (UTOKEN), or both. For information
about what is provided in the UTOKEN by the ICHRUTKN macro, see z/OS
Security Server RACF Data Areas.

You can also issue the SIOCSPARTNERINFO ioctl, before you issue the
SIOCGPARTNERINFO ioctl, to avoid suspending an application on the
SIOCGPARTNERINFO ioctl. The SIOCSPARTNERINFO ioctl sets an indicator to
retrieve the partner security credentials during connection setup and saves the
information. You must issue the SIOCSPARTNERINFO ioctl first to allow an
application to issue a SIOCGPARTNERINFO ioctl without suspending the
application, or at least to minimize the time needed to retrieve the information. If
you do not issue the SIOCSPARTNERINFO ioctl, the partner security credentials
are not retrieved until you issue the SIOCGPARTNERINFO ioctl, which requires a
suspension to retrieve the data.

Steps for retrieving partner security credentials
This topic describes how to retrieve partner security credentials to create a trusted
TCP connection.

Before you begin
v A TCP socket connection in a sysplex environment is required. For information

about TCP/IP in a sysplex, see z/OS Communications Server: IP Configuration
Guide.

v You need to determine whether your application is APF authorized or is
authorized to run in supervisor state, or you need to know which users run the
application to retrieve partner security credentials.

v You need to decide on a common security domain name within your sysplex or
subplex.

v You need to determine whether your application can be suspended when you
are retrieving partner security credentials.

Procedure

Perform the following steps to retrieve partner security credentials:
1. Set up proper authorization for your application using one of the following

methods:
v Set up your application so that it is APF authorized or is authorized to run

in supervisor state.
v Provide access to specific users by defining security product authority in the

SERVAUTH class for the following profile:
EZB.IOCTL.sysname.tcpprocname.PARTNERINFO

The sysname value is the system name that is defined in the sysplex, and the
tcpprocname value is the TCP/IP procedure name.

686 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Tip: You can specify a wildcard on segments of the profile name.

Requirement: Grant at least READ access to this profile to permit a user to
retrieve partner security credentials.

2. Define security product authority for the profile EZBDOMAIN in the
SERVAUTH class within the sysplex that is to use trusted TCP connections.
Specify the same security domain name in the APPLDATA field.
RDEFINE SERVAUTH EZBDOMAIN APPLDATA(’security_domain_name’)

Rules:

v The security domain name is limited to 255 characters.
v The security domain name is not case sensitive.

Tip: The security domain name is not required when you are using the
SIOCGPARTNERINFO ioctl to retrieve information from a partner on the same
stack.

Results:

v If the security domain name is not defined or does not match, then the
request fails and the partner security credentials are not returned.

v Verification of the security domain name occurs only the first time that
partner security credentials are retrieved by the SIOCGPARTNERINFO or
SIOCSPARTNERINFO ioctl in each connection.

3. Code the appropriate ioctl calls for the client and server applications.
v For the client application:

a. Optionally, issue the SIOCSPARTNERINFO ioctl before the connect call to
avoid suspending your application while the partner security credentials
are being retrieved.

b. Issue the SIOCGPARTNERINFO ioctl after the connect call. Optionally,
when you are using the SIOCSPARTNERINFO ioctl, specify the
PI_Timeout value 0 on the SIOCGPARTNERINFO ioctl to indicate that
your application cannot be suspended while the partner security
credentials are being retrieved.

v For the server application:
a. Optionally, issue the SIOCSPARTNERINFO ioctl before the listen call to

avoid suspending your application while the partner security credentials
are being retrieved.

b. Issue the SIOCGPARTNERINFO ioctl after the accept call. Optionally,
when you are using the SIOCSPARTNERINFO ioctl, specify the
PI_Timeout value 0 on the SIOCGPARTNERINFO ioctl to indicate that
your application cannot be suspended while the partner security
credentials are being retrieved.

Issue the SIOCSPARTNERINFO ioctl with the value
PI_REQTYPE_SET_PARTNERDATA. For more information about the
SIOCSPARTNERINFO ioctl, see “SIOCSPARTNERINFO (X'8004F613')” on page
691.
You can issue the SIOCGPARTNERINFO ioctl with the PI_Reqtype value set to
PI_REQTYPE_PARTNER_USERID, PI_REQTYPE_PARTNER_UTOKEN, or both,
to retrieve the partner user ID, partner user security token (UTOKEN), or both.
For more information about the SIOCGPARTNERINFO ioctl, see

Chapter 16. Trusted TCP connections 687

“SIOCGPARTNERINFO (X'C000F612')” on page 692. For information about
what is provided in the UTOKEN by the ICHRUTKN macro, see z/OS Security
Server RACF Data Areas.

Programming requirements for the SO_CLUSTERCONNTYPE socket
option

You can use the following APIs to retrieve connection routing information using
the SO_CLUSTERCONNTYPE socket option:
v UNIX System Services Assembler Callable Service (BPX1IOC or BPX4IOC)
v TCPIP C socket API [getsockopt()]

Restriction: The following APIs are not supported for the
SO_CLUSTERCONNTYPE socket option:
v Language Environment C/C++ socket
v X/Open Transport Interface (XTI)
v Pascal API
v Macro API (EZASMI)
v CALL instruction API (EZASOKET) supporting COBOL, PL/I, and System/370

assembler languages
v REXX socket API
v CICS C socket calls
v CICS CALL instruction API (EZASOKET - by including EZACICAL or

EZACICSO)
v IMS CALL instruction API (EZASOKET)

Programming requirements for the SIOCGPARTNERINFO and
SIOCSPARTNERINFO ioctl calls

You can use the following APIs to retrieve connection routing information, partner
security credentials, or both by using the SIOCGPARTNERINFO ioctl (and
optionally by using the SIOCSPARTNERINFO ioctl prior to the
SIOCGPARTNERINFO ioctl):
v Language Environment C/C++ socket:

– SIOCGPARTNERINFO call [w_ioctl()]
– SIOCSPARTNERINFO call [ioctl()]

v UNIX System Services Assembler Callable Service (BPX1IOC or BPX4IOC)
v Trusted TCP connections API for Java

Install the 31-bit or 64-bit software development kit (SDK) for Java, Java 2
Technology Edition, V5 or later.

v Macro API (EZASMI)
v CALL instruction API (EZASOKET) supporting COBOL, PL/I, and System/370

assembler languages
v REXX socket API

Restriction: For the SIOCGPARTNERINFO ioctl, this API supports only the
request types PI_REQTYPE_CONNTYPE and PI_REQTYPE_PARTNER_USERID.
For more information about the SIOCGPARTNERINFO ioctl, see
“SIOCGPARTNERINFO (X'C000F612')” on page 692.

v CICS C socket calls

688 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v CICS CALL instruction API (EZASOKET - by including EZACICAL or
EZACICSO)

v IMS CALL instruction API (EZASOKET)

Restriction: The following APIs are not supported for the SIOCGPARTNERINFO
and SIOCSPARTNERINFO calls:
v TCPIP C socket API
v X/Open Transport Interface (XTI)
v Pascal API

Table 137 describes the programming requirements for trusted TCP connection
APIs.

Table 137. Programming requirements for trusted TCP connection APIs

Function Requirement

Authorization Supervisor state or problem state, any PSW key. For special
authorization requirements when retrieving partner security
credentials, see “Steps for retrieving partner security
credentials” on page 686.

Dispatchable unit mode Task.

SRB mode Some APIs can be invoked in SRB mode. All APIs can be
invoked in TCB mode.

Cross-memory mode The API can be invoked in only a non-cross-memory
environment (PASN=SASN=HASN).

ASC mode Primary address space control (ASC) mode.

Interrupt status Enabled for interrupts.

Locks No locks should be held when you issue these calls.

Functional recovery routine
(FRR)

Do not invoke the API with an FRR set, which can cause
system recovery routines to be bypassed and severely
damage the system.

Storage Storage acquired for the purpose of containing data that is
returned from an API call must be obtained in the same key
as that of the application program status word (PSW) at the
time of the call.

Nested API calls You cannot issue nested SIOCGPARTNERINFO ioctl calls
when you are requesting partner security credentials.

Addressability mode
(AMODE)

ALL APIs can be invoked in 31-bit addressability mode. Unix
System Services assembler callable service, Language
Environment C/C++ socket, and JAVA can be invoked in
64-bit addressability mode.

Coding the SO_CLUSTERCONNTYPE socket option
For all supported programming languages, the SO_CLUSTERCONNTYPE socket
option returns a 32-bit value that is associated with a socket. For more information
and for general coding guidelines for the SO_CLUSTERCONNTYPE socket option,
see the following sources:
v z/OS Communications Server: IP Sockets Application Programming Interface

Guide and Reference
– C socket API

Chapter 16. Trusted TCP connections 689

v z/OS UNIX System Services Programming: Assembler Callable Services
Reference
– Callable services descriptions (BPX1IOC or BPX4IOC)

Coding the SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls
Each programming language has its own control block structure mapping. All
mappings and header files are stored in SEZANMAC, and the C language headers
are also installed in file system directory /usr/include. The Java API classes are
installed in the directory /usr/include/java_classes, and the dynamic link library
(DLL) files are installed in the directory /usr/lib. The following programming
languages are supported:

Assembler
Include the EZBPINFA mapping.

C Include the EZBPINFC header file.

Java Include the EZBTrustedPartner.jar file.

PL/I Include the EZBPINF1 mapping.

COBOL
Include the EZBPINFB mapping.

REXX No mapping or header file is used.

For general coding guidelines for the sockets application ioctl calls, see the
following sources:
v z/OS XL C/C++ Runtime Library Reference

– z/OS IBM C/C++ sockets API within the z/OS Language Environment
v z/OS UNIX System Services Programming: Assembler Callable Services

Reference
– Callable services descriptions (BPX1IOC or BPX4IOC)

v z/OS Communications Server: IP Sockets Application Programming Interface
Guide and Reference
– Macro API (EZASMI) for assembler programs
– CALL instruction API (EZASOKET) supporting COBOL, PL/I, and

System/370 assembler languages
– REXX socket API

v z/OS Communications Server: IP CICS Sockets Guide
– C socket calls (EZACIC07 or EZACIC17, which calls EZASOKET with entry

in EZACICAL)
– CALL instruction API (EZASOKET with entry in EZACICAL) supporting

COBOL, PL/I, and System/370 assembler languages
v z/OS Communications Server: IP IMS Sockets Guide

– CALL instruction API (EZASOKET) supporting COBOL, PL/I, and
System/370 assembler languages

v Javadoc information that is included in the EZBTrustedPartnerdoc.jar file, which
is installed in the directory /usr/include/java_classes
Download the jar file to a workstation, unpack it, and read it in a web browser.
The trusted TCP connections API for Java includes the ConnectionType and
PartnerInfo classes.

690 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Optionally for logging, see the information for the java.util.logging package; the
trusted TCP connections API for Java uses the Java logging API
(java.util.logging.Logger) to generate debug information.

SIOCSPARTNERINFO (X'8004F613')
The SIOCSPARTNERINFO ioctl sets an indicator to retrieve the partner security
credentials during connection setup and saves the information. You must issue the
SIOCSPARTNERINFO ioctl first to allow an application to issue a
SIOCGPARTNERINFO ioctl without suspending the application, or at least to
minimize the time needed to retrieve the information.

Result in a common INET environment: In a common INET (CINET)
environment, which enables multiple TCP/IP stacks to run in a single logical
partition (LPAR), the SIOCSPARTNERINFO ioctl is sent to all active stacks.

Input to SIOCSPARTNERINFO
The following input item is accepted by the SIOCSPARTNERINFO ioctl:

PI_REQTYPE_SET_PARTNERDATA (X'01')
Indicates that the partner security credentials are to be retrieved during
connection setup.

Output from SIOCSPARTNERINFO
No data items are returned by the SIOCSPARTNERINFO ioctl. The 31-bit input
value that is passed on the call is saved and used during connection setup.

SIOCSPARTNERINFO return values
The SIOCSPARTNERINFO ioctl has the following possible return values:

0 Successful completion.

-1 An error occurred. For return codes and reason codes, see the following
information:
v For the Language Environment, Java, or UNIX System Services APIs, see

Table 138.
v For the Macro, Call instruction, or Rexx APIs, see z/OS Communications

Server: IP Sockets Application Programming Interface Guide and
Reference.

v For the CICS API, see z/OS Communications Server: IP CICS Sockets
Guide.

v For the IMS API, see z/OS Communications Server: IP IMS Sockets
Guide.

Table 138. SIOCSPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System Services
APIs

Return code and reason code Problem Action

EBADF
No reason code

The specified socket descriptor is not
valid.

Check and modify the socket
descriptor.

EINVAL
JrRequestTypeErr

The specified 31-bit input value is not
valid.

Check and modify the input value.
For the correct values, see the
EZBPINFA or EZBPINFC files in
SEZANMAC.

Chapter 16. Trusted TCP connections 691

Table 138. SIOCSPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System Services
APIs (continued)

Return code and reason code Problem Action

ENOPARTNERINFO
JrNoSecDomain

The security domain name is not
defined.

Define the security domain name.

EOPNOTSUPP
JrAlreadyConn

The socket is already in the
connected state. The request must be
issued before the listen call or the
connect call.

Check and modify the socket
descriptor, or close the connection
and reissue the call.

EOPNOTSUPP
JrListenAlreadyDone

The listen call has already been
issued for the socket. The request
must be issued before the listen call.

Check and modify the socket
descriptor, or close the socket or
connection and reissue the call.

EPROTOTYPE
JrSocketTypeNotSupported

The requested socket type is not
supported.

Check and modify the socket
descriptor.

SIOCGPARTNERINFO (X'C000F612')
The SIOCGPARTNERINFO ioctl provides an interface for an application to retrieve
security information about its partner. The following information can be retrieved:
v Connection routing information
v Security credentials

Partner security credentials can include the following ones:
– Address-space user ID
– Task-level user ID, if available
– Address-space user security token (UTOKEN)
– Task-level UTOKEN, if available
For information about what is provided in the UTOKEN by the ICHRUTKN
macro, see z/OS Security Server RACF Data Areas.

Results:

v Connection routing information is always returned.
v Security credentials are returned if they are requested and available.

Input to SIOCGPARTNERINFO
Set the following input items:

PI_Version
Set the version field to PI_VERSION_1 or PI_VERSION_CURRENT to
indicate the version of the control block that is passed.

PI_ReqType
Indicates the type of data that is requested on this ioctl.

PI_REQTYPE_CONNTYPE (X'00')
Requests connection routing information. This is the default value.

PI_REQTYPE_PARTNER_USERID (X'01')
Requests connection routing information and the partner user ID.

692 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

PI_REQTYPE_PARTNER_UTOKEN (X'02')
Requests connection routing information and the partner
UTOKEN. A UTOKEN is an encapsulation or representation of the
security characteristics of a user.

Rule: You can request multiple items by adding request type values. For
example, to request both the user ID and the UTOKEN, specify X'03'.

PI_TimeOut
When retrieving the partner security credentials, the PI_TimeOut value is
used to set the timeout value, in seconds. If the request is not completed
during this time, an error is returned. The valid range is 0 - 60.

Rule: The value 0 is valid only if you have issued the
SIOCSPARTNERINFO ioctl. Use the SIOCSPARTNERINFO ioctl and the
value 0 for PI_TimeOut on the SIOCGPARTNERINFO ioctl for an
application that cannot be suspended.

Results:

v The timeout value is not used when only connection routing information
is being retrieved.

v The timeout value is not used when partner information from a partner
on the same stack is being retrieved.

Restriction: You cannot use a select mask to determine when an ioctl is
complete, because an ioctl is not affected by whether the socket is running
in blocking or nonblocking mode. If the ioctl times out, you need to reissue
the ioctl to retrieve the partner security credentials.

PI_BufLen
Indicates the size of the buffer that is passed. Obtain a buffer that is large
enough to hold the returning data, including the extension data portion if
it is required.

Rules:

v Set the PI_BufLen value to match the ioctl input parameter argument
length, and to be at least equal to the PI_FIXED_SIZE value.

v When you are retrieving the UTOKEN, set the PI_Buflen value to the
PI_FIXED_SIZE value plus the PI_UTOKEN_EXT_SIZE value.

Output from SIOCGPARTNERINFO
The following output fields can be returned.

PI_Status
Indicates the type of information that is returned, which includes
connection routing information, and can also include the partner user ID,
the partner UTOKEN, or both.

PI_STATUS_CONNTYPE (x'01')
The connection routing information is returned in the PI_ConnType
field.

PI_STATUS_PARTNER_USERID (x'02')
The address-space user ID of the partner and the length of this
user ID are returned in the PI_UserID_AS and PI_UserID_Len_AS
fields. The task-level user ID of the partner, if available, and the
length of this user ID are returned in the PI_UserID_TL and
PI_UserID_Len_TL fields.

Chapter 16. Trusted TCP connections 693

PI_STATUS_PARTNER_UTOKEN (x'04')
The address-space UTOKEN of the partner and the length of this
UTOKEN are returned in the PI_Utoken_AS and
PI_Utoken_Len_AS fields. The task-level UTOKEN of the partner,
if available, and the length of this UTOKEN are returned in the
PI_Utoken_TL and PI_Utoken_Len_TL fields.

Multiple flags can be set, indicating that multiple items are returned. For example,
if both PI_STATUS_CONNTYPE (x'01') and PI_STATUS_PARTNER_USERID (x'02')
are returned for the PI_Status field, both connection routing information and the
partner user ID are returned. The output fields that are returned depend on the
flag values set in the PI_Status field:
v If PI_STATUS_CONNTYPE (x'01') is returned in the PI_Status field:

PI_ConnType
This value is the sysplex-specific connection routing information for a
sockets application.

PI_CONNTYPE_NOCONN (X'00')
The socket is not connected.

PI_CONNTYPE_NONE (X'01')
The socket is active, but the partner is not in the same sysplex. If
this indicator is set, the following three indicators are 0.

PI_CONNTYPE_SAME_CLUSTER (X'02')
The connection partner is in the same sysplex.

PI_CONNTYPE_SAME_IMAGE (X'04')
The connection partner is in the same MVS image. If this
indicator is set, PI_CONNTYPE_SAME_CLUSTER is also set. If
the connection partner is a distributed DVIPA, the same image
bit is not set to on because the exact hosting stack is unknown.

PI_CONNTYPE_INTERNAL (X'08')
The communication from this node to the stack that hosts the
partner application is not sent over links or interfaces outside of
the sysplex. To determine whether both ends of the connection
flow over internal links or interfaces, the partner application
must also issue this ioctl, and both ends can exchange their
results from this ioctl call (through an application-dependent
method).

If this value is returned to an application, any subsequent
rerouting decision due to failure of the current route results in
either an alternate internal route or failure of the connection
with the indication that no route is available. This logic ensures
that a connection that an application relies upon to be an
internal route does not transparently change to a route that is
not internal.

v If PI_STATUS_PARTNER_USERID (x'02') is returned in the PI_Status field:

PI_UserID_Len_AS
If PI_REQTYPE_PARTNER_USERID (X'01') was provided as input and
the PI_Status field indicates that the partner user ID is returned, this
field is set to the length of the address-space user ID that is returned,
excluding the trailing blanks.

PI_UserID_AS
If PI_REQTYPE_PARTNER_USERID (X'01') was provided as input and

694 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

the PI_Status field indicates that the partner user ID is returned, this
field is set to the address-space user ID that is returned, padded with
blanks.

PI_UserID_Len_TL
If PI_REQTYPE_PARTNER_USERID (X'01') was provided as input and
the PI_Status field indicates that the partner user ID is returned, this
field is set to the length of the task-level user ID (if this user ID was
returned), excluding the trailing blanks. If PI_UserID_Len_TL is set to 0,
then only an address-space user ID is returned.

PI_UserID_TL
If PI_REQTYPE_PARTNER_USERID (X'01') was provided as input and
the PI_Status field indicates that the partner user ID is returned, this
field is set to the task-level user ID (if this user ID was returned),
padded with blanks.

v If PI_STATUS_PARTNER_UTOKEN (x'04') is returned in the PI_Status field:

PI_Ext_Length
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as input and
the PI_Status field indicates that the partner UTOKEN is returned, this
field is set to the length of the UTOKEN, which includes the
address-space UTOKEN and, if available, the task-level UTOKEN.

PI_Ext_Offset
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as input and
the PI_Status field indicates that the partner UTOKEN is returned, this
field is set to the offset to the PI_Utoken_Ext structure.

PI_Utoken_Ext
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as input and
the PI_Status field indicates that the partner UTOKEN is returned, this
structure contains the address-space UTOKEN of the partner, and the
task-level UTOKEN if it is available.

PI_Utoken_Len_AS
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as
input and the PI_Status field indicates that the partner UTOKEN
is returned, this field is set to the length of the address-space
UTOKEN that was returned.

PI_Utoken_AS
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as
input and the PI_Status field indicates that the partner UTOKEN
is returned, this field is set to the address-space UTOKEN.

PI_Utoken_Len_TL
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as
input and the PI_Status field indicates that the partner UTOKEN
is returned, this field is set to the length of the task-level
UTOKEN, if it was returned. If PI_Utoken_Len_TL is set to 0,
then only an address-space UTOKEN is returned.

PI_Utoken_TL
If PI_REQTYPE_PARTNER_UTOKEN (X'02') was provided as
input and the PI_Status field indicates that the partner UTOKEN
is returned, this field is set to the task-level UTOKEN, if it was
returned.

For information about what is provided in the UTOKEN by the ICHRUTKN
macro, see z/OS Security Server RACF Data Areas.

Chapter 16. Trusted TCP connections 695

Using the partner information control block
The partner information control block contains control information that describes
the SIOCGPARTNERINFO request, as shown in Table 139 and Table 140.

Table 139. SIOCGPARTNERINFO ioctl partner information control block structure

Field Offset Length in bytes Format

PI_Version 0 1 Binary

PI_RsvdAvail1
(Reserved; set to 0)

1 3 Binary

PI_ReqType 4 4 Binary

PI_TimeOut 8 4 Binary

PI_BufLen 12 4 Binary

PI_Status 16 4 Binary

PI_ConnType 20 4 Binary

PI_UserID_Len_AS 24 1 Binary

PI_UserID_AS 25 8 EBCDIC

Null character 33 1 Binary

PI_UserID_Len_TL 34 1 Binary

PI_UserID_TL 35 8 EBCDIC

Null character 43 1 Binary

PI_RsvdAvail2
(Reserved; set to 0)

44 24 Binary

PI_Ext_Length 68 4 Binary

PI_Ext_Offset 72 4 Binary

Table 140. SIOCGPARTNERINFO ioctl partner information UTOKEN extension control block
structure

Field Offset Length in bytes Format

PI_Utoken_Len_AS 0 1 Binary

PI_Utoken_RsvdAvail1
(Reserved; set to 0)

1 3 Binary

PI_Utoken_AS 4 80 EBCDIC

PI_Utoken_Len_TL 84 1 Binary

PI_Utoken_RsvdAvail2
(Reserved; set to 0)

85 3 Binary

PI_Utoken_TL 88 80 EBCDIC

For a description of each field, see “Input to SIOCGPARTNERINFO” on page 692
and “Output from SIOCGPARTNERINFO” on page 693.

SIOCGPARTNERINFO return values
The SIOCGPARTNERINFO ioctl has the following possible return values:

0 Successful completion.

-1 An error occurred. For return codes and reason codes, see the following
information:

696 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v For the Language Environment, Java, or UNIX System Services APIs, see
Table 141.

v For the Macro, Call instruction, or Rexx APIs, see z/OS Communications
Server: IP Sockets Application Programming Interface Guide and
Reference.

v For the CICS API, see z/OS Communications Server: IP CICS Sockets
Guide.

v For the IMS API, see z/OS Communications Server: IP IMS Sockets
Guide.

Table 141. SIOCGPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System
Services APIs

Return code and reason
code Problem Output returned Action

EACCES
JrIoctlAccessAuthorization

The application is not
running in supervisor state,
is not APF authorized, or is
not permitted to the
appropriate SERVAUTH
profile.

PI_ConnType Allow the application to
issue this ioctl, or provide
the user ID with the proper
SERVAUTH permission.

EALREADY
JrAlreadyInProgress

The request is already in
progress. Only one ioctl
can be outstanding.

PI_ConnType Check and modify the
socket descriptor, if
specified; otherwise, no
action is needed.

EBADF
No reason code

The specified socket
descriptor is not valid.

None Check and modify the
socket descriptor.

EINPROGRESS
JrNoSuspend

The ioctl was issued in
no-suspend mode after the
SIOCSPARTNERINFO ioctl
was issued, but the partner
security credentials are not
currently available.

PI_ConnType Retry the ioctl at a later
time, or issue the ioctl with
a timeout value to set the
amount of time to wait
while the partner security
credentials are being
retrieved.
Restriction: You cannot use
a select mask to determine
when an ioctl is complete,
because an ioctl is not
affected by whether the
socket is running in
blocking or nonblocking
mode. If the ioctl times out,
you need to reissue the ioctl
to retrieve the partner
security credentials.

EINVAL
JrBuffLenInvalid

The input buffer length is
below the required
minimum length.

None Check and modify the ioctl
parameter argument length
to be at least the size of the
PI_FIXED_SIZED value, or
check and modify the
PI_BufLen value to match
the ioctl parameter
argument length. For the
correct values, see the
EZBPINFA or EZBPINFC
files in SEZANMAC.

Chapter 16. Trusted TCP connections 697

Table 141. SIOCGPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System
Services APIs (continued)

Return code and reason
code Problem Output returned Action

EINVAL
JrInvalidVersion

The specified PI_Version
value is not valid.

None Check and modify the
PI_Version value. For the
correct values, see the
EZBPINFA or EZBPINFC
files in SEZANMAC.

EINVAL
JrRequestTypeErr

The specified PI_ReqType
value is not valid.

None Check and modify the
PI_ReqType value. For the
correct values, see the
EZBPINFA or EZBPINFC
files in SEZANMAC.

EINVAL
JrSecOutofRange

The specified PI_TimeOut
value is not valid.

None Check and modify the
PI_TimeOut value. For the
correct values, see the
EZBPINFA or EZBPINFC
files in SEZANMAC.

ENOBUFS
JrBuffTooSmall

The supplied buffer was
too small.

PI_ConnType, and the
amount of storage needed
is returned in PI_Buflen

Create a larger input buffer
based on the value returned
in the PI_Buflen field.

ENOMEM
JrNoCsaStorage

TCP/IP cannot process the
request because there is
insufficient common
storage available.

None Check and modify the
amount of common storage
that is available.

ENOPARTNERINFO
JrInvalidTCPIPStack

The partner is in a TCP/IP
stack that is running a
release earlier than V1R12.

PI_ConnType Ensure that both endpoints
are in TCP/IP stacks that
are running V1R12 or any
later release.

ENOPARTNERINFO
JrNoPartnerInfo

The partner is not in the
same sysplex.

PI_ConnType Check and modify the
socket descriptor. However,
if the partner is not in the
same sysplex, no security
credentials can be returned.

ENOPARTNERINFO
JrNoSecDomain

The security domain name
is not defined.

PI_ConnType Define the security domain
name on both endpoints.
After you define the
security domain name, the
application might need to
close the connection if the
ioctl is needed.

698 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 141. SIOCGPARTNERINFO ioctl return codes for the Language Environment, Java, and UNIX System
Services APIs (continued)

Return code and reason
code Problem Output returned Action

ENOPARTNERINFO
JrNoSuspend

The ioctl was issued in
no-suspend mode and the
SIOCSPARTNERINFO ioctl
has not been issued.

PI_ConnType Issue the ioctl with a
timeout value to set the
amount of time to wait
while the partner security
credentials are being
retrieved.
Restriction: You cannot use
a select mask to determine
when an ioctl is complete,
because an ioctl is not
affected by whether the
socket is running in
blocking or nonblocking
mode. If the ioctl times out,
you need to reissue the ioctl
to retrieve the partner
security credentials.

ENOPARTNERINFO
JrNotSameSecDomain

Both endpoints are not in
the same security domain.

PI_ConnType Check and modify the
security domain name for
the endpoints. After you
correct the security domain
name, the application might
need to close the connection
if the ioctl is needed.

ENOPARTNERINFO
JrTimeOut

The wait time for the
request has expired,
possibly as the result of
network problems.

PI_ConnType Retry the request.
Restriction: You cannot use
a select mask to determine
when an ioctl is complete,
because an ioctl is not
affected by whether the
socket is running in
blocking or nonblocking
mode. If the ioctl times out,
you need to reissue the ioctl
to retrieve the partner
security credentials.

ENOTCONN
JrSocketNotCon

The requested socket is not
connected.

PI_ConnType with the
PI_CONNTYPE_NOCONN
value returned

Check and modify the
socket descriptor, or reissue
the ioctl after the connect
call from the client side or
the accept call from the
server side.

EPROTOTYPE
JrSocketTypeNotSupported

The requested socket type
is not supported.

None Check and modify the
socket descriptor.

Coding examples – SIOCSPARTNERINFO and
SIOCGPARTNERINFO ioctl calls

These examples show sample code for building and issuing the
SIOCGPARTNERINFO ioctl and the optional SIOCSPARTNERINFO ioctl.

Chapter 16. Trusted TCP connections 699

Assembler example – SIOCGPARTNERINFO ioctl call
The following sample assembler code builds the SIOCGPARTNERINFO ioctl and
issues the ioctl using the Macro API (EZASMI). The SIOCGPARTNERINFO ioctl
retrieves the connection routing information and the security credentials of a
partner.
...

* *
* Issue SIOCGPARTNERINFO IOCTL to retrieve connection *
* routing information and the security credentials *
* of a partner. *
* *

*

USING PARTNERINFO,R6
MVI PI_Version,PI_VERSION_1
MVC PI_ReqType,=A(PI_REQTYPE_PARTNER_USERID+PI_REQTYPE_PARTNX

ER_UTOKEN)
MVC PI_TIMEOUT,=A(PI_TIMEOUT_MAXIMUM)
MVC PI_BUFLEN,=A(PI_FIXED_SIZE+PI_UTOKEN_EXT_SIZE)

*
EZASMI TYPE=IOCTL, Issue Macro X

S=SOCDESCA, ACCEPT SOCKET X
COMMAND=’SIOCGPARTNERINFO’, X
REQARG=PARTNERINFO, X
RETARG=PARTNERINFO, X
ERRNO=ERRNO, (Specify ERRNO field) X
RETCODE=RETCODE, (Specify RETCODE field) X
REQAREA=REQAREA, IN CASE WE ARE DOING EXITS OR ECBS X
ERROR=ERROR Abend if Macro error

*...
EZBPINFA DSECT=NO SIOCGPARTNERINFO ioctl structure

PL/I example – SIOCGPARTNERINFO ioctl call
The following sample PL/I code builds and issues the SIOCGPARTNERINFO ioctl.
The SIOCGPARTNERINFO ioctl retrieves the connection routing information and
the security credentials of a partner.
...
/* SIOCGPartnerInfo ioctl mapping and constants */
% include EZBPINF1;...
dcl 1 IoctlBuffer Based,

3 data char(PI_FIXED_SIZE + PI_UTOKEN_EXT_SIZE);...
/***/
/* Allocate the IOCTL buffer for SIOCGPARTNERINFO and issue ioctl. */
/***/
allocate ioctlBuffer set(piPtr);

piPtr->PI_Version = PI_VERSION_1;
piPtr->PI_ReqType = PI_REQTYPE_PARTNER_USERID

+ PI_REQTYPE_PARTNER_UTOKEN;
piPtr->PI_TimeOut = PI_TIMEOUT_MAXIMUM;
piPtr->PI_BufLen = PI_FIXED_SIZE + PI_UTOKEN_EXT_SIZE;

call ezasoket(IOCTL,
SOCK_STREAM,
SIOCGPARTNERINFO, /* SIOCGPARTNERINFO ioctl */
piPtr->IoctlBuffer, /* input buffer */
piPtr->IoctlBuffer, /* output buffer */
ERRNO,
RETCODE);

700 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

COBOL example – SIOCGPARTNERINFO ioctl call
The following sample COBOL code builds and issues the SIOCGPARTNERINFO
ioctl. The SIOCGPARTNERINFO ioctl retrieves the connection routing information
and the security credentials of a partner.
...
==============
Data Division.
==============

* Variables used by the SIOCGPARTNERINFO IOCTL call *

01 partnerinfo-data pic x.

COPY EZBPINFB.
01 FIELD-DEFINE PIC X(4).
01 FIELD-DEFINEVALUE redefines field-DEFINE.

02 defineNum PIC 9(8) Binary.
01 FIELD-DEFINE1 PIC X(4).
01 FIELD-DEFINE1VALUE redefines field-DEFINE1.

02 defineNum1 PIC 9(8) Binary....
===
Procedure Division.
===...

* Issue IOCTL SIOCGPARTNERINFO *

SiocGPartnerInfo-Ioctl.

move PI-VERSION-1 to PI-VERSION.
move PI-TIMEOUT-MAXIMUM to PI-TIMEOUT.

move PI-FIXED-SIZE to PI-BUFLEN.
add PI-UTOKEN-EXT-SIZE to PI-BUFLEN.

move PI-REQTYPE-PARTNER-USERID to FIELD-DEFINE.
move PI-REQTYPE-PARTNER-UTOKEN to FIELD-DEFINE1.
add defineNum1 to defineNum.
move FIELD-DEFINE to PI-REQTYPE.

move soket-ioctl to ezaerror-function.
Call ’EZASOKET’ using soket-ioctl socket-descriptor

SIOCGPARTNERINFO
PARTNERINFO PARTNERINFO
errno retcode.

SiocGPartnerInfo-Ioctl-Exit.
Exit.

C example – SIOCSPARTNERINFO and SIOCGPARTNERINFO
ioctl calls
The following sample C code builds and issues the SIOCSPARTNERINFO and
SIOCGPARTNERINFO ioctl calls. The SIOCGPARTNERINFO ioctl retrieves the
connection routing information and the security credentials of a partner. The
optional SIOCSPARTNERINFO ioctl enables an application to avoid suspending
while retrieving partner security credentials with the SIOCGPARTNERINFO ioctl.
...
#include <sys/ioctl.h>
#include <termios.h>...
#include "ezbpinfc.h" /* SIOCSPARTNERINFO and

SIOCGPARTNERINFO ioctls */...
char *buff = NULL;
int s;

Chapter 16. Trusted TCP connections 701

int function = PI_REQTYPE_SET_PARTNERDATA;
int bufsiz;...
/***/
/* issue the SIOCSPARTNERINFO ioctl to avoid suspending */
/***/
rc = ioctl(s,

SIOCSPARTNERINFO,
(char *)&function,
sizeof(function));...

bufsiz = PI_FIXED_SIZE + PI_UTOKEN_EXT_SIZE;
buff = (char *)__malloc31(bufsiz);

if (buff != NULL)
{

memset(buff,0,bufsiz);
iocPtr = (struct PartnerInfo *)buff;
iocPtr->PI_BufLen = bufsiz;
iocPtr->PI_Version = PI_VERSION_1;
iocPtr->PI_ReqType = PI_REQTYPE_PARTNER_USERID

+ PI_REQTYPE_PARTNER_UTOKEN;
iocPtr->PI_TimeOut = PI_TIMEOUT_MINIMUM;

rc = w_ioctl(s,
SIOCGPARTNERINFO,
iocPtr->PI_BufLen,
(char *)iocPtr);

}

702 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 17. Interfacing with the Digital Certificate Access
Server (DCAS)

The DCAS can be used by providers of logon and single sign-on services where
access to z/OS-based applications is needed. The DCAS is a TCP/IP server that
enables clients to connect over the network and obtain a PassTicket and z/OS user
ID from a SAF-compliant product, such as RACF. This topic refers to RACF as the
SAF product.

A PassTicket is like a temporary password, because it is valid for only a short
period of time. Applications on z/OS can be configured to support logon access
with PassTickets. For information about PassTickets, see z/OS Security Server
RACF Security Administrator's Guide.

IBM does not provide header files or samples for programming DCAS clients, but
the specifications for developing a client are defined in the following topics.

Understanding how clients interface to DCAS
Clients connect to the DCAS using the TCP protocol.
v By default, the DCAS listens on port 8990, but it can listen on any configured

port.
v Clients that connect to the DCAS must use the TLS/SSL protocol. The DCAS can

call IBM System SSL or use AT-TLS for TLS/SSL. For more information about
using AT-TLS, see Customizing DCAS for TLS/SSL in z/OS Communications
Server: IP Configuration Guide. Client authentication is completed.

v The DCAS provides a request and response interface that enables clients to
obtain two types of information. After the TCP connection and SSL handshake
processing completes, the DCAS client sends a request and in turn receives a
response. The request and its response determine which of the following types
of information DCAS provides:
– Clients can request a user ID and PassTicket for an application. The client

sends a Format 1 type request that includes an application ID1 and an x.509
certificate. The DCAS returns a user ID and PassTicket in the Format 1
response. In this case, the DCAS converts the x.509 certificate to a valid user
ID, which is returned.

Requirement: The x.509 certificate must have been mapped to a valid user ID
in RACF.

– Clients can request a PassTicket for an application. The client sends a Format
2 type request that includes an application ID1 and a user ID. The DCAS
returns a PassTicket in the Format 1 response.

– Clients can send multiple requests on a single connection. Use the Correlator
field to match requests and responses.

See the Configuring RACF services for Express Logon information in z/OS
Communications Server: IP Configuration Guide for more details about
PassTickets.

The request and response formats are described in the following topic.

© Copyright IBM Corp. 2000, 2015 703

Where text is required in the formatted request, the DCAS requires that they are
encoded in EBCDIC (IBM-1047 codepage). Responses that contain text are also
encoded in EBCDIC (IBM-1047 codepage).

If the request from the client was not processed successfully, the DCAS returns
error code information in the response. The client must be designed to examine
this information.

Interfacing with the DCAS: Defining the format for request and
response specifications

Table 142 contains format 1 request information.

Table 142. Format 1 request

Field byte
offset Field name Field description

0 opcode 01 = request

1 Format 01 = request user ID and PassTicket

2-5 Correlator User-defined value

6-25 Appl ID Application for which the PassTicket is generated. This
must have the same name as the PassTicket data profile
that is defined for the application using the RACF
PTKTDATA class.1 (EBCDIC).

26-27 reserved not used

28-31 Certificate
Length

Input certificate length. Maximum length is 32 767 bytes.
This field is a binary integer.

32-n Certificate Base-64 encoded certificate

1 The application ID required in the DCAS Format 1 and Format 2 requests must match the
name of a valid PassTicket data profile defined in RACF using the PTKTDATA class. See
z/OS Security Server RACF Security Administrator's Guide for information about defining
PTKTDATA for applications.

Table 143 contains format 1 response information.

Table 143. Format 1 response

Field byte
offset Field name Field description

0 opcode 02 = response

1 Format 01 = request user ID and PassTicket

2-5 Correlator User-defined value that matches the value of the request.

6-7 Return Code 1 If nonzero, examine the extended return codes: Return
Code 2, Return Code 3, Return Code 4

8-11 Return Code 2 Extended (see Table 145 on page 705)

12-15 Return Code 3 Extended (see Table 145 on page 705)

16-19 Return Code 4 Extended (see Table 145 on page 705)

20-28 User ID If Return Code 1 is 0, a user ID is returned (EBCDIC)

29 reserved null

30-37 Passticket If Return Code 1 is 0, a PassTicket is returned.

704 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 144 contains format 2 request information.

Table 144. Format 2 request

Field byte offset Field name Field description

0 opcode 02 = request

1 Format 02 = request PassTicket

2-5 Correlator User-defined value

6-25 Appl ID Application for which the
PassTicket is generated. Must
have the same name as the
PassTicket data profile that is
defined for the application
using the RACF PTKTDATA
class.1 (EBCDIC)

26-27 reserved Not used

28-31 User ID Length Length of the input user ID
(binary integer)

32-n User ID Input user ID (EBCDIC)

1 The response to a Format 2 request is a Format 1 Response. The application ID required
in the DCAS Format 1 and Format 2 requests must match the name of a valid PassTicket
data profile defined in RACF using the PTKTDATA class. See z/OS Security Server RACF
Security Administrator's Guide for information about defining PTKTDATA for applications.

Table 145. Understanding return codes in the response

Return
Code 1

Return
Code 2

Return
Code 3

Return
Code 4 Comments

0 Not Set Not Set Not Set The response indicates that the request
completed successfully.

248 Not Set Not Set Not Set If the DCAS uses AT-TLS policies, you
must do the following configuration:

v Set the TTLSEnvironmentActions
statement HandshakeRole parameter to
ServerWithClientAuth.

v Set the TTLSEnvironmentActions ->
TTLSEnvironmentAdvancedParms
statement ClientAuthType parameter
to SAFCHECK or Required.

Tip: For more information about
AT-TLS policies setup, see Customizing
DCAS for TLS/SSL in z/OS
Communications Server: IP
Configuration Guide and Diagnosing
problems with Express Logon in z/OS
Communications Server: IP Diagnosis
Guide.

Chapter 17. Interfacing with the Digital Certificate Access Server (DCAS) 705

Table 145. Understanding return codes in the response (continued)

Return
Code 1

Return
Code 2

Return
Code 3

Return
Code 4 Comments

249 Not Set Not Set Not Set DCAS AT-TLS handshake failed or the
connection is not secure. Check the
AT-TLS configuration and DCAS log file
for details.
Tip: For more information about
AT-TLS policies setup, see Customizing
DCAS for TLS/SSL in z/OS
Communications Server: IP
Configuration Guide and Diagnosing
problems with Express Logon in z/OS
Communications Server: IP Diagnosis
Guide.

250 Not Set Not Set Not Set An internal error occurred on the DCAS
server. Request that the system operator
obtain a DCAS trace. See z/OS
Communications Server: IP Diagnosis
Guide for instructions.

251 Not Set Not Set Not Set PassTicket generation failed. The most
likely cause is that the application ID in
the DCAS Format 1 or 2 request does
not match a valid PassTicket data profile
name defined in the RACF PTKTDATA
class.1

252 8 8 36 –
Certificate
is not
valid.

40 –
Certificate
is not
mapped to
a valid
user ID.

For a Format 1 type request, RACF has
determined that the input certificate is
in error or has not been mapped to a
valid RACF user ID. For return codes
other than the ones described, see z/OS
Communications Server: IP Diagnosis
Guide.

253 10 –
Format 1
request
has a
certificate
length that
is not
valid.

11 – The
request
format is
incorrect.

12 – The
opcode
that us
specified
in the
request is
not valid.

Not Set Not Set The input format 1 or 2 request is
incorrect. Examine Return Code 2 for
details.

Verify that the input request to DCAS
matches the defined format
specifications.

Verify that DCAS is configured with a
SERVERTYPE in the DCAS profile that
is consistent with the input request
format.

706 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 145. Understanding return codes in the response (continued)

Return
Code 1

Return
Code 2

Return
Code 3

Return
Code 4 Comments

254 8 8 36 –
Certificate
is not
valid.

40 –
Certificate
is not
mapped to
a valid
user ID.

DCAS failed to authenticate the client.

The DCAS server has been configured
with AUTHTYPE LOCAL2. This
requires that the certificate of the DCAS
client (as a result of the SSL handshake)
be mapped to a defined and valid user
ID in RACF. The user ID must be
permitted to the following SERVAUTH
class profile: EZA.DCAS.cvtsysname. If
the DCAS client receives this error, then
the user ID is not permitted to the
defined SERVAUTH class profile.
Tip: The DCAS can call System SSL or
use AT-TLS for TLS/SSL. See
Customizing DCAS for TLS/SSL in
z/OS Communications Server: IP
Configuration Guide. If the DCAS uses
AT-TLS policies, configure
TTLSEnvironmentAction->
TTLSEnvironmentAdvancedParms
ClientAuthType SAFCHECK in the policy
configuration file.

For return codes other than the ones
described, see the Diagnosing problems
with Express Logon information in
z/OS Communications Server: IP
Diagnosis Guide for diagnosing the
DCAS.

255 8 8 36 –
Certificate
is not
valid.

40 –
Certificate
is not
mapped to
a valid
user ID.

DCAS failed to authenticate the client.

The DCAS server has been configured
with AUTHTYPE LOCAL2. This
requires that the certificate of the DCAS
client (as a result of the SSL handshake)
be mapped to a defined and valid user
ID in RACF. If the DCAS client receives
this error, then the certificate does not
map to a valid user ID.
Tip: DCAS can call System SSL or use
AT-TLS for TLS/SSL. See Customizing
DCAS for TLS/SSL in z/OS
Communications Server: IP
Configuration Guide. If the DCAS uses
AT-TLS policies, do the following
configuration in the policy configuration
file:

v Set the TTLSEnvironmentActions
statement HandshakeRole parameter to
ServerWithClientAuth.

v Set the TTLSEnvironmentActions ->
TTLSEnvironmentAdvancedParms
statement ClientAuthType parameter
to SAFCHECK.

Chapter 17. Interfacing with the Digital Certificate Access Server (DCAS) 707

Table 145. Understanding return codes in the response (continued)

Return
Code 1

Return
Code 2

Return
Code 3

Return
Code 4 Comments

1 The application ID required in the DCAS Format 1 and Format 2 requests must match the
name of a valid PassTicket data profile defined in RACF using the PTKTDATA class. See
z/OS Security Server RACF Security Administrator's Guide for information about defining
PTKTDATA for applications.

Configuring the DCAS server to work with your solution
When interfacing to DCAS as a provider of logon services, work with the system
administrator to verify that DCAS is configured to work with your solution. For
more details about configuring DCAS, see the EXPRESS LOGON using DCAS
(Digital Certificate Access Server) information in z/OS Communications Server: IP
Configuration Reference. The DCAS configuration statements described in
Table 146 require coordination between the DCAS client and server.

Tip: The DCAS can call System SSL or use AT-TLS for TLS/SSL. For more
information, see Customizing DCAS for TLS/SSL in z/OS Communications Server:
IP Configuration Guide.

Table 146. DCAS client and server coordination

DCAS client interface
DCAS server configuration
statement Description

Input Request Format SERVERTYPE options ALLTYPES – Allows Format 1
and Format 2 input requests
to be accepted by the DCAS
server.

CERTTYPE – Allows only
Format 1 requests.

USERIDTYPE – Allows only
Format 2 requests.

SSL connection parameters V3CIPHER The DCAS client must use
SSL to communicate with the
DCAS server. The DCAS can
call System SSL or use
AT-TLS for TLS/SSL. For
more information, see
Customizing DCAS for
TLS/SSL in z/OS
Communications Server: IP
Configuration Guide.

v If the DCAS uses IBM
System SSL, the
V3CIPHER allows for
specification of the cipher.

v If the DCAS uses AT-TLS,
TTLSEnvironmentAction ->
TTLSCipherParms
V3CipherParms allows for
the specification of the
cipher.

708 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 146. DCAS client and server coordination (continued)

DCAS client interface
DCAS server configuration
statement Description

TCP port used for connection PORT The default DCAS listening
port is 8990, but the DCAS
can be configured to use any
port. The DCAS can call
System SSL or use AT-TLS
for TLS/SSL. For more
information, see Customizing
DCAS for TLS/SSL in z/OS
Communications Server: IP
Configuration Guide.

If the DCAS uses AT-TLS,
configure the TTLSRule ->
LocalPortRange for the
correct port.

Chapter 17. Interfacing with the Digital Certificate Access Server (DCAS) 709

710 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Chapter 18. Miscellaneous programming interfaces

This topic contains descriptions of the following:
v “SIOCSAPPLDATA IOCTL”
v “SIOCSMOCTL IOCTL” on page 713
v “TCP_KeepAlive socket option” on page 716

SIOCSAPPLDATA IOCTL
The SIOCSAPPLDATA ioctl enables applications to associate 40 bytes of
application-specific information with TCP sockets they own. This information can
assist problem determination, capacity planning, and accounting applications. This
ioctl supports both 31-bit and 64-bit addressing modes.

This application-specific information, which is referred to as ApplData, is available
from the following sources:
v In the Netstat ALL/-A, ALLConn/-a, and COnn/-c reports where it can be

searched using the APPLD/-G filter. See z/OS Communications Server: IP
System Administrator's Commands for additional information on using
ApplData information with Netstat.

v In the SMF 119 TCP connection termination record. See Appendix E, “Type 119
SMF records,” on page 743 for additional information.

v Through the callable TCP/IP network management interface. See “TCP/IP
callable NMI (EZBNMIFR)” on page 600 for more information.

The SIOCSAPPLDATA IOCTL constant and data structures for assembler
applications are defined in the EZBYAPPL macro in the SEZANMAC data set, and
for C/C++ applications they are defined in the EZBYAPLC header file in the
SEZANMAC data set and the /usr/include file system directory.

Consider the following guidelines when using this ioctl:
v The application is responsible for documenting the content, format, and meaning

of the ApplData strings that it might associate with sockets it owns.
v The application should uniquely identify itself with printable EBCDIC characters

at the beginning of the string. Strings beginning with 3-character IBM product
identifiers, such as TCP/IP's EZA or EZB, are reserved for IBM use. IBM
product identifiers begin with a letter in the range A – I.

v You should use printable EBCDIC characters for the entire string to enable
searching with Netstat filters.

SIOCSAPPLDATA input
Input is provided using a pointer to a SetApplData structure, which in turn defines
the version, size, and location of the SetADcontainer structure that contains the
application data to be associated with the stream socket.

Table 147. SetApplData

Field name Size Description

SetAD_eye1 8 constant SETADEYE1

SetAD_ver 4 constant SETADVER

© Copyright IBM Corp. 2000, 2015 711

Table 147. SetApplData (continued)

Field name Size Description

SetAD_len 4 sizeof(SetADcontainer)

SetAD_ptr 8 A bimodal pointer to a SetADcontainer structure. In 31-bit
addressing mode the first 4 bytes are reserved and should be 0;
the second 4 bytes contain the 31-bit address.

Table 148. SetADcontainer

Field name Size Description

SetAD_eye2 8 constant SETADEYE2

SetAD_buffer 40 A character buffer that contains the data to associate with this
end of the connection. This buffer should be padded on the right
with space characters.

SIOCSAPPLDATA output
The SIOCSAPPLDATA IOCTL sets the following return codes and reason codes:

Table 149. SIOCSAPPLDATA IOCTL return and reason codes

ReturnValue ReturnCode ReasonCode Meaning

0 0 0 The request was successful.

-1 EProtoType JrSocketTypeNotSupported The request was not successful. The socket
is not a stream (TCP) socket.

-1 EINVAL JrSocketCallParmError The input parameter is not a correctly
formatted SetApplData structure. Either
the SetAD_eye1 or the SetAD_ver field is
incorrect or the storage pointed to by the
SetAD_ptr field did not contain a correctly
formatted SetADcontainer structure. The
SetAD_eye2 field is incorrect.

-1 EINVAL JrBuffLenInvalid SetAD_len contains an incorrect length for
the SetAD_ver value of the
SetADcontainer structure.

-1 EFault JrBadInputBufAddr An abend occurred while attempting to
copy the SetADcontainer structure from
the address provided in SetAD_ptr field.

-1 ENOBUFS JrSmNoStorage There was no storage available to store the
associated data.

The SIOCSAPPLDATA call can be issued on stream sockets only. No application
authorization is required. Each time the ioctl call is issued, the application data is
replaced. If the call is issued on a socket prior to issuing a listen() call, the
application data is inherited by all connections accepted over that socket. If the call
is issued on a socket after issuing a listen() call, the application data is inherited by
all connections accepted over that socket that arrive after the ioctl call is processed.

SIOCSAPPLDATA C language example
#include <ezbyaplc.h>
char myappldata[SETADBUFLEN+1]; /* extra byte for null string terminator */
SetApplData myIoctlParm;
SetADcontainer myBuffer;

sprintf(myappldata, "@HRSERVR%8.8s%8.8s%8.8s%8.8s", a, b, c,d); /* prefix
and 4 char[8] fields */

memcpy(myIoctlParm.SetAD_eye1,SETADEYE1,sizeof(myIoctlParm.SetAD_eye1));
myIoctlParm.SetAD_ver = SETADVER;

712 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

myIoctlParm.SetAD_len = sizeof(SetADcontainer);
myIoctlParm.SetAD_ptr = &myBuffer

memcpy(myBuffer.SetAD_eye2,SETADEYE2,sizeof(myIoctlParm.SetAD_eye2));
memcpy(myBuffer.SetADbuffer,myappldata,SETADBUFLEN);

rc = ioctl(soc, SIOCSAPPLDATA, (char *)&myIoctlParm);

SIOCSMOCTL IOCTL
Applications that use the UNIX System Services optimized Asynchronous Socket
I/O option (designated by the AioCommBuff bit in the AIOCB control block) can
exploit 64-bit shared memory objects. The application allocates a shared memory
object and issues a new IOCTL SIOCSMOCTL that enables TCP/IP to establish
access to the memory object or to remove access to the memory object.

Table 150 lists SIOCSMOCTL requirements.

Table 150. SIOCSMOCTL requirements

Requirements

Minimum authorization: Executing in supervisor state, in system key, or APF authorized

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

Addressing mode: AMODE31 or AMODE64

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Locks: Not applicable

Control parameters: Must be in an addressable area in the primary address space
and must be accessible using caller's execution key

A SIOCSMOCTL IOCTL can be issued on any type of socket (stream, datagram, or
raw), and requires that the application be authorized. After access to shared
memory objects is established, the application can use buffers in the memory
objects for asynchronous I/O by setting the AioCommBuff bit in the AIOCB
control block on any stream socket that it has created. TCP/IP internally associates
access to shared memory objects with the socket that was used to issue the
SIOCSMOCTL IOCTL; if any shared memory object associations remain when that
socket is closed, these memory associations are automatically broken and TCP/IP
access to those objects is removed. The application must ensure that the socket that
is used to issue the SIOCSMOCTL IOCTL is closed only after all other stream
sockets that use buffers in those shared memory objects are closed.

For more information about the use of the BPX1AIO and BPX4AIO services and
about the use of the AioCommBuff bit, see z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

For more information about the use of shared memory objects, see z/OS MVS
Programming: Extended Addressability Guide.

SIOCSMOCTL input
SIOCSMOCTL input consists of a pointer to a SMOCTL_IOCTL structure that
contains the following:

Chapter 18. Miscellaneous programming interfaces 713

Table 151. SIOCSMOCTL input structure

Data item Description

SMOCTL_Version Required input that contains the signed
31-bit version is Version 1 of the
SIOCSMOCTL IOCTL.

SMOCTL_Request Required input that contains the signed
31-bit request type, which can be one of the
following:

v Attach request (establish access from
TCP/IP to the shared memory object

v Detach request (remove access from
TCP/IP to the shared memory object)

SMOCTL_ObjectAddr Required input that contains the 64-bit
starting address of a shared memory object
to be attached or detached.

SMOCTL_IARV64_Retcode Output field that contains the IARV64 return
code.

SMOCTL_IARV64_Rsncode Output field that contains the IARV64
reason code.

The SIOCSMOCTL IOCTL parameter list for assembler applications is defined in
the EZBITSIA macro in the SEZANMAC data set. For C/C++ applications, the
parameter list is defined in the header file, ezbitsic.h. This header file is installed in
the SEZANMAC data set and in the file system directory, /usr/include.

SIOCSMOCTL output
The SMOCTL_IOCTL structure is updated with status information that pertains to
the attach or delete request. The SIOCSMOCTL ioctl sets the return codes and
reason codes that are described in Table 152.

Table 152. SIOCSMOCTL return and reason codes

ReturnValue ReturnCode ReasonCode Meaning

0 0 0 The request was
successful.

-1 EACCESS JRIOCTLAccessAuthorization The request was not
successful. The issuer of
the IOCTL is not
authorized.

-1 EINVAL JRSocketCallParmError The request was not
successful. The input
parameter length is
incorrect, the version is
not valid, or the request
type is not valid.

-1 ENOMEM JRSmNoStorage The request was not
successful. The attach
request failed due to a
storage shortage.

-1 EINVAL JRDuplicateSmoAttach The request was not
successful. For an attach
request, the specified
shared memory object has
already been attached.

714 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 152. SIOCSMOCTL return and reason codes (continued)

ReturnValue ReturnCode ReasonCode Meaning

-1 EINVAL JRSmoNotAttached The request was not
successful. For a detach
request, the specified
shared memory object is
not attached.

-1 EMVSPARM JRIARV64Error The request was not
successful. For an attach
or detach request, the
IARV64 services
encountered an error.
Fields
SMOI_IARV64_Retcode
and
SMOI_IARV64_Rsncode
describe the error.

Tips:

v Create shared memory objects in system key (0-7) fetch-protected storage to
maintain integrity of the data.

v Create an ancillary socket that is used only to issue SIOCSMOCTL IOCTL
requests.

Steps for creating an ancillary socket
This topic describes the steps of creating an ancillary socket.

Before you begin

Ensure that the ancillary socket is not closed until all stream sockets that might
reference those shared memory objects are closed. This can be accomplished by
taking advantage of the fact that the UNIX System Services process cleanup service
closes sockets sequentially from lowest-numbered socket descriptor to
highest-numbered socket descriptor.

Procedure

Perform the following steps:
1. Issue a getrlimits() request to discover the largest socket descriptor available for

the process.
2. Issue a dup2() request to copy the original ancillary socket descriptor to the

largest socket descriptor obtained from the getrlimits() request.
3. Close the original ancillary socket descriptor.

Applications in a common INET environment
When a generic application in a common INET environment creates a socket,
UNIX System Services creates socket sub-instances to each active TCP/IP instance.
When the application then issues an IOCTL on its socket, UNIX System Services
propagates the IOCTL to all active TCP/IP instances until the sockets all indicate
that the IOCTL was successful. If a TCP/IP instance indicates a failure, IOCTL
processing stops at that point and a failure return value, return code, and reason
code are returned to the application. If the generic application issues a
SIOCSMOCTL attach request and encounters a failure, some TCP/IP instances

Chapter 18. Miscellaneous programming interfaces 715

might have access to the shared memory object, and some might not. For problem
determination purposes, all TCP/IP instances should gain access to the shared
memory object, or no TCP/IP instances should gain access to it. When a
SIOCSMOCTL attach request fails in a common INET environment, the application
should immediately issue a SIOCSMOCTL detach request to ensure that no
TCP/IP instance has access to the shared memory object and should thereafter not
set a value in the AioCommBuff bit in the AIOCB.

A generic application in a common INET environment can use the
SOCK#SO_EIOIFNEWTP socket option on its listening socket so that the
application is notified when a TCP/IP instance is stopped and restarted. When a
TCP/IP instance is recycled, the application's response is to close the listening
socket and create a new listening socket, which cause new listening socket
sub-instances to each active TCP/IP instance to be created. The application should
do the following to ensure that the recycled TCP/IP instance gains access to the
shared memory object and that the other TCP/IP instances retain their access to
the share memory object:
1. After the new listening socket is created, create a new ancillary socket (which is

propagated to all active TCP/IP instances).
2. Issue a SIOCSMOCTL attach request for the shared memory object on the new

ancillary socket.
3. Close the original ancillary socket descriptor.
4. Perform the “Steps for creating an ancillary socket” on page 715 to ensure that

the new ancillary socket is not closed until all stream sockets that might
reference the shared memory object are closed.

TCP_KeepAlive socket option
Some TCP/IP users require a keep alive function with better timing granularity (in
seconds) than that provided by the existing SO_KeepAlive socket option, which
uses a stack-wide time value provided by configuration data.

The Posix.1g standard defines an alternative keep alive function, TCP_KeepAlive,
which provides a value in seconds that is specific to a particular socket.

The value of TCP_KeepAlive, which is used for the current connection in place of
the configuration default keep alive time (when keep alive timing is made active
by the SO_KeepAlive socket option), can be in the range 1 – 2 147 460 seconds. If a
value greater than 2 147 460 is specified, 2 147 460 is used. If the TCP_KeepAlive
value 0 is specified for a specific socket, keep alive timing for that socket is
disabled.

SetSockOpt for TCP_KeepAlive
Specifies a socket-specific timer value that remains in effect until it is
respecified by the SetSockOpt option or until the socket is closed. Timeout
values in the range 1 – 2 147 460 seconds (or 0) are valid for
TCP_KeepAlive. If a value larger than the allowed range is specified, the
value 2 147 460 seconds is used.

GetSockOpt for TCP_Keepalive
Returns the specific timer value (in seconds) that is in effect for the given
socket, or the value 0 if keep alive timing is not active.

Unlike the algorithm that is used to issue probes during an SO_KeepAlive cycle,
the TCP_KeepAlive function varies the number of probes that are issued before

716 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

terminating the connection. Probe retry intervals are scaled in proportion to the
interval specified, as shown in Table 153.

Table 153. TCP_KeepAlive time values

TCP_KeepAlive time (T)
specified in seconds

Seconds to first
probe

Number of
probes

Probe
interval

Maximum
interval

T = 0 (KeepAlive Disabled) n/a n/a n/a n/a

0 < T <= 5 T 1 1 T + 1

5 < T <= 10 T 1 2 T + 2

10 < T <= 30 T 1 5 T + 5

30 < T <= 60 T 1 10 T + 10

60 < T <= 120 T 1 20 T + 20

120 < T <= 300 T 2 20 T + 40

300 < T <= 600 T 2 30 T + 160

600 < T <= 1800 T 5 30 T + 150

1800 < T <= 3600 T 5 60 T + 300

3600 < T <= 7200 T 9 60 T + 540

7200 < T <= 2 147 460 (35
791 x 60 = 2 147 460)

T 9 75 T + 675

T > 2 147 460 2 147 460 9 75 2 147 460 +
675

The TCP_KeepAlive option value can range from 1 – 2 147 460 seconds. For values
greater than 2 hours (7200 seconds), the probe interval and number of probes are
adjusted as the specified interval increases until they coincide with the default
algorithm. If no response is received from the remote partner after the listed
number of probes, the connection is terminated.

Tips:

1. The SO_KeepAlive function must be activated before any keep alive processing
is done. The KEEPALIVEOPTIONS configuration value is used for timing
unless a specific value has been provided through the TCP_KeepAlive option.

2. The TCP_KeepAlive option can be set before or after the SO_KeepAlive
function is activated, but timing does not take effect until the SO_KeepAlive
status is set to active.

Chapter 18. Miscellaneous programming interfaces 717

718 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix A. Well-known port assignments

This topic lists the well-known port assignments for transport protocols TCP and
UDP, and includes port number, keyword, and a description of the reserved port
assignment. You can also find a list of these well-known port numbers in the
hlq.ETC.SERVICES data set. The official assignment of port numbers is managed by
the Internet Assigned Numbers Authority. The current list can be viewed at
http://www.iana.org/assignments/port-numbers.

Table 154 lists the well-known port assignments for TCP.

Table 154. TCP well-known port assignments

Port number Keyword Assigned to Services description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 systat active users active users

13 daytime daytime daytime

15 netstat netstat who is up or netstat

19 chargen ttytst source character generator

21 ftp FTP File Transfer Protocol

23 telnet telnet telnet

25 smtp mail Simple Mail Transfer Protocol

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain name server domain name server

57 mtp private terminal access private terminal access

69 tftp TFTP Trivial File Transfer protocol

77 rje netrjs any private RJE service

79 finger finger finger

80 http http Web Server

87 link ttylink any private terminal link

95 supdup supdup SUPDUP protocol

101 hostname hostname nic hostname server, usually from SRI-NIC

109 pop postoffice Post Office Protocol

111 sunrpc sunrpc Sun remote procedure call

113 auth authentication authentication service

115 sftp sftp Simple File Transfer Protocol

117 uucp-path UUCP path service UUCP path service

119 untp readnews untp USENET News Transfer Protocol

© Copyright IBM Corp. 2000, 2015 719

http://www.iana.org/assignments/port-numbers

Table 154. TCP well-known port assignments (continued)

Port number Keyword Assigned to Services description

123 ntp NTP Network Time Protocol

160–223 reserved

712 vexec vice-exec Andrew File System authenticated service

713 vlogin vice-login Andrew File System authenticated service

714 vshell vice-shell Andrew File System authenticated service

2001 datasetsrv Andrew File System service

2106 venus.itc Andrew File System service, for the Venus
process

Well-known UDP port assignments
Table 155 lists the well-known port assignments for UDP.

Table 155. Well-known UDP port assignments

Port number Keyword Assigned to Services description

0 reserved

5 rje remote job entry remote job entry

7 echo echo echo

9 discard discard sink null

11 users active users active users

13 daytime daytime daytime

15 netstat Netstat Netstat

19 chargen ttytst source character generator

37 time timeserver timeserver

39 rlp resource Resource Location Protocol

42 nameserver name host name server

43 nicname who is who is

53 domain nameserver domain name server

69 tftp TFTP Trivial File Transfer Protocol

75 any private dial out service

77 rje netrjs any private RJE service

79 finger finger finger

111 sunrpc sunrpc Sun remote procedure call

123 ntp NTP Network Time Protocol

135 llbd NCS LLBD NCS local location broker daemon

161 snmp SNMP SNMP server

162 snmptrap SNMPTRAP SNMP trap

531 rvd-control rvd control port

2001 rauth2 Andrew File System service, for the Venus
process

2002 rfilebulk Andrew File System service, for the Venus
process

720 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 155. Well-known UDP port assignments (continued)

Port number Keyword Assigned to Services description

2003 rfilesrv Andrew File System service, for the Venus
process

2018 console Andrew File System service

2115 ropcons Andrew File System service, for the Venus
process

2131 rupdsrv assigned in pairs; bulk must be srv +1

2132 rupdbulk assigned in pairs; bulk must be srv +1

2133 rupdsrv1 assigned in pairs; bulk must be srv +1

2134 rupdbulk1 assigned in pairs; bulk must be srv +1

12000 entextxid IBM Enterprise Extender SNA XID Exchange

12001 entextnetwk IBM Enterprise Extender SNA COS Network
Priority

12002 entexthigh IBM Enterprise Extender SNA COS High
Priority

12003 entextmed IBM Enterprise Extender SNA COS Medium
Priority

12004 entextlow IBM Enterprise Extender SNA COS Low Priority

Appendix A. Well-known port assignments 721

722 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix B. Programming interfaces for providing
classification data to be used in differentiated services
policies

Applications and users of TCP/IP networks might have different requirements for
the service they receive from those networks. A network that treats all traffic as
best effort might not meet the needs of such users. Service differentiation is a
mechanism to provide different service levels to different traffic types based on
their requirements and importance in an enterprise network. For example, it might
be critical to provide Enterprise Resource Planning (ERP) traffic better service
during peak hours than that of FTP or web traffic. The overall service provided to
applications or users, in terms of elements such as throughput and delay, is termed
Quality of Service (QoS).

One aspect of QoS is Differentiated Services (DS), which provides QoS to broad
classes of traffic or users, for example all outbound web traffic accessed by a
particular subnet. z/OS provides support for DS by allowing network
administrators to define policies that describe how different z/OS TCP/IP
workload traffic should be treated. Administrators can define service policy rules
that identify desired workloads and map them to service policy actions that dictate
the DS attributes assigned to these workloads. For more information on QoS and
DS, see z/OS Communications Server: IP Configuration Guide.

Service policy rules can specify generic attributes to identify a given workload,
such as the server's well-known port or jobname. However, there are cases where a
more granular level of classification for a server's outgoing TCP/IP traffic is
desired. For example, a server application might provide services for several
different types of requests using a single well-known port. A network
administrator might want to be able to specify unique DS attributes for each
service type the application supports. One way of accomplishing this is by
allowing applications to provide additional information that can be used by an
administrator to define more granular service policy rules and actions. The
programming interfaces described in this topic provide this capability.

Application defined policy classification data can be specified using extensions to
the sendmsg() socket API. The sendmsg() API is similar to other socket APIs, such
as send() and write() that allow an application to send data, but also provides the
capability of specifying ancillary data. Ancillary data allows applications to pass
additional option data to the TCP/IP protocol stack along with the normal data
that is sent to the TCP/IP network. This ancillary data can be used by the
application to define the attributes of the outgoing traffic for a particular TCP
connection or for the specific data being sent in that sendmsg() invocation. These
extensions to the sendmsg() API are only available to applications using the TCP
protocol and the following socket API libraries:
v z/OS IBM C/C++ sockets with the z/OS Language Environment. For more

information about these APIs, see z/OS XL C/C++ Runtime Library Reference.
v z/OS UNIX System Services Assembler Callable services socket APIs. For more

information about these APIs, see z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

The policy classification data is defined by the application and contains one (or
both) of the following two formats:

© Copyright IBM Corp. 2000, 2015 723

v Application defined token: This token is a free format character string that can
represent any application defined resource (for example, as transaction identifier,
user ID, URL, and so on). When an application passes this token in sendmsg(),
TCP/IP will invoke the policy classification function passing it the
application-defined token in addition to any of the existing classification
attributes (local/remote IP address and port, job name, and so on). The
application defined token maps to the ApplicationData attribute of a DS policy
rule.

v Application priority levels: An application specified priority that maps to one of
five predefined QoS service levels: Expedited, High, Medium, Low and Best
Effort. Applications using this format of application classification data need to
map their outgoing data types to one of these priority levels. For example, the
application might already have a concept of transaction priority that it can use
to map to one of these priority levels. It is important to note that the priority
specified by the application does not automatically translate to a QoS service
level. The actual service level assigned is derived by the contents of the service
policy. Application priority rules are mapped to the ApplicationPriority attribute
of a DS policy rule.

Applications might decide to pass classification data of either format or for both
formats. The latter option allows applications to specify the same application
defined token yet associate it with different priorities depending on the type of
request being processed. For example, an application can pass an application token
of ORDER and a HIGH priority for one user and a token of ORDER with a LOW
priority for another user. The policy administrator would then be able to
distinguish the service level assigned to these two different classes of users. When
passing classification data on the sendmsg() API, applications also need to
determine the scope of the classification:
v Connection-Level: The DS policy action assigned will be used for all traffic on

this TCP connection until another sendmsg() with different classification data is
specified.

v Message-Level: The DS policy action assigned will be used only for the
outgoing data passed on this sendmsg() invocation. Any future data sent on this
connection without the specification of any classification data will use the
original DS policy action that was assigned to this TCP connection.

Passing application classification data on SENDMSG
A key difference in the sendmsg() API versus the more common send() API is that
most parameters are passed in a message header input parameter. The mapping
for the message header is defined in socket.h for C/C++ and in the BPXYMSGH
macro for users of the UNIX System Services Assembler Callable services. For
simplicity, only the C/C++ version of the data structures is shown in this topic:
struct msghdr {

void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data */
size_t msg_controllen; /* ancillary data length */
int msg_flags; /* flags on received msg */

};

The following list shows some key points regarding the usage of sendmsg() for the
purpose of passing application defined classification data:

724 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Because application policy classification data is supported only for TCP sockets,
the msg_name and msg_namelen parameters are not applicable.

v Data to be sent using sendmsg() needs to be described in the msg_iov structure.
v The address of the ancillary data is passed in the msg_control field.
v msg_controllen contains the length of the ancillary data passed.

Note: If multiple ancillary data sections are passed, this length should reflect the
total length of ancillary data sections.

v msg_flags is not applicable for sendmsg()

The ancillary data (in this case the application classification data) is pointed to by
the msg_control parameter. This msg_control pointer points to the following
structure (C/C++ example shown below) that describes the ancillary data (also
defined in socket.h and BPXYMSGH respectively):
struct cmsghdr {

size_t cmsg_len; /* data byte count includes hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by u_char cmsg_data[]; */

};

v The cmsg_len should be set to the length of the cmsghdr plus the length of all
application classification data that follows immediately after the cmsghdr. This is
represented by the commented out cmsg_data field.

v The cmsg_level must be set to the constant IPPROTO_IP for AF_INET sockets
and IPPROTO_IPV6 for AF_INET6 sockets. IPPROTO_IP and IPPROTO_IPV6 are
defined in in.h and BPXYSOCK.

v The cmsg_type must be set to the constant IP_QOS_CLASSIFICATION_DATA
(defined in header file ezaqosdc.h for C/C++ users and in macro EZAQOSDA for
assembler users). The header file and macro are both included in the
SEZANMAC data set. This data set must be available in the concatenation when
compiling or assembling a part that makes use of these definitions.

The data that follows the cmsghdr structure is described by the following structure:
struct ip_qos_classification_data {

int ip_qos_version; /* Version of structure */
int ip_qos_classification_scope; /* Classification Scope */
int ip_qos_classification_type; /* Type of QoS classification */
u_char ip_qos_reserved[12]; /* Reserved for IBM use */
int ip_qos_appl_token_len; /* Length of application data */
/* u_char ip_qos_appl_token[128]; /* Application Classification Token*/
}

The ip_qos_classification_data structure should be filled in as follows:
v ip_qos_version: This field indicates version of the structure. This must be filled in

using the constant IP_QOS_CURRENT_VERSION.
v ip_qos_classification_scope: Specify a connection level scope (use constant

IP_QOS_CONNECTION_LEVEL) or a message level scope (constant
IP_QOS_MESSAGE_LEVEL).
Connection level scope indicates that the DS policy action assigned by the way
of classification of this message will remain in effect for all subsequent messages
sent until a sendmsg() with new classification data is issued. Message level
scope indicates that the DS policy action assigned will be used only for the
message data included in this sendmsg() invocation. Future data sent without
classification data will inherit the previous connection level DS policy action

Appendix B. Programming interfaces for providing classification data to be used in differentiated services policies 725

assignment (from last Connection Level classification by the way of sendmsg()
or from the original TCP connection classification during connection
establishment).

v ip_qos_classification_type: This specification indicates the type of classification data
being passed. An application can choose to pass an application defined token, an
application specified priority, or both a token and a priority. If the latter option
is selected the two selected classification types should be logically ORed
together. The following types can be specified:
– Application defined token classification. A single type should be specified. If

more than one type is specified the results are unpredictable.
- IP_SET_QOSLEVEL_W_APPL_TOKEN_ASCII: This indicates that the

classification data is a character string in ASCII format. When this option is
specified the application token needs to be passed in the ip_qos_appl_token
field.

Note: If the application needs to pass numerical values for the
classification data it should first convert them to printable ASCII format.
Also note that the string specified can be in mixed case and will be used in
the exact format specified for comparison purposes.

- IP_SET_QOSLEVEL_W_APPL_TOKEN_EBCDIC: Same as above except that
the string is in EBCDIC format.

Note: The IP_SET_QOSLEVEL_W_APPL_TOKEN_ASCII does perform
slightly better than this option as the application data specified in the
policy is saved in ASCII format inside of the TCP/IP stack, thereby
eliminating the need to translate the application defined token on every
sendmsg() request.

– Application defined priority classification. A single type should be specified.
If multiple priority types are specified the results are unpredictable.
- IP_SET_QOSLEVEL_EXPEDITED: Indicates that Expedited priority is

requested.
- IP_SET_QOSLEVEL_HIGH: Indicates that High priority is requested.
- IP_SET_QOSLEVEL_MEDIUM: Indicates that Medium priority is requested.
- IP_SET_QOSLEVEL_LOW: Indicates that Low priority is requested.
- IP_SET_QOSLEVEL_BEST_EFFORT: Indicates that Best Effort priority is

requested.
– ip_qos_appl_token_len: The length of the ip_qos_appl_token specified. This length

should not include any null terminating characters.
– ip_qos_appl_token: This virtual field immediately follows the

ip_qos_classification_len field and contains the application classification token
string in either ASCII or EBCDIC format depending on which flavor of
IP_SET_QOSLEVEL_W_APPL_TOKEN_xxxx was specified for the
classification type. This field is referenced only when an application defined
token type is specified. Note that this string should not exceed 128 bytes. If a
larger size is specified, only the first 128 bytes will be used.

726 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Additional SENDMSG considerations
The sendmsg() enhancements to allow for QoS classification data will be available
only through the Language Environment C/C++ sendmsg() API and the UNIX
System Services BPX2SMS service. The sendmsg() API supported across the
TCP/IP provided socket API libraries (C, Macro, Callable, CICS, and so on) do not
currently support the passing of ancillary data. Some additional considerations for
these sendmsg() enhancements follow:
v UNIX System Services Assembler Callable Services Environment

– Applications should ensure that the BPX2SMS (sendmsg) service is invoked.
An older version of sendmsg(), named BPX1SMS, also exists but does not
support the application classification enhancements described in this topic.

– Include the EZAQOSDA macro from the SEZANMAC library for the
definitions needed for the application classification ancillary data.

– Include the BPXYSOCK and BPXYMSGH macros from SYS1.MACLIB.
v IBM C/C++ applications using the z/OS Language Environment:

– Applications need to include the following header files:
- socket.h, in.h
- ezaqosdc.h (from SEZANMAC)

v AF_INET6 considerations
The sendmsg() enhancements for QoS classification data are supported for
AF_INET6 sockets. However, they are supported only for AF_INET6 sockets
when the connection's traffic flows over an IPv4 network (such as, the remote
partner's IP address is an IPv4-mapped IPv6 address). This feature is not
supported for AF_INET6 sockets when the connection's traffic flows over an
IPv6 network (such as, the remote partner's IP address is an IPv6 address); the
sendmsg() enhancements will be ignored if used on an IPv6 connection.
In order to exploit these enhancements for an AF_INET6 socket, the application
should be coded as indicated in this topic, but should substitute IPPROTO_IPV6
for IPPROTO_IP in the cmsghdr's cmsg_level field.

Note: The Language Environment C/C++ library supports 2 versions of the
sendmsg() API. The key difference is in the definition of the msghdr structure. In
order to use the correct version of sendmsg() the application needs to ensure that
the macro symbolic _OE_SOCKETS is not specified. _OE_SOCKETS causes the
older version of msghdr and sendmsg() to be used. The older version does not
support passing of application classification data.

Applications providing classification data should document the content and format
of this data so that network administrators can use this information when defining
DS policies.

Appendix B. Programming interfaces for providing classification data to be used in differentiated services policies 727

728 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix C. Type 109 SMF records

Table 156 shows the format of syslogd messages as written to SMF.

Table 156. Type 109 SMF record layout

Offsets Name Length Format Description

0(x'0') SMF109LEN 2 Binary Record length (maximum size 32 756). This
field and the next field (total of 4 bytes) form
the record descriptor word (RDW). The first 2
bytes of this field must contain the logical
record length, including the RDW. The second
2 bytes which are in the following field are
used for variable block spanned records. If the
record is spanned, set these 2 bytes to
hexadecimal zeros. Both fields must be filled
in before writing the record to the SMF data
set.

0(x'2') SMF109SEG 2 Binary Segment descriptor (see previous record
length field).

0(x'4') SMF109FLG 1 Binary System indicators (bits and meaning when
set):

0-2 Reserved

3 MVS/SP Version 4 and later. Bits 3, 4,
5, and 6 are on (*).

4 MVS/SP Version 3 and later. Bits 4,5,
and 6 are on.

5 MVS/SP Version 2 and later. Bits 5
and 6 are on.

6 VS2. Bit 6 is on.

7 Reserved.
Use information located elsewhere in this
record to determine the MVS product level.

5(X'5') SMF109RTY 1 Binary Record type: 109 (X'6D')

6(X'6') SMF109TME 4 Binary Time since midnight, in hundredths of a
second, that has elapsed since the record was
moved into the SMF buffer. In record types 2
and 3, this field indicates the time that the
record was moved to the dump data set.

10(X'A') SMF109DTE 4 Packed Date when the record was moved into the
SMF buffer. In the form of 00yyddF or
0cyydddF [where c is 0 for 19xx and 1 for 20xx,
yy is the current year (0-99), dd is the current
day (1-366), and F is the sign]. In record types
2 and 3, this field indicates the date that the
record was moved into the dump data.

14(X'E') SMF109SID 4 EBCDIC System identification (from the SID
parameter).

18(X'12') SMF109LOG 4096 EBCDIC System logging daemon (syslogd) messages.

© Copyright IBM Corp. 2000, 2015 729

730 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix D. Type 118 SMF records

This topic describes the Type 118 SMF records for the Telnet and FTP servers, API
calls, FTP and Telnet client calls, and syslogd and contains the following layouts:
v “Standard subtype record numbers”
v “TN3270E Telnet server SMF record layout” on page 732
v “FTP server Type 118 SMF record layout” on page 733
v “SMF record layout for API calls” on page 735
v “SMF record layout for FTP client calls” on page 736
v “SMF record layout for Telnet client calls” on page 738
v “SMF record layout for TCPIPSTATISTICS” on page 739

The EZASMF76 macro can be used to map the TCP/IP SMF records. EZASMF76
produces assembler level DSECTs for the Telnet (Server and Client), FTP (Server
and Client), and API SMF records.

Restriction: Field names in the TCPIPSTATISTICS record conflict with field names
in SMF type 3 (Dump Trailer) records. Structure your programs to avoid using the
IFASMFR macro with type 3 and the EZASMF76 macro with STAT=YES in the
same source member.

Tip: It is recommended to use type 119 SMF records instead of type 118 SMF
records. See Appendix E, “Type 119 SMF records,” on page 743 for a description of
the type 119 SMF records.

To create the Telnet Client SMF record layout, code the following in an assembler
program:
EZASMF76 TELNET=YES

To create the FTP Server SMF record layout, code the following in an assembler
program:
EZASMF76 FTP=YES

To create the API SMF record layout, code the following in an assembler program:
EZASMF76 API=YES

Standard subtype record numbers
TCP/IP logging of SMF records can be activated through the use of the
SMFCONFIG and SMFPARMS statements in the TCP/IP profile. The TCP/IP SMF
records written using record Type 118 (x'76') and their standard subtypes are
described in this topic.

Guideline: If you use the SMFPARMS statement, you can specify that records be
written with nonstandard subtype records. However, you should use the standard
subtype records shown in Table 157.

Table 157. Standard subtype record numbers

Record number Description

1 TCP API initialization

© Copyright IBM Corp. 2000, 2015 731

Table 157. Standard subtype record numbers (continued)

Record number Description

2 TCP API termination

3 FTP client

4 TN3270 client

5 TCP/IP statistics

6-19 Reserved

20 TN3270 server initialization

21 TN3270 server termination

22-69 Reserved

70 FTP server append subcommand

71 FTP server delete subcommand

72 FTP server logon failures

73 FTP server rename

74 FTP server retrieve

75 FTP server store

76–255 Reserved

TN3270E Telnet server SMF record layout
The Type 118 TN3270E Telnet server (Telnet) SNA session record written by the
z/OS TN3270E Telnet server has the format shown in Table 158.

Table 158. TN3270E Telnet server SMF record format

Offset Name Length Format Description

0(x'0') SMFHEADR Standard SMF header

4(x'4') SMFHDFLG 1 Binary A system indicator that is set to 94 (x'5E').

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

22(x'16') SMFHDSUB 2 Binary Record subtype

Telnet data

24(x'18') SMFTNTCM 4 EBCDIC Event type

LOGN Session initiation

LOGF Session termination

28(x'1C') SMFTNTLU 8 EBCDIC LU name

36(x'24') SMFTNTAP 8 EBCDIC Application name

44(x'2C') SMFTNTIA 4 Binary Integral logical device address (same for
LOGN and LOGF records).

48(x'30') SMFTNTRA 4 Binary Remote IP address

52(x'34') SMFTNTLA 4 Binary Local IP Address

56(x'38') SMFTNTST 8 EBCDIC Started task qualifier name, for example,
TCPIP

64(x'40') SMFTNTHN 8 EBCDIC TCP/IP host name

72(x'48') 2 Reserved

74(x'4A') SMFTNTIN 4 Binary Inbound byte count

732 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 158. TN3270E Telnet server SMF record format (continued)

Offset Name Length Format Description

78(x'4E') SMFTNTOU 4 Binary Outbound byte count

82(x'52') SMFTNTLF 4 Binary Time specified in hundredths of a second
(LOGF record only)

86(x'56') SMFTNTPD 4 Packed
decimal

Julian date (LOGF record only). The date
is in the form of 0CYYDDDF, where C is
0 for 19yy and 1 for 20yy, DDD is the day
of the year (1-365), and F is the sign.

90(x'5A') SMFTNTRP 2 Binary Remote port number

92(x'5C') SMFTNTLP 2 Binary Local port number

FTP server Type 118 SMF record layout
The Type 118 SMF record written by the FTP server has the format shown in
Table 159.

Table 159. FTP server Type 118 SMF record format

Offset Name Length Format Description

0(x'0') SMFHEADR 24 Standard SMF header

4(x'4') SMFHDFLG 1 Binary Record flag (set to 66, or x'42')

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

22(x'16') SMFHDSUB 2 Binary Record subtype

FTP server data

24(x'18') SMFFTPCM 4 EBCDIC FTP subcommand

APPE Append

DELE Delete

LOGN Login

REN Rename

RETR Retrieve

STOR Store

STOU Store unique

28(x'1C') SMFFTPTY 4 EBCDIC FTP file type (SEQ, JES, SQL)

32(x'20') SMFFTPSA 4 Binary Remote (client) IP address (IPv4) or –1 for
IPv6

36(x'24') SMFFTPSL 4 Binary Local (server) IP address (IPv4) or –1 for
IPv6

40(x'28') 8 Reserved

48(x'30') SMFFTPSU 8 EBCDIC Local user ID

Appendix D. Type 118 SMF records 733

Table 159. FTP server Type 118 SMF record format (continued)

Offset Name Length Format Description

56(x'38') SMFFTPFM 1 EBCDIC Data format

A ASCII

E EBICIDIC

I Image (binary)

B Double-byte

U USC-2

57(x'39') SMFFTPMO 1 EBCDIC Mode

S Stream

B Block

C Compressed

58(x'3A') SMFFTPST 1 EBCDIC Structure

F File

R Record

59(x'3B') SMFFTPDT 1 EBCDIC Data set type

P PDS

S Sequential

H z/OS UNIX

60(x'3C') SMFFTTRS 4 Binary Start time of transmission (See Note)

64(x'40') SMFFTTRE 4 Binary End time of transmission

68(x'44') SMFFTTBC 4 Binary Byte count of transmission

72(x'48') SMFFTPXD 1 EBCDIC FTP ID

S Server

73(x'49') SMFFTSLR 3 EBCDIC Last reply sent to the client from the FTP
server

76(x'4C') SMFFTDSN 44 EBCDIC User ID/Data set name

For LOGN records, this is the user ID of
the failed login attempt; otherwise, this is
the data set name, or up to the first 44
bytes of the z/OS UNIX file name.

120(x'78') SMFFTMEM 8 EBCDIC Member name of PDS

128(x'80') 8 Reserved

136(x'88') SMFFTDS2 44 EBCDIC Second data set name, if needed (for
example, for REN subcommands). For
z/OS UNIX files, up to the first 44 bytes
of the z/OS UNIX file name.

180(x'B4') SMFFTMM2 8 EBCDIC Second member name, if needed (for
example, REN subcommands involving
PDS files).

188(x'BC') SMFFTSTC 8 EBCDIC Started task qualifier

196(x'C4') SMFFTHST 8 EBCDIC TCP/IP host name

204(x'CC') SMFFTSRP 2 Binary Remote (client) port number

734 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 159. FTP server Type 118 SMF record format (continued)

Offset Name Length Format Description

206(x'CE') SMFFTSLP 2 Binary Local (server) port number

208(x'D0') SMFFTOF1 2 Binary Offset to the first z/OS UNIX file name
field

210(x'D2') SMFFTOF2 2 Binary Offset to the second z/OS UNIX file name
field

212(x'D4') SMFFTBYF 8 Floating point
Hex

Bytes transferred counter. The leftmost
byte is an exponent, and other seven
bytes are significant bytes.

220(x'DC') SMFFTGIG 4 Binary Bytes transferred, 4 GB increments.
Increments with every 4 GB of data
transfer, starting from 0.

Note: The start time of the transmission might be greater than the end time when the transmission began on the
previous day.

Two variable-length fields at the end of the record contain z/OS UNIX file names.
The variable-length z/OS UNIX name fields have the format shown in Table 160.

Table 160. z/OS UNIX file name (variable length fields appended to end of FTP server record)

Offset Name Length Format Description

0(x'0') 2 Binary Length of the z/OS UNIX file name

2(x'2') n EBCDIC z/OS UNIX file name (maximum length is
1023 bytes)

SMF record layout for API calls
The SMF record written by API calls for sockets has the format shown in Table 161.

Table 161. API call SMF record format

Offset Name Length Format Description

0(x'0') SMFHEADR 24 Standard SMF header

4(x'4') SMFHDFLG 1 Binary Record flag (set to 66, or x'42')

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

22(x'16') SMFHDSUB 2 Binary Record subtype

API data

24(x'18') SMFAPIST 4 EBCDIC Connection status

INIT Connection initiation

TERM Connection termination

28(x'1C') SMFAPILA 4 Binary Local IPv4 address

32(x'20') SMFAPIRA 4 Binary Remote IPv4 address

36(x'24') SMFAPILP 2 Binary Local port number

38(x'26') SMFAPIRP 2 Binary Remote port number

40(x'28') SMFAPIIN 4 Binary Inbound bytes (valid only for TERM
records)

Appendix D. Type 118 SMF records 735

Table 161. API call SMF record format (continued)

Offset Name Length Format Description

44(x'2C') SMFAPIOU 4 Binary Outbound bytes (valid only for TERM
records)

48(x'30') SMFAPIUO 2 Binary Offset to start of an area available for user
exit storage

50(x'32') SMFAPIUL 2 Binary User area length (See Note 1.)

52(x'34') SMFAPINM 8 EBCDIC Job name for:

v Interactive TSO API usage; the user's
TSO user ID

v Batch-submitted jobs; the name of the
JOB card

v Started procedures; the name of the
procedure.

60(x'3C') SMFAPIJI 8 EBCDIC JES job identifier

68(x'44') SMFAPIJS 4 Binary Connection start time, in hundredths of
seconds

72(x'48') SMFAPIJD 4 Packed Date connection started. The date is in the
form of 0CYYDDDF, where C is 0 for
19yy and 1 for 20yy, DDD is the day of
the year (1-365), and F is the sign. For
TSO/E, it is the logon enqueue date.

76(x'4C') SMFAPIUS 52 User area, available for user exit usage
(See Note 2.)

Notes:

1. The current maximum length of the user data is 52 bytes. This value could change between TCP/IP releases.

2. The actual displacement of this area might change between TCP/IP releases. Use the values of the user area
offset and the user area length fields to access this area correctly.

SMF record layout for FTP client calls
The SMF record written by FTP client calls has the format Table 162.

Table 162. FTP client SMF record format

Offset Name Length Format Description

0(x'0') SMFHEADR 24 Standard SMF header

4(x'4') SMFHDFLG 1 Binary Record flag (set to 66, or x'42')

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

22(x'16') SMFHDSUB 2 Binary Record subtype

FTP client data

24(x'18') SMFFTCCM 4 EBCDIC FTP subcommand

APPE Append

RETR Retrieve

STOR Store

28(x'1C') SMFFTCCY 4 EBCDIC Value of the reply to the FTP command

32(x'20') SMFFTCSA 4 Binary Local (client) IP address (IPv4) or –1 for
IPv6

736 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 162. FTP client SMF record format (continued)

Offset Name Length Format Description

36(x'24') SMFFTCSL 4 Binary Remote (server) IP address (IPv4) or –1
for IPv6

40(x'28') SMFFTCCP 2 Binary Local port

42(x'2A') SMFFTCCF 2 Binary Remote port

44(x'2C') 4 Reserved

48(x'30') SMFFTCSU 8 EBCDIC Remote user ID

56(x'38') SMFFTCFM 1 EBCDIC Data format:

A ASCII

E EBCDIC

I Image (binary)

B Double-byte

U UCS-2

57(x'39') SMFFTCMO 1 EBCDIC Transfer mode:

C Compressed data

S Stream data

B Block data

58(x'3A') SMFFTCST 1 EBCDIC Structure:

F File

R Record

59(x'3B') SMFFTCDT 1 EBCDIC Data set type:

P Partitioned

S Sequential

H z/OS UNIX

60(x'3C') SMFFTCRS 4 Binary Start time of transmission, if applicable, in
hundredths of seconds.

64(x'40') SMFFTCRE 4 Binary End time of transmission

68(x'44') SMFFTCBC 4 Binary Byte count, if applicable

72(x'48') SMFFTCXD 1 EBCDIC FTP ID:

C Client

73(x'49') 3 Reserved

76(x'4C') SMFFTCSN 44 EBCDIC Local data set name or PDS name (for
z/OS UNIX file names, only the first 44
bytes are included).

120(x'78') SMFFTCEM 8 EBCDIC Member name for PDS

128(x'80') 60 Reserved

188(x'BC') SMFFTCTC 8 EBCDIC User ID of the FTP user

196(x'C4') SMFFTCHN 8 EBCDIC Host ID

204(x'CC') SMFFTCF1 2 Binary Offset to the first z/OS UNIX file name
field

206(x'CE') SMFFTCF2 2 Binary Offset to the second z/OS UNIX file name
field

Appendix D. Type 118 SMF records 737

Table 162. FTP client SMF record format (continued)

Offset Name Length Format Description

208(x'D0') SMFFTCYF 8 Floating point
Hex

Bytes transferred counter. The leftmost
byte is an exponent, and other seven
bytes are significant bytes.

216(x'D8') SMFFTCIG 4 Binary Bytes transferred, 4 GB increments.
Increments with every 4 GBs of data
transfer, starting from 0.

Two variable-length fields at the end of the record contain z/OS UNIX file names.
The variable-length z/OS UNIX name fields have the format shown in Table 163.

Table 163. z/OS UNIX file name (variable length fields appended to end of FTP server record)

Offset Name Length Format Description

0(x'0') 2 Binary Length of the z/OS UNIX file name

2(x'2') n EBCDIC z/OS UNIX file name (maximum length is
1023 bytes)

SMF record layout for Telnet client calls
The SMF record written by Telnet client calls has the format shown in Table 164.

Table 164. Telnet client SMF record format

Offset Name Length Format Description

0(x'0') SMFHEADR 24 Standard SMF header

4(x'4') SMFHDFLG 1 Binary Record flag (set to 66, or x'42')

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

22(x'16') SMFHDSUB 2 Binary Record subtype

Telnet Client data

24(x'18') SMFTNTCM 4 EBCDIC Event type

LOGN Session initiation

LOGF Session termination

28(x'1C') 20 Reserved

48(x'30') SMFTNTRA 4 Binary Remote (server) IP address

52(x'34') SMFTNTLA 4 Binary Local (client) IP address

56(x'38') SMFTNTST 8 EBCDIC Started task qualifier

64(x'40') SMFTNTHN 8 EBCDIC NJE node name

72(x'48') 18 Reserved

90(x'5A') SMFTNTRP 2 Binary Remote port number

92(x'5C') SMFTNTLP 2 Binary Local port number

738 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

SMF record layout for TCPIPSTATISTICS
Table 165. SMF record layout for TCPIPSTATISTICS

Offset Name Length Format Description

0(x'0') Standard SMF header 24 Standard SMF header

0(x'0') SMFHDLEN 2 Binary Record length

2(x'2') SMFHDSEG 2 Binary Segment descriptor

4(x'4') SMFHDFLG 1 Binary Record flag (set to 66, or x'42')

5(x'5') SMFHDTYP 1 Binary Record type (set to 118, or x'76')

6(x'6') SMFHDTME 4 Binary Time when record was written

10(x'A') SMFHDDTE 4 Binary Date when record was written

14(x'E') SMFHDSID 4 EBCDIC System identification

18(x'12') SMFHDSSI 2 Binary Subsystem identification

20(x'14') SMFHDSUB 2 Binary Record subtype

22(x'16') 2 Reserved

24(x'18') SMFHDSDL 2 Binary Length of self-defining area

Self-defining area

26(x'1A') SMF3Off (See Note.) 4 Binary Offset of subsystem area

30(x'1E') SMF3Len or SMFSTLen 2 Binary Length of subsystem area

32(x'20') SMF3Num 2 Binary Number of subsystem areas (1)

34(x'22') SMF3Off 4 Binary Offset of IP area

38(x'26') SMF3Len or SMFSTLen 2 Binary Length of IP area

40(x'28') SMF3Num 2 Binary Number of IP areas (1)

42(x'2A') SMF3Off 4 Binary Offset of ICMP area

46(x'2E') SMF3Len or SMFSTLen 2 Binary Length of ICMP area

48(x'30') SMF3Num 2 Binary Number of ICMP areas (0)

50(x'32') SMF3Off 4 Binary Offset of TCP area

54(x'36') SMF3Len or SMFSTLen 2 Binary Length of TCP area

56(x'38') SMF3Num 2 Binary Number of TCP areas (1)

58(x'3A') SMF3Off 4 Binary Offset of UDP area

62(x'3E') SMF3Len or SMFSTLen 2 Binary Length of UDP area

64(x'40') SMF3Num 2 Binary Number of UDP areas (1)

Subsystem ID area

0(x'0') SMFSubProc 8 EBCDIC TCP/IP Procname

8(x'8') SMFSubASID 4 Binary TCP/IP ASID

12(x'C') SMFSubTime 8 Binary TCP/IP Startup TOD

20(x'14') SMFSubFlag 4 Binary TCP/IP SMF reason:

x'10' Last SMF record/Shutdown

x'20' Last SMF record/End stats

x'40' SMF Interval record

x'80' First SMF record

IP area

Appendix D. Type 118 SMF records 739

|

|

|

|

|

Table 165. SMF record layout for TCPIPSTATISTICS (continued)

Offset Name Length Format Description

0(x'0') imirecv 4 Binary Total received datagrams

4(x'4') imihdrer 4 Binary Total discarded datagrams

8(x'8') imiadrer 4 Binary Total discarded: address errors

12('C') imifwddg 4 Binary Total attempts to forward datagrams

16(x'10') imiunprt 4 Binary Total discarded: unknown protocols

20(x'14') imidisc 4 Binary Total discarded: other

24(x'18') imidelvr 4 Binary Total delivered datagrams

28(x'1C') imoreqst 4 Binary Total sent datagrams

32(x'20') imodisc 4 Binary Total send discarded: other

36(x'24') imonorte 4 Binary Total send discarded: no route

40(x'28') imrsmtos 4 Binary Total reassembly timeouts

44(x'2C') imrsmreq 4 Binary Total received: reassembly required

48(x'30') imrsmok 4 Binary Total datagrams reassembled

52(x'34') imrsmfld 4 Binary Total reassembly failed

56(x'38') imfragok 4 Binary Total datagrams fragmented

60(x'3C') imfrgfld 4 Binary Total discarded: fragments failed

64(x'40') imrgcre 4 Binary Total fragments generated

68(x'44') imrtdisc 4 Binary Total routing discards

72(x'48') imrsmmax 4 Binary Max active reassemblies

76(x'4C') imrmsact 4 Binary Num active reassemblies

80(x'50') imrsmful 4 Binary Discarding reassembled fragments

TCP area

0(x'0') tcp_RtoAlgorithm 4 Binary Retransmit algorithm

4(x'4') tcp_RtoMin 4 Binary Minimum retransmit time (ms)

8(x'8') tcp_RtoMax 4 Binary Maximum retransmit time (ms)

12(x'C') tcp_MaxConn 4 Binary Maximum connections

16(x'10') tcp_ActiveOpens 4 Binary Active opens

20(x'14') tcp_PassiveOpens 4 Binary Passive Opens

24(x'18') tcp_AttemptFails 4 Binary Open failures

28(x'1C') tcp_EstabResets 4 Binary Number of resets

32(x'20') tcp_CurrEstab 4 Binary Number of currently established
connections

36(x'24') tcp_InSegs 4 Binary Input segments

40(x'28') tcp_OutSegs 4 Binary Output segments

44(x'2C') tcp_RetransSegs 4 Binary Retransmitted segments

48(x'30') tcp_InErrs 4 Binary Input errors

52(x'34') tcp_OutRsts 4 Binary Number of resets

UDP area

0(x'0') usindgrm 4 Binary Received UDP datagrams

4(x'4') usnoprts 4 Binary UDP datagrams with no ports

740 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 165. SMF record layout for TCPIPSTATISTICS (continued)

Offset Name Length Format Description

8(x'8') usinerrs 4 Binary Other UDP datagrams not received

12(x'C') usotdgrm 4 Binary UDP datagrams sent

Note: The same fields overlay each (offset, length, number) structure within the self-defining area. The overlay must
be appropriately based to reference any single field within the self-defining area.

Appendix D. Type 118 SMF records 741

742 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix E. Type 119 SMF records

This topic describes the Type 119 SMF records created for several TCP/IP
functions. The following information is included:
v “Mapping SMF records” on page 744
v “Processing SMF records for IP security” on page 745
v “Common Type 119 SMF record format” on page 745
v “SMF 119 record subtypes” on page 746
v “Standard data format concepts” on page 748
v “Common TCP/IP identification section” on page 749
v “TCP connection initiation record (subtype 1)” on page 750
v “TCP connection termination record (subtype 2)” on page 752
v “FTP client transfer completion record (subtype 3)” on page 761
v “TCP/IP profile event record (subtype 4)” on page 767
v “TCP/IP statistics record (subtype 5)” on page 826
v “Interface statistics record (subtype 6)” on page 839
v “Server port statistics record (subtype 7)” on page 843
v “TCP/IP stack start/stop record (subtype 8)” on page 845
v “UDP socket close record (subtype 10)” on page 846
v “TN3270E Telnet server SNA session initiation record (subtype 20)” on page 848
v “TN3270E Telnet server SNA session termination record (subtype 21)” on page

849
v “TSO Telnet client connection initiation record (subtype 22)” on page 855
v “TSO Telnet client connection termination record (subtype 23)” on page 856
v “TN3270E Telnet server profile event record (subtype 24)” on page 857
v “DVIPA status change record (subtype 32)” on page 890
v “DVIPA removed record (subtype 33)” on page 892
v “DVIPA target added record (subtype 34)” on page 894
v “DVIPA target removed record (subtype 35)” on page 896
v “DVIPA target server started record (subtype 36)” on page 898
v “DVIPA target server ended record (subtype 37)” on page 899
v “SMC-R link group statistics record (subtype 41)” on page 901
v “SMC-R link state start record (subtype 42)” on page 905
v “SMC-R link state end record (subtype 43)” on page 906
v “RDMA network interface card (RNIC) interface statistics record (subtype 44)”

on page 909
v “CSSMTP configuration record (CONFIG subtype 48)” on page 911
v “CSSMTP connection record (CONNECT subtype 49)” on page 916
v “CSSMTP mail record (MAIL subtype 50)” on page 920
v “CSSMTP spool file record (SPOOL subtype 51)” on page 924
v “CSSMTP statistical record (STATS subtype 52)” on page 929
v “FTP server transfer completion record (subtype 70)” on page 934
v “FTP daemon configuration record (subtype 71)” on page 940

© Copyright IBM Corp. 2000, 2015 743

v “FTP server logon failure record (subtype 72)” on page 960
v “IPSec IKE tunnel activation and refresh record (subtype 73)” on page 963
v “IPSec IKE tunnel deactivation and expire record (subtype 74)” on page 970
v “IPSec dynamic tunnel activation and refresh record (subtype 75)” on page 973
v “IPSec dynamic tunnel deactivation record (subtype 76)” on page 986
v “IPSec dynamic tunnel added record (subtype 77)” on page 987
v “IPSec dynamic tunnel removed record (subtype 78)” on page 988
v “IPSec manual tunnel activation record (subtype 79)” on page 990
v “IPSec manual tunnel deactivation record (subtype 80)” on page 991

Mapping SMF records
In order for an application to be able to process SMF 119 records, z/OS
Communications Server provides mapping macros and C header files.

Assembler applications
For assembler applications, the macro EZASMF77 (installed in SYS1.MACLIB)
produces assembler level DSECTs that can be used to map the various record
formats described in this topic. When invoking EZASMF77, the default value
creates all the record mappings. EZBNMMPA are in tcpip.SEZANMAC and should
be concatenated with SYS1.MACLIB.

To create the mapping for the interval statistic records, code the following:
EZASMF77 STAT=YES

To create the mapping of the format 119 IPSec SMF records, code the following:
EZASMF77 IPSEC=YES

Because the YES value is the default for all the EZASMF77 operands, coding
EZASMF77 without any operands is equivalent to coding the following:
EZASMF77 FTP=YES,API=YES,TELNET=YES,HEADER=YES,STAT=YES,IPSEC=YES,PROF=YES,MAIL=YES,DVIPA=YES

Guideline: Code NO for any of the operands to exclude those mappings from the
assembler output.

To obtain the mappings for the individual sections of profile data in the format 119
TCP/IP profile SMF event record (subtype 4), the include macro EZBNMMPA is
obtained from MVS data set SEZANMAC.

C/C++ applications
For C/C++ applications, the following header files provide the SMF record
mappings:

ezasmf.h
This header file provides mappings for most of the SMF records.

ezbnmmpc.h
This header file provides the mappings for the individual sections of
profile data in the SMF 119 TCP/IP profile SMF event record (subtype 4).

Both header files are installed in the SEZANMAC MVS data set and in the
/usr/include file system directory.

744 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Processing SMF records for IP security
The IPSec SMF record structures were designed to be analogous to the IPSec
Network Management Interface (NMI) structures that describe the responses for IP
Security information returned by this API. Management applications that currently
use or plan to use the IPSec NMI should consider this when designing their
applications. The analogous IP Security NMI section names are indicated under the
SMF records. The IP Security NMI is described in “Network security services NMI
request and response format” on page 480.

Common Type 119 SMF record format
All Type 119 SMF records are in the format shown in Table 166. For related
subtypes, see “SMF 119 record subtypes” on page 746.

Table 166. Records types and subtype information

Offset Name Length Format Description

0(X'0') Standard header 24 Binary SMF system header

0(X'0') 2 Binary SMF record length

2(X'2') 2 Binary Segment descriptor

4(X'4') 1 Binary Record flag

5(X'5') 1 Binary Record type; is set to 119(X'77').

6(X'6') 4 Binary SMF system timestamp (is local time)

10(X'A') 4 Packed SMF system date (is local time)

14(X'D') 4 EBCDIC SMF system ID

18(X'12') 4 EBCDIC SMF subsystem ID

22(X'16') 2 Binary Record subtype

24(X'18') Self-defining section Binary This section indicates how many sections
follow, and their location in the record.

... TCP/IP identification
section

64 Binary This section is present in every record; it
describes the TCP/IP stack which issued
the record. Its location and size are
indicated by the self-defining section.

... Record-specific data section
1

... Binary First record-specific data section. Its
location and size are indicated by the
self-defining section.

... Record-specific data section
1, second entry

... Binary The self-defining section indicates how
many occurrences of each record-specific
data section are present in the record.

... Record-specific data section
2 (optional)

... Binary Second record-specific data section.

... Binary ...

... Record-specific data section
n, first entry (optional)

... Binary Last record-specific data section. The
self-defining section indicates how many
types of data sections there are.

... Binary ...

Appendix E. Type 119 SMF records 745

SMF 119 record subtypes
TCP/IP collects SMF information about certain Telnet, FTP, TCP/IP stack, IKE
daemon or CSSMTP activity. These records can be generated by the TCP/IP stack,
the FTP and Telnet clients and server, the IKE daemon or the CSSMTP client. You
can control the collection of these records by using the SMFCONFIG statements in
PROFILE.TCPIP, or by using statements in the various application's configuration
files. For more information about those statements, see z/OS Communications
Server: IP Configuration Reference.

All the records described in this topic are written using record type 119 (X'77'), and
standard subtype values, at offset 22 (X'16') in SMF record header, are used to
uniquely identify the type of record being collected. Table 167 correlates the
subtype information to the type of record being produced.

Table 167. SMF 119 record subtype information and record type

Record subtype Description TCP/IP component event Reason

1(X'1') “TCP connection initiation record
(subtype 1)” on page 750

TCP Event

2(X'2') “TCP connection termination record
(subtype 2)” on page 752

TCP Event

3(X'3') “FTP client transfer completion record
(subtype 3)” on page 761

FTPC Event

4(X'4') “TCP/IP profile event record (subtype 4)”
on page 767

STACK Event

5(X'5') “TCP/IP statistics record (subtype 5)” on
page 826

STACK Interval

6(X'6') “Interface statistics record (subtype 6)” on
page 839

IP Interval

7(X'7') “Server port statistics record (subtype 7)”
on page 843

STACK Interval

8(X'8') “TCP/IP stack start/stop record (subtype
8)” on page 845

TCP Event

9 Reserved

10(X'A') “UDP socket close record (subtype 10)” on
page 846

UDP Event

11–19 Reserved

20(X'14') “TN3270E Telnet server SNA session
initiation record (subtype 20)” on page
848

TN3270S Event

21(X'15') “TN3270E Telnet server SNA session
termination record (subtype 21)” on page
849

TN3270S Event

22(X'16') “TSO Telnet client connection initiation
record (subtype 22)” on page 855

TN3270C Event

23(X'17') “TSO Telnet client connection termination
record (subtype 23)” on page 856

TN3270C Event

24–31 Reserved

32(X'20') “DVIPA status change record (subtype
32)” on page 890

STACK Event

746 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 167. SMF 119 record subtype information and record type (continued)

Record subtype Description TCP/IP component event Reason

33(X'21') “DVIPA removed record (subtype 33)” on
page 892

STACK Event

34(X'22') “DVIPA target added record (subtype 34)”
on page 894

STACK Event

35(X'23') “DVIPA target removed record (subtype
35)” on page 896

STACK Event

36(X'24') “DVIPA target server started record
(subtype 36)” on page 898

STACK Event

37(X'25') “DVIPA target server ended record
(subtype 37)” on page 899

STACK Event

38–40 Reserved

41(X'29') “SMC-R link group statistics record
(subtype 41)” on page 901

SMCR Interval

42(X'2A') “SMC-R link state start record (subtype
42)” on page 905

SMCR Event

43(X'2B') “SMC-R link state end record (subtype
43)” on page 906

SMCR Event

44(X'2C') “RDMA network interface card (RNIC)
interface statistics record (subtype 44)” on
page 909

SMCR Interval

45–47 Reserved

48(X'30') “CSSMTP configuration record (CONFIG
subtype 48)” on page 911

CSSMTP Event

49(X'31') “CSSMTP connection record (CONNECT
subtype 49)” on page 916

CSSMTP Event

50(X'32') “CSSMTP mail record (MAIL subtype 50)”
on page 920

CSSMTP Event

51(X'33') “CSSMTP spool file record (SPOOL
subtype 51)” on page 924

CSSMTP Event

52(X'34') “CSSMTP statistical record (STATS
subtype 52)” on page 929

CSSMTP Interval

53–69 Reserved

70(X'46') “FTP server transfer completion record
(subtype 70)” on page 934

FTPS Event

71(X'47') “FTP daemon configuration record
(subtype 71)” on page 940

FTPD Event

72(X'48') “FTP server logon failure record (subtype
72)” on page 960

FTPS Event

73(X'49') “IPSec IKE tunnel activation and refresh
record (subtype 73)” on page 963

IKE Event

74(X'4A') “IPSec IKE tunnel deactivation and expire
record (subtype 74)” on page 970

IKE Event

75(X'4B') “IPSec dynamic tunnel activation and
refresh record (subtype 75)” on page 973

IKE Event

76(X'4C') “IPSec dynamic tunnel deactivation record
(subtype 76)” on page 986

IKE Event

Appendix E. Type 119 SMF records 747

Table 167. SMF 119 record subtype information and record type (continued)

Record subtype Description TCP/IP component event Reason

77(X'4D') “IPSec dynamic tunnel added record
(subtype 77)” on page 987

STACK Event

78(X'4E') “IPSec dynamic tunnel removed record
(subtype 78)” on page 988

STACK Event

79(X'4F') “IPSec manual tunnel activation record
(subtype 79)” on page 990

STACK Event

80(X'50') “IPSec manual tunnel deactivation record
(subtype 80)” on page 991

STACK Event

80(X'50') “IPSec manual tunnel deactivation record
(subtype 80)” on page 991

STACK Event

81–93 Reserved

94(X'5E')–98(X'62') OpenSSH

99-255 Reserved

Notes:

1. The TCP/IP component indicated is the one reported in the TCP/IP
identification section for each record (see the following sections).

2. The Reason indicated determines whether each record is an event record (it is
flagged with a reason code of X'08'; in the TCP/IP identification section) or an
interval record (it is flagged with one of the six interval reason codes in the
TCP/IP identification section).

3. The OpenSSH element of z/OS also creates SMF 119 records with subtypes of
94 through 98. For a description of these records, see z/OS OpenSSH User's
Guide.

Standard data format concepts
The following concepts apply to standard data formats:
v Unless specified otherwise, all times are indicated in units of 1/100 seconds

since midnight (local time). Certain select times are in MVS TOD clock format.
v All dates are indicated in packed decimal (BCD) form, with digits X'01yydddF'.

If no data is available, a date of X'0000000F' is written.
v Interval durations are specified in one of two formats, indicated within the

record itself. It can either be in units of 1/100 seconds or a 64-bit integer with bit
51 marking the microsecond.

v All interval-type statistics records (such as TCP/IP statistics) report interval data,
rather than total data.
This behavior for Type 119 records is a change in semantics from type 118
records, which record summary data. For example, while a type 118 record
would report “bytes sent to date”, a Type 119 record would report “bytes sent
since the last recording interval”.

v IP addresses
Most IP addresses are in 128-bit IPv6 format. In this format, IPv4 addresses are
reported in IPv4-mapped form; the 4-byte IPv4 address is preceded by 12 bytes,
the first 10 of which are 0, and the last two of which are 'FF'x. IPv6 addresses
appear in numeric form.
For the following record subtypes, the IPv4 and IPv6 addresses are defined in
the same 16-byte field in the record section. The IPv4 address is reported in the

748 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

||||

||||

|

|
|
|

first 4 bytes of the field, and the IPv6 address occupies the whole field. A flag
field in the record section indicates whether the field contains an IPv4 or an IPv6
address.
– Subtype 4 TCP/IP profile
– Subtypes 32 - 37 DVIPA
– Subtypes 73 - 80 IPSec

v For information about AT-TLS cipher suite values, see TTLSCipherParms
statement in z/OS Communications Server: IP Configuration Reference.

Common TCP/IP identification section
Table 168 shows a section that is present in every SMF Type 119 record produced
by the TCP/IP stack. Its purpose is to identify the system and stack responsible for
producing the record.

Table 168. Common TCP/IP identification section

Offset Name Length Format Description

0(X'0') SMF119TI_SYSName 8 EBCDIC System name from SYSNAME in
IEASYSxx

8(X'8') SMF119TI_SysplexName 8 EBCDIC Sysplex name from SYSPLEX in
COUPLExx

16(X'10') SMF119TI_Stack 8 EBCDIC TCP/IP stack name

24(X'18') SMF119TI_ReleaseID 8 EBCDIC z/OS Communications Server
TCP/IP release identifier

32(X'20') SMF119TI_Comp 8 EBCDIC TCP/IP subcomponent (right padded
with blanks):

CSSMTP
CSSMTP client

FTPC FTP client

FTPD FTP daemon

FTPS FTP server

IKE IKE daemon

IP IP layer

SMCR Shared Memory
Communications - RDMA

STACK
Entire TCP/IP stack

TCP TCP layer

TN3270C
TN3270 client

TN3270S
TN3270 server

UDP UDP layer

40(X'28') SMF119TI_ASName 8 EBCDIC Started task qualifier or address space
name of address space that writes
this SMF record

48(X'30') SMF119TI_UserID 8 EBCDIC User ID of security context under
which this SMF record is written

Appendix E. Type 119 SMF records 749

Table 168. Common TCP/IP identification section (continued)

Offset Name Length Format Description

56(X'38') 2 EBCDIC Reserved

58(X'3A') SMF119TI_ASID2 2 Binary ASID of address space that writes
this SMF record (in EZASMF77
macro).

58(X'3A') SMF119TI_ASID 2 Binary ASID of address space that writes
this SMF record (in ezasmf.h).

60(X'3C') SMF119TI_Reason 1 Binary Reason for writing this SMF record:

v X'C0': Interval record, more records
follow

v X'80': Interval record, last record in
set

v X'60': End-of-statistics record, more
records follow

v X'20': End-of-statistics record, last
record in set

v X'50': Shutdown starts record, more
records follow

v X'10': Shutdown starts record, last
record in set

v X'48': Event record, more records
follow

v X'08' : Event record, last record in
set

61(X'3D') SMF119TI_RecordID 1 Binary Value used by the following SMF 119
records, to correlate several physical
records which contain one logical set
of information. The SMF 119 record
descriptions will explain when the
field is used.

v TCP/IP profile event record
(subtype 4)

v TN3270E Telnet server profile event
record (subtype 24)

62(X'3E') 2 EBCDIC Reserved

TCP connection initiation record (subtype 1)
The TCP connection initiation record is collected whenever a TCP connection
reaches the established state. This record contains pertinent information about the
connection available at this time.

Guidelines:

v Because this information is duplicated in the TCP connection termination record,
which contains additional information, you must collect only the TCP connection
termination record.

v Because this record is generated for every single TCP connection, significant load
can be generated on a server and rapidly fill the SMF data sets. The TCP
connection termination record is collected whenever a TCP connection is closed
or terminated. This record contains all pertinent information about the
connection, such as elapsed time, bytes transferred, and so on.

750 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TCP/IP connection initiation record, the TCP/IP stack
identification section indicates TCP as the subcomponent and X'08' (event record)
as the record reason.

Table 169 shows the TCP connection initiation record self-defining section:

Table 169. TCP connection initiation record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF header 24 Standard SMF header

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2).

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to TCP connection initiation
section

40(X'28') SMF119S1Len 2 Binary Length of TCP connection initiation
section

42(X'2A') SMF119S1Num 2 Binary Number of TCP connection initiation
sections

Table 170 shows the TCP connection initiation specific section of this SMF record.

Table 170. TCP connection initiation specific section

Offset Name Length Format Description

0(X'0') SMF119AP_TIRName 8 EBCDIC TCP socket resource name (Address
space name of address space that
established this TCP connection)

8(X'8') SMF119AP_TIConnID 4 Binary TCP socket resource ID (connection
ID)

12(X'C') SMF119AP_TIRsv1 4 Binary Reserved

16(X'10') SMF119AP_TISubTask 4 Binary Subtask Name (Address of MVS TCB
for the task that owns this
connection. Note that this is not the
subtask value specified on an
INITAPI call.)

20(X'14') SMF119AP_TIRIP 16 Binary Remote IP address at time of
connection open

36(X'24') SMF119AP_TILIP 16 Binary Local IP address at time of
connection open

52(X'34') SMF119AP_TIRPort 2 Binary Remote port number at time of
connection open

Appendix E. Type 119 SMF records 751

Table 170. TCP connection initiation specific section (continued)

Offset Name Length Format Description

54(X'36') SMF119AP_TILPort 2 Binary Local port number at time of
connection open

56(X'38') SMF119AP_TITime 4 Binary Time of day of connection
establishment

60(X'3C') SMF119AP_TIDate 4 Packed Date of connection establishment

64(X'40') SMF119AP_TISTCK 8 Binary STCK of connection establishment

TCP connection termination record (subtype 2)
The TCP connection termination record is collected whenever a TCP connection is
closed or aborted. The record is created only for connections that reached the
established state. This record contains all pertinent information about the
connection, such as elapsed time, bytes transferred, and other information.

Guidelines:

v Because this information duplicates all of the information contained in the TCP
connection initiation record, collect only the TCP connection termination record.

v Because this record is generated for every single TCP connection, this can
generate significant load on a server and rapidly fill the SMF data sets. Use this
record with care.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TCP/IP connection termination record, the TCP/IP stack
identification section indicates TCP as the subcomponent and X'08' (event record)
as the record reason.

Table 171 shows the TCP connection termination self-defining section:

Table 171. TCP connection termination self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF header 24 Standard SMF header

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to TCP connection termination
section

40(X'28') SMF119S1Len 2 Binary Length of TCP connection
termination section

42(X'2A') SMF119S1Num 2 Binary Number of TCP connection
termination sections

44 (X'2C') SMF119S2Off 4 Binary Offset to TCP connection termination
Telnet information section

752 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|

Table 171. TCP connection termination self-defining section (continued)

Offset Name Length Format Description

48 (X'30') SMF119S2Len 2 Binary Length of TCP connection
termination Telnet information
section

50 (X'32') SMF119S2Num 2 Binary Number of TCP connection
termination Telnet information
sections

52 (X'34') SMF119S3Off 4 Binary Offset to TCP connection termination
Application Transparent Transport
Layer Security (AT-TLS) information
section

56 (X'38') SMF119S3Len 2 Binary Length of TCP connection
termination AT-TLS information
section

58 (X'3A') SMF119S3Num 2 Binary Number of TCP connection
termination AT-TLS information
sections

60 (X'3C') SMF119S4Off 4 Binary Offset to TCP connection termination
ApplData section

64 (X'40') SMF119S4Len 2 Binary Length of TCP connection
termination ApplData section

66 (X'42') SMF119S4Num 2 Binary Number of TCP connection
termination ApplData sections

Table 172 shows the TCP connection termination specific section of this SMF
record.

Table 172. TCP connection termination section

Offset Name Length Format Description

0(X'0') SMF119AP_TTRName 8 EBCDIC TCP socket resource name (Address
space name of address space that
closed this TCP connection)

8(X'8') SMF119AP_TTConnID 4 Binary TCP socket resource ID (connection
ID)

12(X'C') SMF119AP_TTTTLSCS 1 Binary AT-TLS connection status:

v X'01': Connection is not secure

v X'02': Connection handshake in
progress

v X'03': Connection is secure

Appendix E. Type 119 SMF records 753

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

13(X'D') SMF119AP_TTTTLSPS 1 Binary AT-TLS Policy Status:

v X'00': Policy status is not known

v X'01': AT-TLS function off

v X'02': No policy defined for
connection

v X'03': Policy defined for
connection; AT-TLS not enabled

v X'04': Policy defined for
connection; AT-TLS enabled

v X'05': Policy defined for
connection; AT-TLS enabled and
Application Controlled

754 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

14(X'E') SMF119AP_TTTermCode 1 Binary Reason code for connection
termination:

v X'11': Error occurred during a send
using FRCA(AFPA), possibly
because the stack is terminating.

v X'12': A persistent socket used by
FRCA (AFPA) was closed by a
FIN.

v X'21': The connection was
terminated because the stack was
terminating.

v X'22': Last stack that can own the
dynamic VIPA bound to the socket
is terminating

v X'31': Intrusion detection found
the connection to be malicious and
closed the connection.

v X'32': Connection was denied
because of a NetAccess rule.

v X'33': ACK received in lastack
state.

v X'41': The connection was
terminated because of an
administrator action (for example,
using Netstat DRop/-D command
or the NMI API).

v X'42': The connection was
terminated because the local IP
address bound by the application
has been deleted from the stack.

v X'51': The connection from a client
was terminated because the
application closed the socket before
performing an accept().

v X'52': The application using the
socket, closed the connection using
a close().

v X'53': A pascal routine issued an
orderly close request.

v X'54': A pascal routine issued a
disconnect.

v X'55': An error occurred during a
pascal accept.

v X'61': The connection was
terminated because the client sent
a reset.

Appendix E. Type 119 SMF records 755

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

14(X'E')
(continued)

v X'71': The connection was closed
because the same packet was being
re-transmitted multiple times.

v X'72': The connection was closed
because the TCP window was
reduced to 0 and multiple window
probes were not acknowledged.

v X'73': The connection was closed
because multiple keepalive probes
were not acknowledged.

v X'74': The connection was
terminated because the stack timed
out waiting for a fin in the
finwait-2 state.

v X'75': The connection was
terminated because a global TCP
stall attack was detected.

v X'76': The connection was
terminated because a TCP queue
size attack was detected.

15(X'F') SMF119AP_TTSMCStatus 1 Binary SMC-R status:

v X'00': This connection does not use
an SMC-R link.

If SMF119AP_TTSMCReason is
also X'0000', SMC-R link
establishment was not attempted.

v X'01': This connection uses an
SMC-R link.

16(X'10') SMF119AP_TTSubtask 4 Binary Subtask Name (Address of MVS TCB
for the task that owns this
connection. This is not the subtask
value specified on an INITAPI call.)

20(X'14') SMF119AP_TTSTime 4 Binary Time of connection establishment

24(X'18') SMF119AP_TTSDate 4 Packed Date of connection establishment

28(X'1C') SMF119AP_TTETime 4 Binary Time connection entered TIMEWAIT
or LASTACK state.

32(X'20') SMF119AP_TTEDate 4 Packed Date connection entered TIMEWAIT
or LASTACK state.

36(X'24') SMF119AP_TTRIP 16 Binary Remote IP address at time of
connection close.

52(X'34') SMF119AP_TTLIP 16 Binary Local IP address at time of
connection close.

68(X'44') SMF119AP_TTRPort 2 Binary Remote port number at time of
connection close.

70(X'46') SMF119AP_TTLPort 2 Binary Local port number at time of
connection close.

72(X'48') SMF119AP_TTInBytes 8 Binary Inbound byte count.

80(X'50') SMF119AP_TTOutBytes 8 Binary Outbound byte count.

756 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

88(X'58') SMF119AP_TTSWS 4 Binary Send window size at time of
connection close.

92(X'5C') SMF119AP_TTMSWS 4 Binary Maximum send window size.

96(X'60') SMF119AP_TTCWS 4 Binary Congestion window size at time of
connection close.

100(X'64') SMF119AP_TTSMS 4 Binary Send segment size at time of
connection close.

104(X'68') SMF119AP_TTRTT 4 Binary Round trip time in milliseconds at
time of connection close.

108(X'6C') SMF119AP_TTRVA 4 Binary Round trip time variance estimator at
time of connection close, in
milliseconds.

112(X'70') SMF119AP_TTStatus 1 Binary Socket status:

v X'00': Passive Open (this is a
server socket)

v X'01': Active Open (this is a client
socket)

113(X'71') SMF119AP_TTTOS 1 Binary Type of Service (ToS) used by this
connection.

114(X'72') SMF119AP_TTXRT 2 Binary Number of times retransmission was
required for this connection.

116(X'74') SMF119AP_TTProf 32 EBCDIC Service profile name.

148(X'94') SMF119AP_TTPol 32 EBCDIC Service Policy name at the time of
connection close.

180(X'B4') SMF119AP_TTInSeg 8 Binary Inbound segment count.

188(X'BC') SMF119AP_TTOutSeg 8 Binary Outbound segment count.

196(X'C4') SMF119AP_TTSSTCK 8 Binary MVS TOD clock value at time of
connection establishment.

204(X'CC') SMF119AP_TTESTCK 8 Binary MVS TOD clock value at time
connection entered TIMEWAIT or
LASTACK state.

212(X'D4') SMF119AP_TTDupAcksRcvd 4 Binary Total Number of DUP ACKs received
on the connection.

216(X'D8') SMF119AP_TTLclSMCLinkId 4 Binary Local SMC-R link ID.

220(X'DC') SMF119AP_TTRmtSMCLinkId 4 Binary Remote SMC-R link ID.

Appendix E. Type 119 SMF records 757

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

224(X'E0') SMF119AP_TTSMCReason 4 Binary Reason code for SMC-R link
establishment failure if not an
internal error:

v X'5013': RDMA connectivity failure

v X'5203': Insufficient virtual storage.

v X'5204': The SMCR FIXEDMemory
parameter limit was reached.

v X'5205': TCP connection limit was
reached.

v X'5206': The Virtual LAN (VLAN)
ID was not found.

v X'5209': There are no qualifying
active 10GbE RoCE Express
interfaces.

v X'5219': Peer is out of
synchronization.

v X'521E': Peer subnet or prefix
mismatches.

v X'5301': Peer did not accept SMC-R
request.

v X'5302': The route is not eligible for
SMC-R.

v X'5303': There are no active10GbE
RoCE Express interfaces for the
PnetID.

v X'5304': The connection is local.

v X'5306': No storage for SMC-R
negotiation.

v X'5307': The connection uses IPSec.

v X'5308': The connection is used by
a Fast Response Cache Accelerator
(FRCA) server.

v X'5309': The connection is used by
a Pascal API application.

v X'530A': The server port was
configured with the NOSMC
option.

v X'530B': The peer had an invalid
MTU size for this SMC-R link.

v X'530C': No valid IPv6 prefixes
existed for the associated OSD
interface.

758 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 172. TCP connection termination section (continued)

Offset Name Length Format Description

224(X'E0')
(continued)

v Other non-zero reason code values:

– Internal error, if the
SMF119AP_TTSMCRSNRMT
(X'80') bit is off in
SMF119AP_TTSMCFlags.

– Remote peer set the value, if the
SMF119AP_TTSMCRSNRMT
(X'80') bit is on in
SMF119AP_TTSMCFlags. See
the documentation of the peer
product for more information.

228(X'E4') SMF119AP_TTSMCFlags 1 Binary Flag:

v X'80': Indicates that the peer sets
the SMC-R reason value in the
SMF119AP_TTSMCReason field.

229(X'E5') SMF119AP_TTrsv 3 Binary Reserved

232(X'E8') SMF119AP_TTLclSMCBufSz 4 Binary The size of the RMB element that the
local host uses to receive data on this
connection from the remote host. The
value is in KB and is valid only
when the SMF119AP_TTSMCStatus
value is X'01'.

236(X'EC') SMF119AP_TTRmtSMCBufSz 4 Binary The size of the RMB element that the
remote host uses to receive data on
this connection from the local host.
The value is in KB and is valid only
when the SMF119AP_TTSMCStatus
value is X'01'.

Table 173 shows the TCP connection termination Telnet specific section of this SMF
record. This section is present only when the given TCP connection represented a
TN3270 Telnet connection.

Table 173. TCP connection termination Telnet section

Offset Name Length Format Description

0(X'0') SMF119AP_TTTelLUName 8 EBCDIC LU name

8(X'8') SMF119AP_TTTelAppl 8 EBCDIC Target application name

16(X'10') SMF119AP_TTTelLogmode 8 EBCDIC Logmode name

24(X'18') SMF119AP_TTTelStatus 4 Binary Status word:

v x80000000: Definite response mode

v x40000000: The connection is being
performance monitored

v x00000004: TN3270E mode

v x00000002: TN3270 mode

v x00000001: Line mode

Appendix E. Type 119 SMF records 759

|
|
|

|||||

|||||
|
|
|
|
|

|||||
|
|
|
|
|

Table 173. TCP connection termination Telnet section (continued)

Offset Name Length Format Description

28(X'1C') SMF119AP_TTTelTermCode 1 Binary Reason code for closing connection.
The socket must be accessible to the
TN3270 server to record a reason.
(for example,
SMF119AP_TTTermCode for this
record is X'52'.) See the description of
EZZ6034I in z/OS Communications
Server: IP Messages Volume 4 (EZZ,
SNM) for a list of reason codes and
their descriptions.

29(X'1D') SMF119AP_TTTelRsv 3 Binary Reserved

Table 174 shows the TCP connection termination AT-TLS-specific section of this
SMF record.

Restriction: This section is present only when the given TCP connection was
secured by AT-TLS (SMF119AP-TTTTLSCS is X'03').

Table 174. TCP connection termination AT-TLS section

Offset Name Length Format Description

0 (X'0') SMF119AP_TTTTLSSP 2 Binary AT-TLS SSL Protocol:

v X'0200': SSL Version 2

v X'0300': SSL Version 3

v X'0301': TLS Version 1.0

v X'0302': TLS Version 1.1

v X'0303': TLS Version 1.2

2(X'2') SMF119AP_TTTTLSNC 2 EBCDIC AT-TLS Negotiated Cipher. If the
value is 4X, the cipher must be
obtained from
SMF119AP_TTTTLSNC4.

4(X'4') SMF119AP_TTTTLSST 1 Binary AT-TLS Security Type:

v X'01': Client

v X'02': Server

v X'03': Server with client
authentication, ClientAuthType =
PassThru

v X'04': Server with client
authentication, ClientAuthType =
Full

v X'05': Server with client
authentication, ClientAuthType =
Required

v X'06': Server with client
authentication, ClientAuthType =
SAFCheck

5(X'5') SMF119AP_TTTTLSFP 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

6(X'6') SMF119AP_TTTTLSRSV1 2 Binary Reserved

760 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 174. TCP connection termination AT-TLS section (continued)

Offset Name Length Format Description

8(X'8') SMF119AP_TTTTLSUID 8 EBCDIC AT-TLS Partner UserID

16(X'10') SMF119AP_TTTTLSNC4 4 EBCDIC AT-TLS Negotiated Four Byte Cipher

20(X'14') SMF119AP_TTTTLSSESSID 32 Binary AT-TLS session ID

52(X'34') SMF119AP_TTTTLSSESSIDLEN 2 Binary Length of the AT-TLS session ID

54(X'36') SMF119AP_TTTTLSSRU 1 Binary SSL session reuse

v X'00': Reuse session required off

v X'01': Reuse session required on

Table 175 shows the TCP connection termination application-specific section of this
SMF record. The ApplData section provides the application-specific information
that is associated with a TCP connection. See “SIOCSAPPLDATA IOCTL” on page
711 for information about how applications can use the SIOCSAPPLDATA ioctl to
associate application-specific data with a TCP connection.

This section is present only when the given TCP connection has application data
associated with it.

The content of this field is determined by the application that owns the connection.
For z/OS Communications Server applications, see the information about
Appendix G, “Application data,” on page 995 for an explanation of the layout,
format, and meaning of this field. For other applications, see the documentation
that is supplied by the application. This field typically contains all printable
EBCDIC characters, although some applications might include some binary data.

Table 175. TCP connection termination ApplData section

Offset Name Length Format Description

0 (X'0') SMF119AP_TTAPPLDATA 40 Varies For z/OS Communications Server
applications, see Appendix G,
“Application data,” on page 995 for
an explanation of the layout, format,
and meaning of this field. For other
applications, see the documentation
that is supplied by the application.

FTP client transfer completion record (subtype 3)
The FTP client transfer completion record is collected when the z/OS FTP client
completes processing of one of the following FTP file transfer operations: file
appending, file storage, or file retrieval. A common format for the record is used
for each FTP file transfer operations, so the record contains an indication of which
operation was performed. The record also contains optional sections provided
when the file name involved in the transfer operation was an MVS or z/OS UNIX
filename, as well as when the FTP operation traversed a SOCKS server in the path
from the z/OS client to the FTP server.

The Type 119 FTP client transfer completion record is collected at the same point in
file transfer processing as the equivalent Type 118 FTP client SMF record.

Appendix E. Type 119 SMF records 761

|||||

|||||

|||||

|

|

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the FTP client transfer completion record, the TCP/IP stack
identification section indicates FTPC as the subcomponent and X'08' (event record)
as the record reason.

Table 176 shows the FTP client transfer completion record self-defining section:

Table 176. FTP client transfer completion record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
3(X'3')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to FTP client transfer
completion section

40(X'28') SMF119S1Len 2 Binary Length of FTP client transfer
completion section

42(X'2A') SMF119S1Num 2 Binary Number of FTP client transfer
completion sections

44(X'2C') SMF119S2Off 4 Binary Offset to FTP client transfer
completion associated data set name
section

48(X'30') SMF119S2Len 2 Binary Length of FTP client transfer
completion associated data set name
section

50(X'32') SMF119S2Num 2 Binary Number of FTP client transfer
completion associated data set name
sections

52(X'34') SMF119S3Off 4 Binary Offset to FTP client transfer
completion SOCKS section

56(X'38') SMF119S3Len 2 Binary Length of FTP client transfer
completion SOCKS section

58(X'3A') SMF119S3Num 2 Binary Number of FTP client transfer
completion SOCKS sections

60 (X'3C') SMF119S4Off 4 Binary Offset to FTP client transfer
completion security section

64 (X'40') SMF119S4Len 2 Binary Length of FTP client transfer
completion security section

66 (X'42') SMF119S4Num 2 Binary Number of FTP client transfer
completion security sections

68 (X'44') SMF119S5Off 4 Binary Offset to FTP client transfer
completion user name section

762 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 176. FTP client transfer completion record self-defining section (continued)

Offset Name Length Format Description

72 (X'48') SMF119S5Len 2 Binary Length of FTP client transfer
completion user name section

74 (X'4A') SMF119S5Num 2 Binary Number of FTP client transfer
completion user name sections

Table 177 shows the FTP client transfer completion specific section of this SMF
record.

Table 177. FTP client transfer completion record section

Offset Name Length Format Description

0(X'0') SMF119FT_FCCmd 4 EBCDIC FTP command (according to RFC 959)

4(X'4') SMF119FT_FCFType 4 EBCDIC Local file type (SEQ, JES, or SQL)

8(X'8') SMF119FT_FCDRIP 16 Binary Remote IP address (data connection)

24(X'18') SMF119FT_FCDLIP 16 Binary Local IP address (data connection)

40(X'28') SMF119FT_FCDRPort 2 Binary Remote port number (data
connection)

42(X'2A') SMF119FT_FCDLPort 2 Binary Local port number (data connection)

44(X'2C') SMF119FT_FCCRIP 16 Binary Remote IP address (control
connection)

60 (X'3C') SMF119FT_FCCLIP 16 Binary Local IP address (control connection)

76(X'4C') SMF119FT_FCCRPort 2 Binary Remote port number (control
connection)

78 (X'4E') SMF119FT_FCCLPort 2 Binary Local port number (control
connection)

80 (X'50') SMF119FT_FCRUser 8 EBCDIC User ID (login name) on server

88(X'58') SMF119FT_FCLUser 8 EBCDIC Local User ID

96(X'60') SMF119FT_FCType 1 EBCDIC Data format:

v A: ASCII

v E: EBCDIC

v I: Image

v B: Double-byte

v U: UCS-2

97(X'61') SMF119FT_FCMode 1 EBCDIC Transfer mode:

v B: Block

v C: Compressed

v S: Stream

98(X'62') SMF119FT_FCStruct 1 EBCDIC Structure:

v F: File

v R: Record

99(X'63') SMF119FT_FCDSType 1 EBCDIC Data set type:

v S: SEQ

v P: PDS

v H: z/OS UNIX

100(X'64') SMF119FT_FCSTime 4 Binary Transmission start time of day

Appendix E. Type 119 SMF records 763

Table 177. FTP client transfer completion record section (continued)

Offset Name Length Format Description

104(X'68') SMF119FT_FCSDate 4 Packed Transmission start date

108(X'6C') SMF119FT_FCETime 4 Binary Transmission end time of day

112(X'70') SMF119FT_FCEDate 4 Packed Transmission end date

116(X'74') SMF119FT_FCDur 4 Binary File transmission duration in units of
1/100 seconds

120(X'78') SMF119FT_FCBytes 8 Binary Transmission byte count; 64-bit
integer

128(X'80') SMF119FT_FCLReply 4 EBCDIC Last server reply (3-digit RFC 959
code, left-aligned)

132(X'84') SMF119FT_FCM1 8 EBCDIC PDS member name

140(X'8C') SMF119FT_FCHostname 8 EBCDIC Host name

148(X'94') SMF119FT_FCRS 8 EBCDIC Reserved for abnormal end info

156(X'9C') SMF119FT_FCBytesFloat 8 Floating point
hex

z/OS floating point format for
transmission byte count

164 (X'A4') SMF119FT_FCCConnID 4 Binary TCP connection ID of FTP control
connection

168 (X'A8') SMF119FT_FCDConnID 4 Binary TCP connection ID of FTP data
connection, or 0 if no data connection
is active

Table 178 shows the FTP client transfer completion associated data set name
section. This section represents the MVS or z/OS UNIX data set name associated
with the file transfer.

Table 178. FTP client transfer completion associated data set name section

Offset Name Length Format Description

0(X'0') SMF119FT_FCFileName n EBCDIC MVS or z/OS UNIX data set name
associated with the file transfer
operation. Use the Data Set Type field
information in the FTP client transfer
completion section to determine the
type of file name represented by this
value.

Table 179 shows the FTP client transfer completion SOCKS section. This section is
present when the FTP operation traverses a SOCKS server on the path between the
z/OS FTP client and FTP server.

Table 179. FTP client transfer completion SOCKS section

Offset Name Length Format Description

0(X'0') SMF119FT_FCCIP 16 Binary IP address of SOCKS server for
control connection

16(X'10') SMF119FT_FCCPort 2 Binary SOCKS port number (control
connection)

764 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 179. FTP client transfer completion SOCKS section (continued)

Offset Name Length Format Description

18(X'12') SMF119FT_FCCProt 1 Binary SOCKS protocol version (control
connection):

v X'01': SOCKS Version 4

v X'02': SOCKS Version 5

Table 180 shows the FTP client transfer completion security section:

Table 180. FTP client transfer completion security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FCMechanism 1 EBCDIC Protection Mechanism:

v N: None

v T: TLS

v G: GSSAPI

v A: AT_TLS

1 (X'1') SMF119FT_FCCProtect 1 EBCDIC Control connection Protection Level:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FCDProtect 1 EBCDIC Data connection Protection Level:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FCLoginMech 1 EBCDIC Login Method:

v U: Login method is not defined for
the FTP client

4 (X'4') SMF119FT_FCProtoLevel 8 EBCDIC Protocol level (present only if
protocol mechanism is TLS or
AT-TLS).

Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

Appendix E. Type 119 SMF records 765

Table 180. FTP client transfer completion security section (continued)

Offset Name Length Format Description

12 (X'C') SMF119FT_FCCipherSpec 20 EBCDIC Cipher specification (present only if
protocol mechanism is TLS or
AT-TLS).

Possible values when protocol level is
SSLV2:

v RC4: US

v RC4: Export

v RC2: US

v RC2: Export

v DES: 56-Bit

v Triple: DES US

Possible values when protocol level is
SSLV3, TLSV1, TLSV1.1, or TLSV1.2:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FCProtBuffSize 4 Binary Negotiated protection buffer size

36(X'24') SMF119FT_FCCipher 2 EBCDIC Hexadecimal value of cipher
specification (present only if protocol
mechanism is TLS or AT-TLS). If the
value is 4X, the Cipher Specification
must be obtained from the
SMF119FT_FCCipher4 field.

38(X'26') SMF119FT_FCFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39(X'27') SMF119FT_FCCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only if
Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FCSessReuse 1 EBCDIC SSL session reuse:

v N: None

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FCCSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
control connection.

46(X'2E') SMF119FT_FCCSSLSessID 32 Binary SSL session ID of FTP control
connection.

78(X'4E') SMF119FT_FCDSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
data connection.

766 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||

|

|

|

|||||
|

|||||
|

|||||
|

Table 180. FTP client transfer completion security section (continued)

Offset Name Length Format Description

80(X'50') SMF119FT_FCDSSLSessID 32 Binary SSL session ID of FTP data
connection.

Table 181 shows the FTP client transfer completion user name section.

Table 181. FTP client transfer completion user name section

Offset Name Length Format Description

0(X'0') SMF119FT_FCIUserID n EBCDIC User name or user ID used to log
into the FTP server.

TCP/IP profile event record (subtype 4)
The TCP/IP profile record provides profile information for the TCP/IP stack. The
first or only record always contains the following sections:
v SMF header
v Self-defining section with 21 section triplets
v TCP/IP identification section
v Profile information common section
v Profile information data set name section

See Table 182 on page 770 for a list of all the sections of information that can be
provided in this SMF record.

This record is created as an event record during the following processing:
v During the initialization of the stack. In this case, the record contains the

complete profile information for the stack.
v If the profile is changed by the use of the VARY TCPIP,,OBEYFILE command. In

this case, the record contains only changed profile information.
v The NMTP_PICOSecChanged flag bits in the profile information common

section indicate which sections actually contain changed information.
v In the self-defining section, the triplet field values are zero for sections for which

no information was changed, or for those sections which all the information was
deleted from the stack's configuration.

v If deprecated profile statements were specified in the VARY TCPIP,,OBEYFILE
command data set, field NMTP_PicoDepChanged indicates which statements
were processed. If only deprecated statements were processed, the profile
information common and data set name sections are the only sections of
information provided in the SMF record. See Table 183 on page 773 for an
explanation of deprecated profile statements.

v For the sections that changed, the section in the SMF record contains all of the
information for the section. For example, if a network interface was added, the
whole interface section is included in the SMF record. Applications need to
compare the interface section in the new record with the interface section in the
previous record to determine which interface was added.

v If the profile data set referenced by the VARY TCPIP,,OBEYFILE command
changed the SMFCONFIG setting from PROFILE to NOPROFILE, one final SMF
event record is created and written to the MVS SMF data sets to record this
change.

Appendix E. Type 119 SMF records 767

|||||
|

v If the profile data set referenced by the VARY TCPIP,,OBEYFILE command
changed the NETMONITOR SMFSERVICE setting from PROFILE to
NOPROFILE, one final SMF event record is created and written to the real-time
SMF data network management interface (NMI) to record this change. For more
information about the real-time SMF NMI, see “Real-time TCP/IP network
monitoring NMI” on page 527.

The SMF record might be created even if some errors occurred during processing
the VARY TCPIP,,OBEYFILE command. Application programs that process these
records must compare the sections of changed information to the previous profile
settings to determine if profile changes actually occurred.

Relationship to GetProfile Callable NMI
The information provided by this record is also available from the TCP/IP Callable
NMI by invoking this NMI with the GetProfile (NWMPROFILE TYPE) request. The
GetProfile request always returns complete profile information. For more
information about the GetProfile request output, see “TCP/IP NMI response
format” on page 618. There are some minor differences in the information between
this SMF record and the GetProfile request output.

Management section
Both the SMF record and the GetProfile request provide a flag bit
indicating whether the community name parameter was specified on the
SACONFIG profile statement. However, the actual community name value
is returned only by the GetProfile request for security reasons.

Continuing the SMF record
If the information for the record exceeds 32 746 bytes, additional TCP/IP profile
records are created to provide all the information. For sections with multiple
entries, all the entries that fit in the current record are provided in the current
record. Any entries that did not fit in the current record are provided in a
subsequent record, along with additional sections that did not fit in the current
record.

The value in the SMF119TI_Reason field indicates whether the record is complete
or incomplete. If the record is incomplete, it is followed by an additional record or
records. The Profile information sections (common and data set name) are included
in the first record only in the set of SMF records. The intermediate and final SMF
records do not contain the Profile information sections. They contain the TCP/IP
identification section only plus the additional sections of configured information.

Two-phase SMF record creation for VIPADYNAMIC/
ENDVIPADYNAMIC profile statement information

You can use the VIPADYNAMIC and ENDVIPADYNAMIC profile statements and
their substatements to configure dynamic VIPA and Sysplex Distributor support in
the TCP/IP stack. The following sections in the TCP/IP profile SMF record provide
information about this configuration:

Dynamic VIPA addresses
Provides configuration information from VIPABACKUP, VIPADEFINE, and
VIPARANGE substatements

Dynamic VIPA routing
Provides configuration information from the VIPAROUTE substatement.

768 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Distributed dynamic VIPA
Provides configuration information from the VIPADISTRIBUTE
substatement.

Processing of these configuration statements occurs after the normal profile
configuration processing, so more than one SMF record is needed to provide the
configured information. When a profile data set contains these configuration
statements, the resulting TCP/IP profile SMF records are created in two phases:

Phase one
During normal profile configuration processing, the first TCP/IP profile
SMF record is created. It contains the following sections of information:

TCP/IP identification section

v The value in field SMF119TI_Reason indicates that the record is
incomplete.

v Field SMF119TI_RecordID contains a correlator value, so that
you can correlate this first record with the additional record or
records that are created during Phase two.

Profile information common section
Field NMTP_PICOSecChanged indicates the sections affected by
the statements in the profile data set

Sections of configured information
If other profile statements other than the VIPADYNAMIC and
ENDVIPADYNAMIC statement block were specified in the profile
data set, their information is provided in the Phase one SMF
record.

Phase two
When the VIPADYNAMIC and ENDVIPADYNAMIC profile statements are
processed, an additional record or records is created to provide the
configured information. These records contain the following sections of
information:

TCP/IP identification section

v The value in field SMF119TI_Reason indicates whether the
record is complete or incomplete. If more than one additional
record is needed to support all the configured information, all
the additional records except the final record indicate that the
record is still incomplete. In the final record, field
SMF119TI_Reason indicates that the record is complete.

v Field SMF119TI_RecordID contains a correlator value, so that
you can correlate the record written during Phase one with the
additional record or records which are created during Phase two.

Sections of dynamic VIPA and Sysplex Distributor configured
information

If other profile statements other than the VIPADYNAMIC and
ENDVIPADYNAMIC statement block were specified in the profile
data set, their information has already been provided in the Phase
one SMF record.

Cancelled configuration information
In some cases, configuration changes are cancelled. For example, if the TCP/IP
stack is not currently joined to the sysplex group, and a VARY TCPIP,,OBEYFILE

Appendix E. Type 119 SMF records 769

command is issued to change the stack's dynamic VIPA configuration, the
requested configuration changes are cancelled. A TCP/IP Profile SMF record is
created with the following attributes:
v The NMTP_PICOSecChanged flag bits in the Profile information common

section indicate the sections that would have been affected by the configuration
change.

v There is one section for each record section that would have been affected by the
configuration changes. A flag bit is set in the section to indicate that the
requested changes were cancelled. The description of the flag bit explains the
reasons why the changes were cancelled.

Configuration changes can be cancelled for the following sections:
v Dynamic VIPA addresses
v Dynamic VIPA routing
v Distributed dynamic VIPA

Data format concepts
The following concepts apply to the fields in the record sections:
v All fields with a binary format are set to binary zeros if there is no value for the

field.
v All fields with an EBCDIC format are set to EBCDIC blanks (X'40') if there is no

value for the field.
v The value in all fields that use an EBCDIC format is padded with trailing

blanks.

TCP/IP profile record self-defining section
Table 182 shows the TCP/IP profile record self-defining section:

Table 182. TCP/IP profile record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (21)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to Profile information common
section

40(X'28') SMF119S1Len 2 Binary Length of Profile information
common section

42(X'2A') SMF119S1Num 2 Binary Number of Profile information
common sections

44(X'2C') SMF119S2Off 4 Binary Offset of Profile information common
data set name section

770 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 182. TCP/IP profile record self-defining section (continued)

Offset Name Length Format Description

48(X'30') SMF119S2Len 2 Binary Length of Profile information
common data set name section

50(X'32') SMF119S2Num 2 Binary Number of Profile information
common data set name sections

52(X'34') SMF119S3Off 4 Binary Offset to Autolog procedure section

56(X'38') SMF119S3Len 2 Binary Length of Autolog procedure section

58(X'3A') SMF119S3Num 2 Binary Number of Autolog procedure
sections

60 (X'3C') SMF119S4Off 4 Binary Offset to IPv4 IP configuration
section

64 (X'40') SMF119S4Len 2 Binary Length of IPv4 IP configuration
section

66 (X'42') SMF119S4Num 2 Binary Number of IPv4 IP configuration
sections

68 (X'44') SMF119S5Off 4 Binary Offset to IPv6 IP configuration
section

72 (X'48') SMF119S5Len 2 Binary Length of IPv6 IP configuration
section

74 (X'4A') SMF119S5Num 2 Binary Number of IPv6 IP configuration
sections

76(X'4C') SMF119S6Off 4 Binary Offset to TCP configuration section

80(X'50') SMF119S6Len 2 Binary Length of TCP configuration section

82(X'52') SMF119S6Num 2 Binary Number of TCP configuration
sections

84(X'54') SMF119S7Off 4 Binary Offset to UDP configuration section

88(X'58') SMF119S7Len 2 Binary Length of UDP configuration section

90(X'5A') SMF119S7Num 2 Binary Number of UDP configuration
sections

92(X'5C') SMF119S8Off 4 Binary Offset to Global configuration section

96(X'60') SMF119S8Len 2 Binary Length of Global configuration
section

98(X'62') SMF119S8Num 2 Binary Number of Global configuration
sections

100(X'64') SMF119S9Off 4 Binary Offset to Port reservation section

104(X'68') SMF119S9Len 2 Binary Length of Port reservation section

106(X'6A') SMF119S9Num 2 Binary Number of Port reservation sections

108(X'6C') SMF119S10Off 4 Binary Offset to Interface section

112(X'70') SMF119S10Len 2 Binary Length of interface section

114(X'72') SMF119S10Num 2 Binary Number of interface sections

116(X'74') SMF119S11Off 4 Binary Offset to IPv6 address section

120(X'78') SMF119S11Len 2 Binary Length of IPv6 address section

122(X'7A') SMF119S11Num 2 Binary Number of IPv6 address sections

124(X'7C') SMF119S12Off 4 Binary Offset to routing section

128(X'80') SMF119S12Len 2 Binary Length of routing section

Appendix E. Type 119 SMF records 771

Table 182. TCP/IP profile record self-defining section (continued)

Offset Name Length Format Description

130(X'82') SMF119S12Num 2 Binary Number of routing sections

138(X'8A') SMF119S13Num 2 Binary Number of source IP address sections

140(X'8C') SMF119S14Off 4 Binary Offset to management section

144(X'90') SMF119S14Len 2 Binary Length of management section

146(X'92') SMF119S14Num 2 Binary Number of Management sections

148(X'94') SMF119S15Off 4 Binary Offset to IPSec common section

152(X'98') SMF119S15Len 2 Binary Length of IPSec common section

154(X'9A') SMF119S15Num 2 Binary Number of IPSec common sections

156(X'9C') SMF119S16Off 4 Binary Offset to IPSec default rules section

160(X'A0') SMF119S16Len 2 Binary Length of IPSec default rules section

162(X'A2') SMF119S16Num 2 Binary Number of IPSec default rules
sections

164(X'A4') SMF119S17Off 4 Binary Offset to network access section

168(X'A8') SMF119S17Len 2 Binary Length of network access section

170(X'AA') SMF119S17Num 2 Binary Number of network access sections

172(X'AC') SMF119S18Off 4 Binary Offset to dynamic VIPA (DVIPA)
address section

176(X'B0') SMF119S18Len 2 Binary Length of dynamic VIPA (DVIPA)
address section

178(X'B2') SMF119S18Num 2 Binary Number of dynamic VIPA (DVIPA)
address sections

180(X'B4') SMF119S19Off 4 Binary Offset to DVIPA routing section

184(X'B8') SMF119S19Len 2 Binary Length of DVIPA routing section

186(X'BA') SMF119S190Num 2 Binary Number of DVIPA routing sections

188(X'BC') SMF119S20Off 4 Binary Offset to distributed DVIPA section

192(X'C0') SMF119S20Len 2 Binary Length of distributed DVIPA section

194(X'C2') SMF119S20Num 2 Binary Number of distributed DVIPA
sections

196(X'C4') SMF119S21Off 4 Binary Offset to default address selection
policy section

200(X'C8') SMF119S21Len 2 Binary Length of default address selection
policy section

202(X'CA') SMF119S21Num 2 Binary Number of default address selection
policy sections

TCP/IP profile record TCP/IP stack identification section
“Common TCP/IP identification section” on page 749 shows the contents of the
TCP/IP stack identification section. For the TCP/IP profile record, the TCP/IP
stack identification section indicates STACK as the subcomponent. The record
reason field is set to one of the following bit values:
v X'08' (event record)
v X'48' (event record incomplete, more records follow)

772 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

TCP/IP profile record profile information common section
This section provides some general TCP/IP stack values and information about the
last time the profile was changed. There is only one of these sections in the record.

The NMTP_PICODepStmts and NMTP_PICODepChanged fields
Flags in these fields are set when deprecated profile statements are processed.
Deprecated profile statements are those whose function is considered to be
non-strategic. There are also some network interface types that are considered to be
non-strategic. The flags for deprecated interface, IPv4 IP address, or route changes
in the NMTP_PICODepStmts and NMTP_PICODepChanged fields are set when
any profile statement, except the PRIMARYINTERFACE statement, is processed for
one of the following non-strategic network interface types:
v ATM (includes ATMARPSV, ATMLIS, ATMPVC profile statements)
v CLAW
v CTC
v HCH
v LCS
v MPCIPA/IPAQTR
v MPCOSA
v SNA LU0 and LU6.2
v X.25
v CDLC

The PRIMARYINTERFACE setting is provided in the IPv4 configuration section.
Non-strategic network interface types are supported for this setting.

Table 183 shows the profile information common section.

Table 183. Profile information common section

Offset Name Length Format Description

0(X'0') NMTP_PICOEye 4 EBCDIC PICO eyecatcher

4(X'4') NMTP_PICOStartTime 8 Binary Time TCP/IP stack was started (TOD
clock value)

12(X'C') NMTP_PICOStartDate 4 Packed Date TCP/IP stack was started

16(X'10') NMTP_PICOChangeTime 8 Binary Time the TCP/IP stack's profile was last
changed (TOD clock value) by a VARY
TCPIP,,OBEYFILE command.

24(X'18') NMTP_PICOChangeDate 4 Packed Date the TCP/IP stack's profile was last
changed by a VARY TCPIP,,OBEYFILE
command.

28(X'1C') NMTP_PICOChangeRsn 1 Binary Reason for last profile change:

v NMTP_PICOChangeRsn_OBEYFILE(1) -
VARY TCPIP,,OBEYFILE command

Appendix E. Type 119 SMF records 773

Table 183. Profile information common section (continued)

Offset Name Length Format Description

29(X'1D') NMTP_PICOFlags 1 Binary Miscellaneous flags:

X'80', NMTP_PICOProfComplete:
Record contains complete profile
information. If set, the record
was created either during
TCP/IP initialization or, by way
of VARY TCPIP,,OBEYFILE
where SMF TCP/IP profile
record support was activated.
Field NMTP_PICOSecChanged is
zero if the record was created
during initialization.

30(X'1E') 2 Binary Reserved

32(X'20') NMTP_PICODepStmts 2 Binary Flag that indicates which deprecated
profile statements were specified in the
initial profile:

X'80000000', NMTP_PICODepStIntf
DEVICE/LINK/
BSDROUTINGPARMS for
non-strategic interfaces.

X'40000000', NMTP_PICODepStHome:
HOME for non-strategic
interfaces.

X'20000000', NMTP_PICODepStRoute:
BEGINROUTES for non-strategic
interfaces.

X'10000000', NMTP_PICODepStSMF:
SMFCONFIG TYPE118 or
SMFPARMS

X'08000000', NMTP_PICODepStTrans:
TRANSLATE

X'04000000',
NMTP_PICODepStSMParms:

VIPASMPARMS

774 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|

Table 183. Profile information common section (continued)

Offset Name Length Format Description

34(X'22') NMTP_PICODepChanged 2 Binary Flag which indicates which deprecated
profile statements were changed:

X'80000000', NMTP_PICODepChIntf:
DEVICE/LINK/
BSDROUTINGPARMS for
non-strategic interfaces.

X'40000000', NMTP_PICODepChHome:
HOME for non-strategic
interfaces.

X'20000000', NMTP_PICODepChRoute:
BEGINROUTES for non-strategic
interfaces.

X'10000000', NMTP_PICODepChSMF:
SMFCONFIG TYPE118 or
SMFPARMS

X'08000000', NMTP_PICODepChTrans:
TRANSLATE

X'04000000',
NMTP_PICODepChSMParms:

VIPASMPARMS

36(X'24') NMTP_PICOSecChanged 4 Binary Flag that indicates which sections were
changed. The following flags are set only
if the record was created due to a profile
change.

v X'80000000', NMTP_PICOSecAutolog

v X'40000000', NMTP_PICOSecV4Cfg

v X'20000000', NMTP_PICOSecV6Cfg

v X'10000000', NMTP_PICOSecTCPCfg

v X'08000000', NMTP_PICOSecUDPCfg

v X'04000000', NMTP_PICOSecGblCfg

v X'02000000', NMTP_PICOSecPort

v X'01000000', NMTP_PICOSecIntf

v X'00800000', NMTP_PICOSecIPA6

v X'00400000', NMTP_PICOSecRoute

v X'00200000', NMTP_PICOSecSrcip

v X'00100000', NMTP_PICOSecMgmt

v X'00080000', NMTP_PICOSecIPSecCm

v X'00040000', NMTP_PICOSecIPSecRules

v X'00020000', NMTP_PICOSecNetacc

v X'00008000', NMTP_PICOSecDVCfg

v X'00004000', NMTP_PICOSecDVRoute

v X'00002000', NMTP_PICOSecDistDV

v X'00001000', NMTP_PICOSecDasp

40(X'28') NMTP_PICOConsName 8 EBCDIC Name of console from which VARY
TCPIP,,OBEYFILE command was issued.

Appendix E. Type 119 SMF records 775

|
|

Table 183. Profile information common section (continued)

Offset Name Length Format Description

48(X'30') NMTP_PICOSysplexGrpName 8 EBCDIC Sysplex group name. The value is created
when the TCP/IP stack joins the sysplex
group. Because the stack joins the sysplex
group after the initial profile is processed,
the SMF record created during initial
profile processing does not contain the
sysplex group name. If the TCP/IP stack
has never joined the sysplex group since
it was initialized, this field is set to zeros.

56(X'38') NMTP_PICOUserToken 80 Binary RACF user security token of user
responsible for change. For a mapping of
the fields, see the RUTKN data area in
z/OS Security Server RACF Data Areas.

TCP/IP profile record profile information data set name section
This section provides a list of the data sets used for the initial profile and the data
sets used for the last VARY TCPIP,,OBEYFILE command processing. There can be
multiple sections in the record, one per data set name.

Table 184 shows the Profile information data set name section.

Table 184. Profile information data set name section

Offset Name Length Format Description

0(X'0') NMTP_PIDSEye 4 EBCDIC PIDS eyecatcher

4(X'4') NMTP_PIDSFlag 1 Binary Indicates whether data set was used
for the initial profile or for a profile
change, and whether it was the main
profile data set or was specified on
an INCLUDE profile statement.

X'80', NMTP_PIDSChange
Change data set. If set, the
data set was used to change
the profile. If not set, the
data set was used for the
initial profile.

X'40', NMTP_PIDSInclude
Include data set. If set, the
data set was specified on an
INCLUDE statement. If not
set, the data set was the
main data set.

5(X'5') 1 Binary Reserved

6(X'6') NMTP_PIDSName 54 EBCDIC The data set name value is padded
with trailing blanks.

TCP/IP profile record autolog procedure section
This section provides a list of the started procedures to be autologged and their
attributes. There can be multiple sections in the record, one per autologged
procedure.

776 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 185 shows the Autolog procedure section.

Table 185. Autolog procedure section

Offset Name Length Format Description

0(X'0') NMTP_ALPREye 4 EBCDIC ALPR eyecatcher

4(X'4') NMTP_ALPRName 8 EBCDIC Procedure name to be started. The
procedure name value is padded
with trailing blanks.

12(X'C') NMTP_ALPRJobName 8 EBCDIC Job name assigned to reserved port
for the started procedure. The job
name value is padded with trailing
blanks.

20(X'14') NMTP_ALPROptions 2 Binary Procedure options:

v X'8000', NMTP_ALPRDelayDvipa:
DELAYSTART DVIPA

v X'4000', NMTP_ALPRDelayTtls:
DELAYSTART TTLS

22(X'16') 2 Binary Reserved

24(X'18') NMTP_ALPRParmStr 115 EBCDIC The parmstring value, padded with
trailing blanks.

139(X'8B') NMTP_ALPRWaitTime 1 Binary Wait time

TCP/IP profile record IPv4 configuration section
This section provides IPv4 layer configuration information from the IPCONFIG,
ARPAGE, and PRIMARYINTERFACE profile statements. There is only one of these
sections in the record.

Table 186 shows the IPv4 configuration section.

Table 186. IPv4 configuration section

Offset Name Length Format Description

0(X'0') NMTP_V4CFEye 4 EBCDIC V4CF eyecatcher

Appendix E. Type 119 SMF records 777

Table 186. IPv4 configuration section (continued)

Offset Name Length Format Description

4(X'4') NMTP_V4CFFlags 4 Binary IPCONFIG flags:

X'80000000'
NMTP_V4CFCLAWDblNoop: If set,
the CLAW channel programs have 2
NOP CCWs at the end.

X'40000000'
NMTP_V4CFDatagramFwd: If set, the
stack is forwarding datagrams and
field NMTP_V4CFFwdMultipPkt
indicates if a multipath per packet
algorithm is being used for forwarded
packets. If not set, the stack is not
forwarding datagrams.

X'20000000'
NMTP_V4CFFwdMultipPkt: This flag
is valid only if flag
NMTP_V4CFDatagramFwd is set. If
the NMTP_V4CFFwdMultipPkt flag is
set, the stack is forwarding datagrams
using a multipath per packet
algorithm. If not set, the stack is not
using a multipath algorithm when
forwarding datagrams.

X'10000000'
NMTP_V4CFDynamicXcf: If set,
dynamic XCF interfaces are defined
and the following fields contain
dynamic XCF configured values:

v NMTP_V4CFDynXcfAddr

v NMTP_V4CFDynXcfCostMetric

v NMTP_V4CFDynXcfMask

v NMTP_V4CFDynXcfSecClass

778 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 186. IPv4 configuration section (continued)

Offset Name Length Format Description

4(X'4')
(Cont) X'08000000'

NMTP_V4CFFormatLong: If set, the
Netstat command displays the report
output in long format. This flag is
always set for IPv6-enabled stacks.

X'04000000'
NMTP_ V4CFIgnoreRedirectCfg: If set,
IGNOREREDIRECT was specified on
the IPCONFIG profile statement.

X'02000000'
NMTP_ V4CFIgnoreRedirectAct: If set,
the stack is ignoring ICMP redirects
and the NMTP_V4CFIgnRedirectRsn
field indicates the reason why this
setting is in effect.

X'01000000'
NMTP_V4CFIPSecurity: If set, IP
security is enabled.

X'00800000'
NMTP_V4CFIQDIORouting: If set,
IQDIO routing is enabled.

X'0040000'
NMTP_V4CFMultipPerConn: If set, the
stack is using a multipath per
connection routing selection algorithm
for outbound IP traffic.

X'0020000'
NMTP_V4CFMultipPerPkt: If set, the
stack is using a multipath per packet
routing selection algorithm for
outbound IP traffic.

X'00100000'
NMTP_V4CFPathMtuDisc: If set, Path
MTU discovery is in effect.

X'00080000'
NMTP_V4CFSourceVipa: If set, the
stack uses the appropriate VIPA IP
address as the source IP address for
outbound packets.

Appendix E. Type 119 SMF records 779

Table 186. IPv4 configuration section (continued)

Offset Name Length Format Description

4(X'4')
(Cont) X'00040000'

NMTP_V4CFStopClawErr: If set, the
stack stops channel programs when a
CLAW error is detected.

X'00020000'
NMTP_V4CFSysplexRouting: If set, the
stack communicates interface changes
to the workload manager.

X'00010000'
NMTP_V4CFTCPSourceVipa: If set,
and NMTP_V4CFSourceVipa is also
set, the stack uses the address in field
V4CFTcpSrcVipaAddr as the source IP
address for outbound TCP connections.

X'00008000'
NMTP_V4CFQDIOAcc: If set, the
QDIO accelerator function is enabled.

X'00004000'
NMTP_V4CFChkOffload: If set, IP,
UDP and TCP checksum processing is
offloaded to an OSA-Express feature.

X'00002000'
NMTP_V4CFSegOffload: If set, TCP
segmentation is offloaded to an
OSA-Express feature.

X'00001000'
NMTP_V4CFDynXcfSrcVipaIfNameFlg:
If set, the
NMTP_V4CFDynXcfSrcVipaIfName
field contains the specified source
VIPA interface name.

8(X'8') NMTP_V4CFArpTimeout 4 Binary ARP cache timeout in seconds. If the value was
configured, then it was either specified on the
ARPAGE statement, or on the ARPTO
parameter of the IPCONFIG statement.

12(X'C') NMTP_V4CFDevRetry 4 Binary Device retry duration in seconds

16(X'10') NMTP_V4CFTcpSrcVipaAddr 4 Binary VIPA source IP address for outbound TCP
connections. If flags NMTP_V4CFSourceVipa
and NMTP_V4CFTCPSourceVipa are set, this
address is used as the source IP address.

20(X'14') NMTP_V4CFDynXcfAddr 4 Binary Dynamic XCF IP address. This field is valid
only if the NMTP_V4CFDynamicXcf flag is set.

24(X'18') NMTP_V4CFDynXcfCostMetric 1 Binary Dynamic XCF cost metric. This field is valid
only if the NMTP_V4CFDynamicXcf flag is set.

25(X'19') NMTP_V4CFDynXcfMask 1 Binary Dynamic XCF number of mask bits. This field is
valid only if the NMTP_V4CFDynamicXcf flag
is set.

26(X'1A') NMTP_V4CFDynXcfSecClass 1 Binary Dynamic XCF security class. This field is valid
only if the NMTP_V4CFDynamicXcf flag is set.

780 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 186. IPv4 configuration section (continued)

Offset Name Length Format Description

27(X'1B') NMTP_V4CFQDIOPriority 1 Binary IQDIO routing priority. This field is valid only
if either the NMTP_IQDIORouting flag or the
NMTP_QDIOAcc flag is set.

28(X'1C') NMTP_V4CFIgnRedirectRsn 1 Binary For one of the following reasons is why the
NMTP_ V4CFIgnoreRedirectAct flag is set:

v NMTP_V4CFIgnRedRsn_CFG(1) - Set by
configuration

v NMTP_V4CFIgnRedRsn_OMP(2) - Set due to
OMPROUTE

v NMTP_V4CFIgnRedRsn_IDS(3) - Set due to
IDS ICMP redirect policy

This field is valid only if the NMTP_
V4CFIgnoreRedirectAct flag is set.

29(X'1D') NMTP_V4CFReasmTimeout 1 Binary Reassembly timeout in seconds

30(X'1E') NMTP_V4CFTTL 1 Binary Time to live

31(X'1F') 1 Binary Reserved

32(X'20') NMTP_V4CFPrimaryIntfName 16 EBCDIC Name of the primary interface. The primary
interface could have been configured on a
PRIMARYINTERFACE profile statement, or the
stack could have selected a default primary
interface.

48(X'30') NMTP_V4CFDynXcfSrcVipaIfName 16 EBCDIC Dynamic XCF source VIPA interface name. This
field is valid only if the
NMTP_V4CFDynXcfSrcVipaIfNameFlg flag is
set.

TCP/IP profile record IPv6 configuration section
This section provides IPv6 layer configuration information from the IPCONFIG6
profile statement. There is only one of these sections in the record.

Table 187 shows the IPv6 configuration section.

Table 187. TCP/IP profile record IPv6 configuration section

Offset Name Length Format Description

0(X'0') NMTP_V6CFEye 4 EBCDIC V6CF eyecatcher

Appendix E. Type 119 SMF records 781

Table 187. TCP/IP profile record IPv6 configuration section (continued)

Offset Name Length Format Description

4(X'4') NMTP_V6CFFlags 4 Binary IPCONFIG6 Flags:

X'80000000', NMTP_V6CFDatagramFwd:
If set, the stack is forwarding datagrams
and field NMTP_V6CFFwdMultipPkt
indicates if a multipath per packet
algorithm is being used for forwarded
packets. If not set, the stack is not
forwarding datagrams

X'40000000', NMTP_V6CFFwdMultipPkt:
This flag is valid only if flag
NMTP_V6CFDatagramFwd is set. If the
NMTP_V6CFFwdMultipPkt flag is set, the
stack is forwarding datagrams using a
multipath per packet algorithm. If not set,
the stack is not using a multipath
algorithm when forwarding datagrams.

X'20000000', NMTP_V6CFDynamicXcf
If set, dynamic XCF interfaces are defined
and the following fields contain dynamic
XCF configured values:

v NMTP_V6CFDynXcfAddr

v NMTP_V6CFDynXcfPfxRteLen

v NMTP_V6CFDynXcfSecClass

X'10000000', NMTP_V6CFDynXcfIntfIDFlg:
If set, field NMTP_V6CFDynXcfIntfID
contains the specified interface ID value.

X'08000000',
NMTP_V6CFDynXcfSrcVipaIfNameFlg:

If set, field
NMTP_V6CFDynXcfSrcVipaIfName
contains the specified source VIPA
interface name.

X'04000000', NMTP_ V6CFIgnoreRedirectCfg:
If set, IGNOREREDIRECT was specified
on the IPCONFIG6 profile statement.

X'02000000', NMTP_ V6CFIgnoreRedirectAct:
If set, the stack is ignoring ICMPv6
redirects and the
NMTP_V6CFIgnRedirectRsn field indicates
the reason why this setting is in effect

X'01000000', NMTP_ V6CFIgnoreRtrHopLimit:
If set, the stack is ignoring hop limits
received in router advertisements.

782 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 187. TCP/IP profile record IPv6 configuration section (continued)

Offset Name Length Format Description

4(X'4')
(Cont) X'00800000', NMTP_V6CFIPSecurity:

If set, IP security is enabled.

X'00400000', NMTP_V6CFMultipPerConn:
If set, the stack is using a multipath per
connection routing selection algorithm for
outbound IP traffic.

X'00200000', NMTP_V6CFMultipPerPkt:
If set, the stack is using a multipath per
packet routing selection algorithm for
outbound IP traffic.

X'00100000', NMTP_V6CFSourceVipa:
If set, the TCP/IP stack uses the
appropriate VIPA IP address as the source
IP address for outbound packets

X'00080000', NMTP_V6CFTCPSourceVipa:
If set, and NMTP_V6CFSourceVipa is also
set, the stack uses the interface in field
V6CFTcpSrcVipaIntfName to determine the
source IP address for outbound TCP
connections.

X'00040000', NMTP_V6CFTempAddrs:
If set, the TCP/IP stack generates IPv6
temporary addresses for IPAQENET6
OSA-Express QDIO interfaces for which
stateless address autoconfiguration is
enabled. When this flag is set, the
following fields contain life time values for
the generated addresses:

v NMTP_V6CFTempAddrsPrefLifeTime

v NMTP_V6CFTempAddrsValidLifeTime

X'00020000'
NMTP_V6CFChkOffload: If set, UDP and
TCP checksum processing is offloaded to
an OSA-Express feature.

X'00010000'
NMTP_V6CFSegOffload: If set, TCP
segmentation is offloaded to an
OSA-Express feature.

8(X'8') NMTP_V6CFDynXcfIntfID 8 Binary Dynamic XCF interface ID. This field is valid only if
the NMTP_V6CFDynXcfIntfIDFlg flag is set.

16(X'10') NMTP_V6CFDynXcfAddr 16 Binary Dynamic XCF IP address. This field is valid only if
the NMTP_V6CFDynamicXcf flag is set.

32(X'20') NMTP_V6CFDynXcfSrcVipaIntfName 16 EBCDIC Dynamic XCF source VIPA interface name. This field
is valid only if the
NMTP_V6CFDynXcfSrcVipaIfNameFlg flag is set.

48(X'30') NMTP_V6CFTcpSrcVipaIntfName 16 EBCDIC The VIPA interface name that is used for source IP
address selection for outbound TCP connections.
This field is valid only if flags
NMTP_V6CFSourceVipa and
NMTP_V6CFTCPSourceVipa are set.

64(X'40') NMTP_V6CFDynXcfPfxRteLen 1 Binary Dynamic XCF prefix route length. This field is valid
only if the NMTP_V6CFDynamicXcf flag is set. If a
prefix route length was not specified, then the value
is zero.

65(X'41') NMTP_V6CFDynXcfSecClass 1 Binary Dynamic XCF security class. This field is valid only
if the NMTP_V6CFDynamicXcf flag is set.

Appendix E. Type 119 SMF records 783

Table 187. TCP/IP profile record IPv6 configuration section (continued)

Offset Name Length Format Description

66(X'42') NMTP_V6CFHopLimit 1 Binary Hop limit for outbound packets.

67(X'43') NMTP_V6CFIcmpErrLimit 1 Binary Number of ICMPv6 error messages sent per second
to a particular IPv6 destination.

68(X'44') NMTP_V6CFIgnRedirectRsn 1 Binary The following are reasons that the NMTP_
V6CFIgnoreRedirectAct flag is set:

v NMTP_V6CFIgnRedRsn_CFG(1) - Set by
configuration

v NMTP_V6CFIgnRedRsn_OMP(2) - Set due to
OMPROUTE

v NMTP_V6CFIgnRedRsn_IDS(3) - Set due to IDS
ICMPv6 redirect policy

This field is valid only if the NMTP_
V6CFIgnoreRedirectAct flag is set.

69(X'45') NMTP_V6CFOSMSecClass 1 Binary OSM security class. This field is valid only when
flag NMTP_V6CFIPSecurity is set.

70(X'46') 2 Binary Reserved

72(X'48') NMTP_V6CFTempAddrsPrefLifeTime 2 Binary Preferred life time for temporary addresses, specified
in hours. This field is valid only if the
NMTP_V6CFTempAddrs flag is set.

74(X'4A') NMTP_V6CFTempAddrsValidLifeTime 2 Binary Valid life time for temporary addresses, specified in
hours. This field is valid only if the
NMTP_V6CFTempAddrs flag is set.

TCP/IP profile record TCP configuration section
This section provides TCP/IP profile record TCP configuration information from
the TCPCONFIG and SOMAXCONN profile statements. There is only one of these
sections in the record.

Table 188 shows the TCP/IP profile record TCP configuration section.

Table 188. TCP/IP profile record TCP configuration section

Offset Name Length Format Description

0(X'0') NMTP_TCCFEye 4 EBCDIC TCCF eyecatcher

784 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 188. TCP/IP profile record TCP configuration section (continued)

Offset Name Length Format Description

4(X'4') NMTP_TCCFFlags 2 Binary Flags:

X'8000', NMTP_TCCFDelayAcks:
If set, an acknowledgment is
delayed when a packet is received
for this port, or range of ports,
with the PUSH bit on in the TCP
header. If not set, the
acknowledgment is returned
immediately.

X'4000', NMTP_TCCFRestrictLowPorts:
If set, access to TCP port numbers
1-1023 are restricted.

X'2000', NMTP_TCCFSendGarbage:
If set, keepalive packets contain
one byte of random data. If not
set, keepalive packets contain no
data.

X'1000', NMTP_TCCFTimeStamp:
If set, the TCP layer engages in
TCP timestamp negotiation during
connection setup.

X'0800', NMTP_TCCFTtls:
If set, the AT-TLS function is
active.

X'0400', NMTP_TCCFSelectiveACK:
If set, TCP participates in selective
acknowledgement (SACK)
processing.

X’0200’, NMTP_TCCFNagle:
If set, the Nagle algorithm is
enabled.

6(X'6') NMTP_TCCFFinWait2Time 2 Binary The number of seconds a TCP connection
should remain in the FINWAIT2 state.

8(X'8') NMTP_TCCFInterval 2 Binary The default TCP keepalive interval, in
minutes.

10(X'A') 2 Binary Reserved

12(X'C') NMTP_TCCFSoMaxConn 4 Binary The maximum number of connection
requests queued for any listening socket.

16(X'10') NMTP_TCCFMaxRcvBufSize 4 Binary The maximum receive buffer size, in bytes,
that an application can set using the
Setsockopt socket function call.

20(X'14') NMTP_TCCFRcvBufSize 4 Binary The default receive buffer size, in bytes, for
applications which do not set a size using
the Setsockopt socket function call.

24(X'18') NMTP_TCCFSendBufSize 4 Binary The default send buffer size, in bytes, for
applications that do not set a size using the
Setsockopt socket function call.

28(X'1C') NMTP_TCCFEphemPortBegNum 2 Binary The beginning ephemeral port number.

30(X'1E') NMTP_TCCFEphemPortEndNum 2 Binary The ending ephemeral port number.

TCP/IP profile record UDP configuration section
This section provides TCP/IP profile record UDP configuration section. There is
only one of these sections in the record.

Appendix E. Type 119 SMF records 785

Table 189 shows the TCP/IP profile record UDP configuration section.

Table 189. TCP/IP profile record UDP configuration section

Offset Name Length Format Description

0(X'00') NMTP_UDCFEye 4 EBCDIC UDCF eyecatcher

4(X'04') NMTP_UDCFFlags 1 Binary Flags:

X'80',
NMTP_UDCFRestrictLowPorts:

If set, access to UDP port
numbers 1-1023 is restricted.

X'40', NMTP_UDCFChkSum:
If set, the UDP layer
performs checksum
processing.

X'20', NMTP_UDCFQueueLimit:
If set, UDP limits queued
incoming datagrams to 2000
per socket.

5(X'05') 3 Binary Reserved

8(X'08') NMTP_UDCFRcvBufSize 2 Binary The default UDP receive buffer size,
in bytes, for applications that do not
set a size using the Setsockopt socket
function call.

10(X'0A') NMTP_UDCFSendBufSize 2 Binary The default UDP send buffer size, in
bytes, for applications that do not set
a size using the Setsockopt socket
function call.

12(X'0C') NMTP_UDCFEphemPortLow 2 Binary The beginning ephemeral port
number.

14(X'0E') NMTP_UDCFEphemPortHigh 2 Binary The ending ephemeral port number.

TCP/IP profile record Global configuration section
This section provides Global configuration information from the GLOBALCONFIG
profile statement. There is only one of these sections in the record.

Table 190 shows the TCP/IP profile record Global configuration section.

Table 190. TCP/IP profile record Global configuration section

Offset Name Length Format Description

0(X'0') NMTP_GBCFEye 4 EBCDIC GBCF eyecatcher

786 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 190. TCP/IP profile record Global configuration section (continued)

Offset Name Length Format Description

4(X'4') NMTP_GBCFFlags 2 Binary Flags:

X'8000', NMTP_GBCFExpBindPortRange:
If set, fields
NMTP_GBCFExpBindPortRangeBegNum
and
NMTP_GBCFExpBindPortRangeEndNum
contain the beginning and ending port
numbers of the range of reserved TCP
ports in the sysplex.

X'4000', NMTP_GBCFIqdMultiWrite:
If set, multiple write support is enabled
for HiperSockets interfaces.

X'2000', NMTP_GBCFMlsCheckTerminate:
If set, the stack terminates if multi-level
secure configuration inconsistencies are
encountered.

X'1000', NMTP_GBCFSegOffload:
If set, TCP segmentation is offloaded to an
OSA-Express feature.

Guideline: This flag is deprecated. Use
NMTP_V4CFSegOffload instead.

X'0800', NMTP_GBCFTcpipStats:
If set, several counters are written to the
CFGPRINT DD data set when the TCP/IP
stack terminates.

X'0400', NMTP_GBCFZiip:
If set, field NMTP_GBCFZiipOptions
indicates for which workloads CPU cycles
are displaced to a zIIP.

X'0200', NMTP_GBCFWlmPriorityQ:
If set, the following fields indicate the
OSA-Express QDIO priority values that
are assigned for packets associated with
WLM service classes and for forwarded
packets according to the control values for
the WLMPRIORITYQ parameter:

v NMTP_GBCFWPQCV0Pri

v NMTP_GBCFWPQCV1Pri

v NMTP_GBCFWPQCV2Pri

v NMTP_GBCFWPQCV3Pri

v NMTP_GBCFWPQCV4Pri

v NMTP_GBCFWPQCV5Pri

v NMTP_GBCFWPQCV6Pri

v NMTP_GBCFWPQFwdPri

X'0100', NMTP_GBCFSMCR:
If set, this stack is enabled for SMC-R
communications.

Appendix E. Type 119 SMF records 787

Table 190. TCP/IP profile record Global configuration section (continued)

Offset Name Length Format Description

6(X'6') NMTP_GBCFSysMonOptions 2 Binary The following are sysplex monitor subparameter
settings:

X'8000', NMTP_GBCFSysMonAutoRejoin:
If set, the stack automatically rejoins the
sysplex group after problems that caused
it to leave the sysplex group are resolved.

X'4000', NMTP_GBCFSysMonDelayJoin:
If set, the stack delays joining the sysplex
group until OMPROUTE is active.

X'2000', NMTP_GBCFSysMonDynRoute:
If set, the TCP/IP stack monitors the
presence of dynamic routes over those
network interfaces for which the
MONSYSPLEX parameter was specified.
This setting is dynamically changed if the
MONINTERFACE or
NOMONINTERFACE subparameters are
specified.

X'1000', NMTP_GBCFSysMonMonIntf:
If set, the TCP/IP stack monitors the
status of network interfaces for which the
MONSYSPLEX parameter was specified.

X'0800', NMTP_GBCFSysMonRecovery:
If set, the TCP/IP stack issues error
messagess, leaves the sysplex group, and
deletes all DVIPA interfaces when a
sysplex problem is detected.

X'0400', NMTP_GBCFSysMonNoJoin:
If set, the TCP/IP stack does not join the
sysplex group until the V
TCPIP,,SYSPLEX,JOINGROUP command is
issued.

8(X'8') NMTP_GBCFIqdVlanId 2 Binary VLAN ID for the dynamic XCF HiperSockets
interface. If not specified the value is 0.

10(X'A') NMTP_GBCFSysWlmPoll 1 Binary The number of seconds used by the sysplex
distributor and its target servers, when polling
WLM for new weight values.

11(X'B') NMTP_GBCFZiipOptions 1 Binary Workloads whose CPU cycles should be displaced to
a zIIP. This field is valid only if the
NMTP_GBCFZiip flag is set. The following are valid
values:

X'80', NMTP_GBCFZiipIPSecurity:
If set, CPU cycles for IPSec workloads are
displaced to a zIIP, when possible.

X'40', NMTP_GBCFZiipIqdioMultiWrite:
If set, CPU cycles for large TCP outbound
messages are displaced to a zIIP

12(X'C') NMTP_GBCFSysMonTimerSecs 2 Binary The number of seconds used by the sysplex monitor
function to react to problems with needed sysplex
resources.

14(X'E') NMTP_GBCFXcfGroupId 2 EBCDIC The 2-digit suffix used to generate the sysplex group
name that the TCP/IP stack joins. If not specified
the value is zero.

16(X'10') NMTP_GBCFExpBindPortRangeBegNum 2 Binary If flag NMTP_GBCFExpBindPortRange is set, this
field contains the beginning port number in the
reserved range.

788 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 190. TCP/IP profile record Global configuration section (continued)

Offset Name Length Format Description

18(X'12') NMTP_GBCFExpBindPortRangeEndNum 2 Binary If flag NMTP_GBCFExpBindPortRange is set, this
field contains the ending port number in the
reserved range.

20(X'14') NMTP_GBCFMaxRecs 4 Binary Configured maximum records value for the D
TCPIP,,NETSTAT command. The value range is 1 -
65535. The value 65536 indicates that the * (asterisk)
value was specified. This means all records.

24(X'18') NMTP_GBCFEcsaLimit 4 Binary The maximum ECSA storage size in bytes that can
be used by the TCP/IP stack.

28(X'1C') NMTP_GBCFPoolLimit 4 Binary The maximum private storage size in bytes that can
be used in the TCP/IP address space.

32(X'20') NMTP_GBCFWPQCV0Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 0.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

33(X'21') NMTP_GBCFWPQCV1Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 1.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

34(X'22') NMTP_GBCFWPQCV2Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 2.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

35(X'23') NMTP_GBCFWPQCV3Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 3.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

36(X'24') NMTP_GBCFWPQCV4Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 4.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

37(X'25') NMTP_GBCFWPQCV5Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 5.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

38(X'26') NMTP_GBCFWPQCV6Pri 1 Binary The OSA-Express QDIO priority value that is
assigned to packets represented by control value 6.
This field is valid only if flag
NMTP_GBCFWlmPriorityQ is set.

39(X'27') NMTP_GBCFWPQFwdPri 1 Binary The OSA-Express QDIO priority value that is
assigned to forwarded packets. This field is valid
only if flag NMTP_GBCFWlmPriorityQ is set.

40(X'28') NMTP_GBCFAutoIQDX 1 Binary AutoIQDX settings. If no flag bits are set, the
NOAUTOIQDX parameter value is in effect.

X'02', NMTP_GBCFAutoIQDX_NoLargeData:
If this flag bit is set, dynamic IQDX
interfaces are used for all eligible traffic,
except for TCP data traffic that is sent
with socket transmissions of 32 K or
larger.

X'01', NMTP_GBCFAutoIQDX_AllTraffic:
If this flag bit is set, dynamic IQDX
interfaces are used for all eligible traffic to
the intraensemble data network.

41(X'29') NMTP_GBCFPFidCnt 1 Binary SMCR PFID count - the current number of
configured PFID, port, and MTU entries in the
NMTP_GBCFPFs array.

Appendix E. Type 119 SMF records 789

Table 190. TCP/IP profile record Global configuration section (continued)

Offset Name Length Format Description

42(X'2A') 1 Binary Reserved

43(x'2B') NMTP_GBCFAdjDVMSS 1 Binary ADJUSTDVIPAMSS settings.

x'80', NMTP_GBCFAdjDVMSS_AUTO:
If this flag is set, TCP/IP automatically
adjusts the MSS size to avoid
fragmentation for TCP connections that
use VIPAROUTE and distributed DVIPAs.

x'40', NMTP_GBCFAdjDVMSS_ALL
If this flag is set, TCP/IP automatically
adjusts the MSS size to avoid
fragmentation for TCP connections that
use any DVIPA, distributed or not, as the
source IP address.

x'20', NMTP_GBCFAdjDVMSS_NONE
If this flag is set, TCP/IP does not adjust
the MSS for any TCP connections.

44(X'2C') NMTP_GBCFFixedMemory 4 Binary SMCR FIXEDMEMORY value in megabytes

48(X'30') NMTP_GBCFTcpKeepMinInt 4 Binary SMCR TCPKEEPMININTERVAL value in seconds

52(X'34') NMTP_GBCFPFs(16) 96 Binary SMCR PFID array that contains up to 16 entries.
Each entry contains the following information:

v PFID (2-byte hexadecimal value)

v PortNum

v MTU value

148(X'94') 4 Binary Reserved

TCP/IP profile record Port section
This section provides information from the PORT and PORTRANGE profile
statements, regarding reserved ports and access to unreserved ports. There can be
multiple sections in the record, one per PORT or PORTRANGE profile statement.

Table 191 shows the TCP/IP profile record port section.

Table 191. TCP/IP profile record port section

Offset Name Length Format Description

0(X'0') NMTP_PORTEye 4 EBCDIC PORT eyecatcher

790 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||

|||||

|
|
|
|
|

|
|
|
|
|
|

|
|
|

Table 191. TCP/IP profile record port section (continued)

Offset Name Length Format Description

4(X'4') NMTP_PORTFlags 1 Binary Flags:

X'80' NMTP_PORTIPv6: If set, the BIND
parameter was specified with an IPv6 IP
address.

X'40' NMTP_PORTRange: If set, this entry
represents a range of reserved ports.

X'20' NMTP_PORTUnrsv: If set, this entry
applies to unreserved ports. For
unreserved port entries:

v Field NMTP_PORTBegNum is zero

v Flag field NMTP_PORTUnrsvOptions
provides settings specific to unreserved
ports.

X'10' NMTP_PORTTCP: If set, this entry
applies to TCP applications. If this flag is
not set, the entry applies to UDP
applications.

5(X'5') NMTP_PORTUseType 1 Binary Type of use for the port or ports:

NMTP_PORTUTReserved(1)
None of the ports can be used by any
user for the protocol (TCP or UDP)
specified on this entry. This type applies
only to reserved port entries.

NMTP_PORTUTAuthport(2)
The ports can be used only by the FTP
server, when the server is configured to
use PASSIVEDATAPORTS. This type
applies only to reserved port entries
which were reserved as a range (flag
NMTP_PORTRange is set).

NMTP_PORTUTJobname(3)
The specified or unreserved port(s) can
be used only based on an MVS job name
value. If this use type value is set, then
field NMTP_PORTJobName contains the
job name value.

Appendix E. Type 119 SMF records 791

Table 191. TCP/IP profile record port section (continued)

Offset Name Length Format Description

6(X'6') NMTP_PORTRsvOptions 2 Binary If this is a reserved port entry and field
NMTP_PORTUseType is set to
NMTP_PORTUTJobname, this field contains the
options for reserved ports.

X'8000' NMTP_PORTRAutolog: If set, autolog
monitoring is in effect for this port or
range of ports. If not set, autolog
monitoring is not in effect for this port.

X'4000' NMTP_PORTRDelayAcks: If set, an
acknowledgment is delayed when a
packet is received for this port, or range
of ports, with the PUSH bit on in the
TCP header. If not set, the
acknowledgment is returned
immediately.

X'2000' NMTP_PORTRSharePort: If set, TCP
connections can be distributed to
multiple listeners, listening on the same
combination of port and interface.

X'1000' NMTP_PORTRSharePortWlm: If set, TCP
connections can be distributed to
multiple listeners, listening on the same
combination of port and interface, using
WLM server-specific recommendations.

X'0800' NMTP_PORTRBind: If set, the BIND
parameter was specified for the port
entry, and fields NMTP_PORTBindAddr4
or NMTP_PORTBindAddr6 contain the
specified IP address.

X'0400' NMTP_PORTRSaf: If set, a SAF resource
name was specified for the port entry,
and field NMTP_PORTSafName contains
the name.

X'0200' NMTP_PORTRNOSMCR: If set,
NOSMCR was specified for the port
entry.

8(X'8') NMTP_PORTBegNum 2 Binary Contains one of the following values:

v The reserved port number, if this is a reserved
port entry and flag NMTP_PORTRange is not
set.

v The beginning reserved port number in the
range, if this is a reserved port entry and flag
NMTP_PORTRange is set.

v Zeros, if this is an unreserved port entry (flag
NMTP_PORTUnrsv is set).

792 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 191. TCP/IP profile record port section (continued)

Offset Name Length Format Description

10(X'A') NMTP_PORTEndNum 2 Binary If flag NMTP_PORTUnrsv is not set, this field
contains one of the following values:

v If flag NMTP_PORTRange is not set, this field
is set to zero.

v If flag NMTP_PORTRange is set, this field
contains the ending reserved port number in
the range.

12(X'C') NMTP_PORTUnrsvOptions 1 Binary Options for unreserved ports. These flags are set
only for unreserved port entries (flag
NMTP_PORTUnrsv is set in field
NMTP_PORTFlags):

X'80' NMTP_PORTUDeny: If set, access to
unreserved ports is denied for the
protocol (TCP or UDP) specified on this
entry.

X'40' NMTP_PORTUSaf: If set, a SAF resource
name was specified for the port entry,
and field NMTP_PORTSafName contains
the name.

X'20' NMTP_PORTUWhenListen: If set, access
to the port is checked when a TCP server
application issues a Listen socket
function call involving a user-specified
unreserved port.

X'10' NMTP_PORTUWhenBind: If set, access
to the port is checked when an
application issues a Bind socket function
call involving a user-specified unreserved
port.

3 Binary Reserved

16(X'10') NMTP_PORTJobName 8 EBCDIC If the NMTP_PORTUseType value is
NMTP_PORTUTJobname, this field contains the
MVS job name value associated with the port
entry, padded with trailing blanks.

24(X'18') NMTP_PORTSafName 8 EBCDIC If flags NMTP_PORTRSaf or NMTP_PORTUSaf
are set, this field contains the SAF resource name,
padded with trailing blanks.

32(X'20') NMTP_PORTBindAddr4 4 Binary If flag NMTP_PORTRBind is set in the
NMTP_PORTRsvOptions field, this field contains
one of the following values:

v If the NMTP_PORTIPv6 flag bit is not set, this
field contains the IPv4 IP address specified on
the BIND parameter.

v If the NMTP_PORTIPv6 flag bit is set, this field
contains the IPv6 IP address specified on the
BIND parameter.

32(X'20') NMTP_PORTBindAddr6 16 Binary

TCP/IP profile record interface section
This section provides network interface information from the DEVICE, LINK,
HOME, BSDROUTINGPARMS, and INTERFACE profile statements. For IPv4

Appendix E. Type 119 SMF records 793

interfaces, the IP address is included in the interface information. Only the subnet
mask value from the BSDROUTINGPARMS statement is included in the interface
information. For IPv6 interfaces, the IP addresses are provided in the IPv6 address
section.

There can be multiple sections in the record, one per interface. Information from
DEVICE, LINK, HOME, and BSDROUTINGPARMS statements for an interface is
combined into one section. If more than one additional IPv4 loopback IP address
has been configured, there are multiple sections for the IPv4 loopback interface,
one per additional IP address.

Information for only the following types of network interfaces is provided in this
section:

Loopback
The loopback section is provided only if additional loopback IP addresses
besides the default address, 127.0.0.1, have been configured.

OSA-Express QDIO Ethernet
MPCIPA/IPAQENET or IPAQENET6

HiperSockets
MPCIPA/IPAQIDIO or IPAQIDIO6

Static MPC Point-to-point
MPCPTP or MPCPTP6

Static VIPA
VIRTUAL or VIRTUAL6

Information for dynamic XCF and dynamic VIPA interfaces is not supported in this
section. Information for dynamic XCF interfaces can be found in the IPv4 and IPv6
configuration sections. Information for dynamic VIPA interfaces can be found in
the dynamic VIPA address section.

If other types of network interfaces are defined to the TCP/IP stack, their presence
is indicated by a flag bit in the NMTP_PICODepStmts and
NMTP_PICODepChanged fields of the profile information common section.

Table 192 shows the TCP/IP profile record interface section.

Table 192. TCP/IP profile record interface section

Offset Name Length Format Description

0(X'0') NMTP_INTFEye 4 EBCDIC INTF eyecatcher

794 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

4(X'4') NMTP_INTFFlags 4 Binary Flags:

X'80000000', NMTP_INTFIPv6:
IPv6 indicator. If set, this entry is an IPv6
interface, otherwise this entry is an IPv4
interface.

X'40000000', NMTP_INTFDefIntf:
If set, the interface was defined by the
INTERFACE statement; otherwise, the
interface was defined by DEVICE and
LINK statements.

X'20000000', NMTP_INTFIntfIDFlg:
If set, an IPv6 interface ID was specified.
Field NMTP_INTFIntfID contains the
interface ID value.

X'10000000', NMTP_INTFAutoRestart:
This flag applies only to non-VIRTUAL
interfaces defined by DEVICE and LINK
profile statements. If set, either
AUTORESTART was specified or, the
interface is using the same OSA-Express
port, MPCPTP TRLE, or HiperSockets
CHPID as an IPv6 interface, so the
AUTORESTART parameter has been set
by default.

X'08000000', NMTP_INTFIpBcast:
If set, IPBCAST was specified.

X'04000000', NMTP_INTFVlanIDFlg:
If set, VLANID was specified. Field
NMTP_INTFVlanID contains the VLAN
ID value.

X'02000000', NMTP_INTFMonSysplex:
If set, MONSYSPLEX was specified.

X'01000000', NMTP_INTFDynVlanReg:
If set, DYNVLANREG was specified.

X'00800000', NMTP_INTFVmac:
If set, VMAC was specified. Field
NMTP_VmacAddr contains the virtual
MAC address.

X'00400000', NMTP_INTFVmacAddrFlg:
If set, the VMAC parameter was
specified with a virtual MAC address. If
not set, the VMAC parameter was
specified without a virtual MAC address.
The OSA-Express QDIO feature generates
the virtual MAC address. Field
NMTP_VmacAddr contains the virtual
MAC address.

Appendix E. Type 119 SMF records 795

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

4(X'4')
(Cont) X'00200000', NMTP_INTFVmacRtLcl:

If set, VMAC was specified with the
ROUTELCL subparameter. If not set, and
flag NMTP_INTFVmac is set, then the
ROUTEALL subparameter is in effect.

X'00100000', NMTP_INTFCheckSum:
If set, inbound checksum calculation is
being performed. This flag applies only
to MPCPTP interfaces.

X'00080000', NMTP_INTFSrcVipaIfNameFlg:
If set, SOURCEVIPAINTERFACE was
specified. Field
NMTP_INTFSrcVipaIntfName contains
the specified source VIPA interface name.

X'00040000', NMTP_INTFTempPrefix:
If set, TEMPPREFIX was specified. Field
NMTP_INTFTempPfxType indicates the
type of IPv6 temporary address which
was requested.

X'00020000', NMTP_INTFIsolate:
If set, ISOLATE was specified. This flag
applies only to IPAQENET interfaces
defined by the INTERFACE profile
statement and to IPAQENET6 interfaces.

X'00010000', NMTP_INTFOptLatMode:
Indicates whether optimized latency
mode (OLM parameter) was requested or
is in effect. If set, and the interface is not
active, the OLM parameter was specified
for the interface. If set, and the interface
is active, then the OLM setting is in effect
for the interface. This flag applies to only
IPAQENET interfaces defined by the
INTERFACE profile statement and to
IPAQENET6 interfaces.

X'00008000', NMTP_INTFChpIDFlg:
If set, an optional CHPID value was
specified for an interface that was
defined by the INTERFACE statement.
The CHPID value is in
NMTP_INTFChpID field.

X'00004000', NMTP_INTFTempIP:
If set, the TEMPIP value was specified
for an interface that was defined by the
INTERFACE statement. The
NMTP_INTFIPv4Addr field is set to
zeroes when this flag is set.

X'00002000', NMTP_INTFSMCR:
If set, SMCR was specified or is in effect
by default. This flag applies only to
IPAQENET interfaces that the
INTERFACE profile statement defines
and to IPAQENET6 interfaces.

796 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

8(X'8') NMTP_INTFType 1 Binary Type of interface:

NMTP_INTFTLOOPB(1):
Loopback (LOOPBACK/LOOPBACK6)

NMTP_INTFTOSAETH(2):
OSA-Express QDIO Ethernet
(IPAQENET/IPAQENET6)

NMTP_INTFTHIPERSOCK(3):
HiperSockets (IPAQIDIO/IPAQIDIO6)

NMTP_INTFTPTP(4):
MPC Point-to-point (MPCPTP/
MPCPTP6)

NMTP_INTFTVIRTUAL(5):
Static Virtual (VIRTUAL/VIRTUAL6)

9(X'9') NMTP_INTFRtrType 1 Binary Router type. This field is valid only when the
NMTP_INTFType field value is
NMTP_INTFTOSAETH.

NMTP_INTFRTNON(1):
NONROUTER

NMTP_INTFRTPRI(2):
PRIROUTER

NMTP_INTFRTSEC(3):
SECROUTER

10(X'A') NMTP_INTFReadStorType 1 Binary Read storage amount type. This field is valid only
when the NMTP_INTFType field value is
NMTP_INTFTOSAETH or
NMTP_INTFTHIPERSOCK.

NMTP_INTFRSGLOBAL(1):
GLOBAL

NMTP_INTFRSMAX(2):
MAX

NMTP_INTFRSAVG(3):
AVG

NMTP_INTFRSMIN(4):
MIN

11(X'B') NMTP_INTFInbPerfType 1 Binary Inbound performance type. This field is valid only
when the NMTP_INTFType field value is
NMTP_INTFTOSAETH.

NMTP_INTFIPBAL(1):
BALANCED

NMTP_INTFIPDYN(2):
DYNAMIC

NMTP_INTFIPMINCPU(3):
MINCPU

NMTP_INTFIPMINLAT(4):
MINLATENCY

12(X'C') NMTP_INTFSecClass 1 Binary SECCLASS value.

Appendix E. Type 119 SMF records 797

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

13(X'D') NMTP_INTFChpID 1 Binary
CHPID value. This field is valid only for the
following interface types:

v IPv6 interfaces or IPv4 interfaces that are
defined by the INTERFACE statement where
the NMTP_INTFType field value is
NMTP_INTFTHIPERSOCK.

v Interfaces for which the NMTP_INTFChpIDFlg
flag is set.

14(X'E') NMTP_INTFDupAddrDet 1 Binary DUPADDRDET count. This field is valid only for
IPv6 interfaces, where the NMTP_INTFType field
value is NMTP_INTFTOSAETH.

15(X'F') NMTP_INTFIPv4Mask 1 Binary IPv4 Subnet number of mask bits from
INTERFACE or BSDROUTINGPARMS statement.
If subnet mask specified on BSDROUTINGPARMS
but overridden by OMPROUTE, this field is zero.

16(X'10') NMTP_INTFTempPfxType 1 Binary TEMPPREFIX type. This field is valid only for
IPv6 interfaces where flag NMTP_INTFTempPfx is
set, and the NMTP_INTFType field value is
NMTP_INTFTOSAETH.

NMTP_INTFTTALL(1):
ALL

NMTP_INTFTTPFX(2):
Prefix specified

NMTP_INTFTTNONE(3):
NONE

NMTP_INTFTTDIS(4):
Temporary IPv6 address generation is
disabled due to multiple Duplicate
Address Detection (DAD) failures.

17(X'11') NMTP_INTFDynTypes 1 Binary Indicates the dynamic inbound performance
types. This field is set only when the
NMTP_INTFInbPerfType field is set to
NMTP_INTFIPDYN and the interface was defined
by an INTERFACE statement.

v X'80', NMTP_INTFDYNWRKLDQ: If set,
INBPERF DYNAMIC WORKLOADQ was
configured.

18(X'12') NMTP_INTFChpIDType 1 Binary The CHPID type of the OSA-Express QDIO
Ethernet interface. This field is valid only for
interfaces where the NMTP_INTFType field value
is NMTP_INTFTOSAETH and the interface was
defined by an INTERFACE profile statement (flag
NMTP_INTFDefIntf is set).

NMTP_INTFCTOSD(1):
OSD indicates an external data network
CHPID type

NMTP_INTFCTOSX(2):
OSX indicates an intraensemble data
network CHPID type

19(X'13') 1 Binary Reserved

798 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

20(X'14') NMTP_INTFVlanID 2 Binary VLAN ID. This field is valid only when flag
NMTP_INTFVlanIDFlg is set and the
NMTP_INTFType field value is
NMTP_INTFTOSAETH or
NMTP_INTFTHIPERSOCK.

22(X'16') NMTP_INTFMtu 2 Binary MTU value. This field is valid only when flag
NMTP_INTFDefIntf is set, and the
NMTP_INTFType field value is
NMTP_INTFTOSAETH or
NMTP_INTFTHIPERSOCK.

24(X'18') NMTP_INTFIPv4Addr 4 Binary If flag NMTP_INTFIPv6 is not set, this field is the
IPv4 IP address from the HOME or INTERFACE
statement. If an IP address has not been
configured for the interface or if the
NMTP_INTFTempIP field is set, this field is set to
zeros.

28(X'1C') NMTP_INTFIfIndex 4 Binary The interface index, which is a small, positive
number assigned to the interface when it is
defined to the TCP/IP stack. For interfaces
defined by DEVICE and LINK statements, this is
the interface index of the LINK.

32(X'20') NMTP_INTFVmacAddr 6 Binary Virtual MAC address. This field is valid only if
flag NMTP_INTFVmac is set. The field contains
one of the following values:

v If flag NMTP_INTFVmacAddrFlg is set, the
field contains the configured virtual MAC
address.

v If flag NMTP_INTFVmacAddrFlg is not set,
and the interface is active, the field contains the
virtual MAC address generated by the
OSA-Express QDIO feature, when the interface
was activated. If the interface is not yet active,
then the field is set to zeros.

38(X'26') 2 Binary Reserved

40(X'28') NMTP_INTFIntfID 8 Binary IPv6 interface ID value. This field is valid only if
flag NMTP_INTFIntfIDFlg is set.

48(X'30') NMTP_INTFName 16 EBCDIC Interface name. For interfaces defined by DEVICE
and LINK statements, this is the LINK name;
otherwise, it is the interface name defined on the
INTERFACE statement.

64(X'40') NMTP_INTFAssocName 16 EBCDIC One of the following associated names:

v DEVICE name for interfaces defined with the
LINK profile statement. For IPAQENET
interfaces defined with the LINK statement, this
is also the OSA-Express port name. For
MPCPTP interfaces defined with the LINK
statement, this is also the TRLE name.

v PORTNAME value from the
IPAQENET/IPAQENET6 INTERFACE
statement.

v TRLENAME value from the MPCPTP6 profile
statement.

Appendix E. Type 119 SMF records 799

Table 192. TCP/IP profile record interface section (continued)

Offset Name Length Format Description

80(X'50') NMTP_INTFSrcVipaIntfName 16 EBCDIC Source VIPA interface name from the INTERFACE
profile statement. This field is valid only if flag
NMTP_INTFSrcVipaIfNameFlg is set.

TCP/IP profile record IPv6 address section
This section provides configured IPv6 addresses, prefixes, and temporary address
prefixes from the IPv6 INTERFACE profile statements. The other IPv6 interface
attributes defined on the INTERFACE statement are provided in the Interface
section of the SMF record.There can be multiple IPv6 address sections in the
record, one per IPv6 address or prefix.

Table 193 shows the TCP/IP profile record IPv6 address section.

Table 193. TCP/IP profile record IPv6 address section

Offset Name Length Format Description

0(X'0') NMTP_IPA6Eye 4 EBCDIC IPA6 eyecatcher

4(X'4') 4 Binary Flags:

X'80', NMTP_IPA6Deprecated:
If set, the address or address prefix has
been deprecated by the DEPRADDR
parameter.

5(X'5') NMTP_IPA6Type 1 Binary Type of entry:

NMTP_IPA6TADDR(1):
Configured address

NMTP_IPA6TPFX(2):
Configured address prefix

NMTP_IPA6TTEMPPFX(3):
Configured temporary address prefix

6(X'6') NMTP_IPA6PfxLen 1 Binary Prefix length. This field is only valid when the
NMTP_IPA6Type is either NMTP_IPA6TPFX or
NMTP_IPA6TTEMPPFX.

7(X'7') 1 Binary Reserved

8(X'8') NMTP_IPA6IfIndex 4 Binary The interface index of the interface to which the
IPv6 address is assigned. This is a small, positive
number assigned to the interface when it is
defined to the TCP/IP stack.

12(X'C') NMTP_INTFSecClass 4 Binary Reserved

16(X'10') NMTP_IPA6IntfName 16 EBCDIC Associated interface name.

32(X'20') NMTP_IPA6Addr 16 Binary Address or prefix.

TCP/IP profile record Routing section
This section provides configured routing information from the BEGINROUTES
statement block. There can be multiple sections in the record, one per ROUTE
substatement.

Table 194 on page 801 shows the TCP/IP profile record routing section.

800 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|

Table 194. TCP/IP profile record routing section

Offset Name Length Format Description

0(X'0') NMTP_ROUTEEye 4 EBCDIC ROUT eyecatcher

4(X'4') NMTP_ROUTFlags 2 Binary Flags:

X'8000', NMTP_ROUTIPv6:
IPv6 indicator. If set, this is an IPv6
route.

X'4000', NMTP_ROUTDefault:
If set, this is a default route so there is no
destination IP address.

X'2000', NMTP_ROUTNextHop:
If set, a next hop address was specified.

X'1000', NMTP_ROUTDelayAcks:
If set, DELAYACKS was specified.

X'0800', NMTP_ROUTReplaceable:
If set, REPLACEABLE was specified.

X'0400', NMTP_ROUTReplaced:
If set, this is a replaceable static route
which has been replaced by a dynamic
route. This route is not currently being
used by the TCP/IP stack.

6(X'6') NMTP_ROUTMtu 2 Binary MTU size

8(X'8') NMTP_ROUTDestPfxLen 1 Binary Destination prefix length for both IPv4 or IPv6
destination addresses. This value is set to the
maximum IPv4 (32) or IPv6(128) value in the
following cases:

v If the HOST parameter was specified as the
IPv4 address mask or IPv6 prefix length.

v A prefix length was not specified.

9(X'9') 3 Binary Reserved

12(X'C') NMTP_ROUTIfIndex 4 Binary Interface index of interface over which route is
defined.

16(X'10') NMTP_ROUTMaxRetranTime 4 Binary Maximum retransmission time in milliseconds.

20(X'14') NMTP_ROUTMinRetranTime 4 Binary Minimum retransmission time in milliseconds.

24(X'18') NMTP_ROUTRoundTripGain 2 Binary Round trip gain percentage in thousandths of
seconds.

26(X'1A') NMTP_ROUTVarGain 2 Binary Variance gain percentage in thousandths of
seconds.

28(X'1C') NMTP_ROUTVarMultiplier 4 Binary Variance multiplier value in thousandths if
seconds.

32(X'20') NMTP_ROUTIntfName 16 EBCDIC Name of interface over which route is defined,
padded with trailing blanks.

48(X'30') NMTP_ROUTDestAddr4 4 Binary One of the following values:

v If the NMTP_ROUTIPv6 flag is not set, this
field contains the IPv4 destination IP address.

v If the NMTP_ROUTIPv6 flag is set, this field
contains the IPv6 destination IP address.

Appendix E. Type 119 SMF records 801

Table 194. TCP/IP profile record routing section (continued)

Offset Name Length Format Description

48(X'30') NMTP_ROUTDestAddr6 16 Binary One of the following values:

v If the NMTP_ROUTIPv6 flag is not set, this
field contains the IPv4 destination IP address.

v If the NMTP_ROUTIPv6 flag is set, this field
contains the IPv6 destination IP address.

64(X'40') NMTP_ROUTNextHopAddr4 4 Binary Next hop IP address. This field is only valid if
flag NMTP_ROUTNextHop is set. The value is
one of the following:

v If the NMTP_ROUTIPv6 flag is not set, this
field contains the IPv4 next hop IP address.

v If the NMTP_ROUTIPv6 flag is set, this field
contains the IPv6 next hop IP address.

64(X'40') NMTP_ROUTNextHopAddr6 16 Binary Next hop IP address. This field is only valid if
flag NMTP_ROUTNextHop is set. The value is
one of the following:

v If the NMTP_ROUTIPv6 flag is not set, this
field contains the IPv4 next hop IP address.

v If the NMTP_ROUTIPv6 flag is set, this field
contains the IPv6 next hop IP address.

TCP/IP profile record source IP section
This section provides source IP address information from the SRCIP profile
statement. There can be multiple sections in the record, one per SRCIP
DESTINATION or JOBNAME substatements.

Table 195 shows the source IP section.

Table 195. TCP/IP profile record source IP section

Offset Name Length Format Description

0(X'0') NMTP_SRCIEye 4 EBCDIC SRCI eyecatcher

4(X'4') NMTP_SRCIType 1 Binary Type of entry:

NMTP_SRCITDest(1)
Destination

NMTP_SRCITJob(2)
Job name

802 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 195. TCP/IP profile record source IP section (continued)

Offset Name Length Format Description

5(X'5') NMTP_SRCIFlags 1 Binary Flags:

X'80' NMTP_SRCIIPv6: IPv6
indicator. If set IP addresses
are IPv6, otherwise IP
addresses are IPv4.

X'40' NMTP_SRCISrcIfName:
Source IP address identifier
in field NMTP_SRCISrc6 is
an IPv6 interface name.

X'30' NMTP_SRCIBoth: Both job
name Clients and Servers

X'20' NMTP_SRCIClients: Job
name Clients

X'10' NMTP_SRCIServers: Job
name Servers

X'08' NMTP_SRCITempAddrs: If
the flag is set and default
source IP address selection
is performed, an IPv6
temporary address is
preferred over an IPv6
public address.

X'04' NMTP_SRCIPubAddrs: If
the flag is set and default
source IP address selection
is performed, an IPv6 public
address is preferred over an
IPv6 temporary address.

6(X'6') 1 Binary Reserved

7(X'7') NMTP_SRCIDestPfxLen 1 Binary Destination prefix length for both
IPv4 or IPv6 destination addresses.
This value is zero if a prefix length
was not specified.

8(X'8') NMTP_SRCIJobName 8 EBCDIC If the NMTP_SRCIType value is Job
name, this field contains the specified
job name, padded with trailing
blanks.

16(X'10') NMTP_SRCIDestAddr4 4 Binary One of the following values:

v If the NMTP_SRCIType value is
Destination and the
NMTP_SRCIIPv6 flag is not set,
this field contains the IPv4
destination IP address.

v If the NMTP_SRCIType value is
Destination and the
NMTP_SRCIIPv6 flag is set, this
field contains the IPv6 destination
IP address.

Appendix E. Type 119 SMF records 803

Table 195. TCP/IP profile record source IP section (continued)

Offset Name Length Format Description

16(X'10') NMTP_SRCIDestAddr6 16 Binary One of the following values:

v If the NMTP_SRCIType value is
Destination and the
NMTP_SRCIIPv6 flag is not set,
this field contains the IPv4
destination IP address.

v If the NMTP_SRCIType value is
Destination and the
NMTP_SRCIIPv6 flag is set, this
field contains the IPv6 destination
IP address.

32(X'20') NMTP_SRCISrcAddr4 4 Binary One of the following values:

IPv4 source IP address
If the NMTP_SRCIIPv6 flag
is not set, this field contains
the IPv4 source IP address.

IPv6 source IP address
If the NMTP_SRCIIPv6 flag
is set, but the
NMTP_SRCISrcIfName and
NMTP_SRCITempAddrs
flags are not set, this field
contains the IPv6 source IP
address.

IPv6 source interface name
If both the NMTP_SRCIIPv6
and NMTP_SRCISrcIfName
flags are set, this field
contains the IPv6 source
interface name, padded with
trailing blanks.

32(X'20') NMTP_SRCISrcAddr6 16 Binary One of the following values:

IPv4 source IP address
If the NMTP_SRCIIPv6 flag
is not set, this field contains
the IPv4 source IP address.

IPv6 source IP address
If the NMTP_SRCIIPv6 flag
is set, but the
NMTP_SRCISrcIfName and
NMTP_SRCITempAddrs
flags are not set, this field
contains the IPv6 source IP
address.

IPv6 source interface name
If both the NMTP_SRCIIPv6
and NMTP_SRCISrcIfName
flags are set, this field
contains the IPv6 source
interface name, padded with
trailing blanks.

804 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 195. TCP/IP profile record source IP section (continued)

Offset Name Length Format Description

32(X'20') NMTP_SRCISrcIntfName 16 EBCDIC One of the following values:

IPv4 source IP address
If the NMTP_SRCIIPv6 flag
is not set, this field contains
the IPv4 source IP address.

IPv6 source IP address
If the NMTP_SRCIIPv6 flag
is set, but the
NMTP_SRCISrcIfName and
NMTP_SRCITempAddrs
flags are not set, this field
contains the IPv6 source IP
address.

IPv6 source interface name
If both the NMTP_SRCIIPv6
and NMTP_SRCISrcIfName
flags are set, this field
contains the IPv6 source
interface name, padded with
trailing blanks.

TCP/IP profile record management section
This section provides network management information from the NETMONITOR,
SACONFIG, and SMFCONFIG profile statements. For the SMFCONFIG profile
statement, only the Type 119 SMF record parameter settings are provided. For the
SACONFIG profile statement the community name value from the COMMUNITY
parameter is not provided due to security considerations; however, the flag bit,
NMTP_MGMTSACommunity, is set if a community name was specified. There is
only one of these sections in the record.

Table 196 shows the TCP/IP profile record management section.

Table 196. TCP/IP profile record management section

Offset Name Length Format Description

0(X'0') NMTP_MGMTEye 4 EBCDIC MGMT eyecatcher

Appendix E. Type 119 SMF records 805

Table 196. TCP/IP profile record management section (continued)

Offset Name Length Format Description

4(X'4') NMTP_MGMTSmf119Types 4 Binary SMF 119 record types requested:

X'8000', NMTP_MGMT119FtpClient
FTP client

X'4000', NMTP_MGMT119IfStats
Interface statistics

X'2000', NMTP_MGMT119IpSec
IPSec

X'1000', NMTP_MGMT119PortStats
Port statistics

X'0800', NMTP_MGMT119Profile
Profile

X'0400', NMTP_MGMT119TcpInit
TCP connection initiation

X'0200', NMTP_MGMT119TcpipStats
TCP/IP statistics

X'0100', NMTP_MGMT119TcpStack
TCP/IP stack initiation and
termination

X'0080', NMTP_MGMT119TcpTerm
TCP connection termination

X'0040',
NMTP_MGMT119TN3270Client

TSO Telnet client connection
initiation and termination

X'0020', NMTP_MGMT119UdpTerm
UDP endpoint termination

X'0010', NMTP_MGMT119DVIPA
Dynamic VIPAs

X'0008',
NMTP_MGMT119SmcrGrpStats

SMC-R group statistics

X'0004',
NMTP_MGMT119SmcrLnkEvent

SMC-R link event

8(X'8') NMTP_MGMTNetMonServices 1 Binary NETMONITOR services requested:

X'80', NMTP_MGMTNMPktTrace
Packet trace

X'40', NMTP_MGMTNMTcpConn
TCP connection

X'20', NMTP_MGMTNMSmf
SMF records

X'10', NMTP_MGMTNMNTATrace
OSAENTA trace

806 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 196. TCP/IP profile record management section (continued)

Offset Name Length Format Description

9(X'9') NMTP_MGMTNetMonSmfRecs 1 Binary SMFSERVICE records requested:

X'80', NMTP_MGMTNMSmfIPSec
IP Sec

X'40', NMTP_MGMTNMSmfProfile
Profile

X'20', NMTP_MGMTNMSmfCSSmtp
CSSMTP

X'10', NMTP_MGMTNMSmfCSMail
CSMail

X'08', NMTP_MGMTNMSmfDVIPA
Dynamic VIPAs

10(X'A') NMTP_MGMTNetMonMinLife 1 Binary If flag NMTP_MGMTNMTcpConn is
set, this field contains the
NETMONITOR TCPCONNSERVICE
MINLIEFTIME value.

11(X'B') NMTP_MGMTSAFlags 1 Binary SACONFIG flags:

X'80', NMTP_MGMTSAEnabled
If set, the TCP/IP subagent is
enabled. If not set, the
TCP/IP subagent is disabled.

X'40', NMTP_MGMTSAOsaEnabled
If set, OSA support is
enabled. If not set, OSA
support is disabled.

X'20', NMTP_MGMTSASetsEnabled
If set, Set support is enabled.
If not set, Set support is
disabled.

X'10', NMTP_MGMTSACommunity
If set, a community name was
specified.

12(X'C') NMTP_MGMTSAAgent 2 Binary SACONFIG Agent port number.

14(X'E') NMTP_MGMTSAOsasf 2 Binary SACONFIG OSASF port number.

16(X'10') NMTP_MGMTSACacheTime 2 Binary SACONFIG Cache time

18(X'12') 2 Binary Reserved

20(X'14') NMTP_MGMTSACommName 32 EBCDIC SACONFIG Community name,
padded with trailing blanks. Due to
security concerns, this value is not
provided in the SMF record. But if a
community name value was specified,
flag NMTP_MGMTSACommunity is
set.

TCP/IP profile record IPSec common section
This section provides configured common information from the IPSEC profile
statement. It does not provide any information about configured default filter
rules. Use the IPSec rule section to obtain the default filter rule information. There
is only one of these sections in the record.

Appendix E. Type 119 SMF records 807

Table 197 shows the TCP/IP profile record IPSec Common section.

Table 197. TCP/IP profile record IPSec Common section

Offset Name Length Format Description

0(X'0') NMTP_IPSCEye 4 EBCDIC IPSC eyecatcher

4(X'4') NMTP_IPSCFlags 1 Binary Flags:

X'80', NMTP_IPSCDVIPSec:
If set, DVIPSEC was
specified.

X'40', NMTP_IPSCLogEnable:
If set, LOGENABLE was
specified.

X'20', NMTP_IPSCLogImplicit:
If set, LOGIMPLICIT was
specified.

5(X'5') 3 Binary Reserved

TCP/IP profile record IPSec rule section
This section provides the default filter rule information that is configured on the
IPSEC profile statement. Sections can be multiple in the record, one per default
filter rule.

Table 198 shows the TCP/IP profile record IPSec Rule section.

Table 198. TCP/IP profile record IPSec Rule section

Offset Name Length Format Description

0(X'0') NMTP_IPSREye 4 EBCDIC IPSR eyecatcher

808 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

4(X'4') NMTP_IPSRFlags 2 Binary Flags:

X'8000', NMTP_IPSRIPv6:
If set, addresses are in IPv6
format.

X'4000', NMTP_IPSRSrcAddrDef:
If set, a source address was
specified and field
NMTP_IPSRSrcAddr4 or
NMTP_IPSRSrcAddr6 contains the
address. If not set, an asterisk (*)
or an address with a prefix length
of zero (0) was specified for the
source IP address. This means that
any source address matches the
rule.

X'2000', NMTP_IPSRDestAddrDef:
If set, a destination address was
specified and field
NMTP_IPSRDestAddr4 or
NMTP_IPSRDestAddr6 contains
the address. If not set, an asterisk
(*) or an address with a prefix
length of zero (0) was specified for
the destination IP address. This
means that any destination
address matches the rule.

X'1000', NMTP_IPSRLog:
If set, LOG was specified.

X'0800', NMTP_IPSRProtoDef:
If set, a protocol value other than
OPAQUE was specified and field
NMTP_IPSRProto contains the
value. If a protocol value of
OPAQUE was specified, flag
NMTP_IPSRProtoOpaqueDef is
set. If neither the
NMTP_IPSRProtoDef nor the
NMTP_IPSRProtoOpaqueDef flags
are set, any protocol value matches
the rule.

X'0400', NMTP_IPSRSrcPortDef:
If set, a source port was specified
and field NMTP_IPSRSrcPort
contains the port number. If not
set, any source port number
matches the rule.

Appendix E. Type 119 SMF records 809

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

4(X'4') NMTP_IPSRFlags 2 Binary Flags:

X'0200', NMTP_IPSRDestPortDef:
NMTP_IPSRDestPortDef: If set, a
destination port was specified and
field NMTP_IPSRDestPort contains
the port number. If not set, any
destination port number matches
the rule.

X'0100', NMTP_IPSRTypeDef:
If set, an ICMP, ICMPv6, OSPF, or
MIPv6type was specified and field
NMTP_IPSRType contains the type
value. If not set, any type matches
the rule for the specified or
defaulted protocol.

X'0080', NMTP_IPSRCodeDef:
If set, an ICMP or ICMPv6 code
was specified and field
NMTP_IPSRCode contains the
code value. If not set, any code
matches the rule for the specified
or defaulted protocol and type.

X'0040'NMTP_IPSRSrcAddrRangeDef:
If set, a source address range was
specified and field
NMTP_IPSRSrcAddr4 or
NMTP_IPSRSrcAddr6 contains the
beginning address of the range
and field
NMTP_IPSRSrcAddr4End or
NMTP_IPSRSrcAddr6End contains
the ending address of the range.

X'0020',NMTP_IPSRDestAddrRangeDef:
If set, a destination address range
was specified and field
NMTP_IPSRDestAddr4 or
NMTP_IPSRDestAddr6 contains
the beginning address of the range
and field
NMTP_IPSRDestAddr4End or
NMTP_IPSRDestAddr6End
contains the ending address of the
range.

X'0010'NMTP_IPSRProtoOpaqueDef:
This flag is valid only when flag
NMTP_IPSRIPv6 is set. If set,
PROTOCOL OPAQUE was
specified. The OPAQUE protocol
setting is indicated only by this
flag. Field NMTP_IPSRProto is not
set.

810 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

4(X'4')
(Cont.) X'0008'NMTP_IPSRSrcPortRangeDef:

If set, a source port range was
specified. Field
NMTP_IPSRSrcPort contains the
beginning port number and field
NMTP_IPSRSrcPortEnd contains
the ending port number.

X'0004'NMTP_IPSRDestPortRangeDef:
If set, a destination port range was
specified. Field
NMTP_IPSRDestPort contains the
beginning port number and field
NMTP_IPSRDestPortEnd contains
the ending port number.

X'0002'NMTP_IPSRTypeRangeDef:
If set, an ICMP, ICMPv6, or MIPv6
type range was specified. Field
NMTP_IPSRType contains the
beginning type and field
NMTP_IPSRTypeEnd contains the
ending type.

X'0001'NMTP_IPSRCodeRangeDef:
If set, an ICMP or ICMPv6 code
range was specified. Field
NMTP_IPSRCode contains the
beginning code and field
NMTP_IPSRCodeEnd contains the
ending code.

6(X'6') NMTP_IPSRSrcPfxLen 1 Binary Source address prefix length. This field is
valid only when the specified prefix length
is greater than zero (0). Specifying a prefix
length of 0 is the same as specifying an IP
address of asterisk (*), which means that
any source address matches the rule.

7(X'7') NMTP_IPSRDestPfxLen 1 Binary Destination address prefix length. This field
is valid only when the specified prefix
length is greater than zero (0). Specifying a
prefix length of 0 is the same as specifying
an IP address of asterisk (*), which means
that any destination address matches the
rule.

8(X'8') NMTP_IPSRProto 1 Binary If the flag NMTP_IPSRProtoDef is set, this
field contains the protocol value.

9(X'9') NMTP_IPSRType 1 Binary If the flag NMTP_IPSRTypeDef is set, this
field contains the ICMP/ICMPv6/OSPF/
MIPv6 type value. For ICMP, ICMPv6, and
MIPv6, if flag NMTP_IPSRTypeRangeDef is
not set, this is the only type value;
otherwise; this is the beginning type value
in a range.

Appendix E. Type 119 SMF records 811

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

10(X'A') NMTP_IPSRCode 1 Binary If the flag NMTP_IPSRCodeDef is set, this
field contains the ICMP/ICMPv6 code
value. If flag NMTP_IPSRCodeRangeDef is
not set, this is the only code value;
otherwise; this is the beginning code value
in a range.

11(X'B') NMTP_IPSRRoutingType 1 Binary One of the following ROUTING type
values:

NMTP_IPSRRTLOCAL(1):
ROUTING LOCAL

NMTP_IPSRRTROUTED(2):
ROUTING ROUTED

NMTP_IPSRRTEITHER(3):
ROUTING EITHER

NMTP_IPSRRTROUTEDFRAG(4):
ROUTING ROUTED

FRAGMENTSONLY

12(X'C') NMTP_IPSRSecClass 1 Binary SECCLASS value.

13(X'D') NMTP_IPSRTypeEnd 1 Binary If the flag NMTP_IPSRTypeRangeDef is set,
this field contains the ending ICMP,
ICMPv6, or MIPv6 type value in a range.
The beginning type value in the range is
contained in the NMTP_IPSRType field.

14(X'E') NMTP_IPSRCodeEnd 1 Binary If the flag NMTP_IPSRCodeRangeDef is
set, this field contains the ending ICMP, or
ICMPv6 code value in a range. The
beginning code value in the range is
contained in the NMTP_IPSRCode field.

15(X'F) NMTP_IPSRDirection 1 Binary One of the following DIRECTION values:

NMTP_IPSRDIRBIDIR(1):
DIRECTION BIDIRECTIONAL

NMTP_IPSRDIRBIDIRINBCON(2):
DIRECTION BIDIRECTIONAL

INBCONNECT

NMTP_IPSRDIRBIDIROUTBCON(3):
DIRECTION BIDIRECTIONAL

OUTBCONNECT

NMTP_IPSRDIRINBOUND(4):
DIRECTION INBOUND

NMTP_IPSRDIROUTBOUND(5):
DIRECTION OUTBOUND

16(X'10') NMTP_IPSRSrcPort 2 Binary If the flag NMTP_IPSRSrcPortDef is set,
this field contains the source port number.
If flag NMTP_IPSRSrcPortRangeDef is not
set, this is the only source port number;
otherwise; this is the beginning source port
number in a range.

812 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|
|
|
|

|
|

|

|
|
|
|
|

|||||
|
|
|
|

|||||

|
|

|
|

|

|
|

|

|
|

|
|

|
|
|
|

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

18(X'12') NMTP_IPSRDestPort 2 Binary If the flag NMTP_IPSRDestPortDef is set,
this field contains the destination port
number. If flag
NMTP_IPSRDestPortRangeDef is not set,
this is the only destination port number;
otherwise; this is the beginning destination
port number in a range.

20(X'14') NMTP_IPSRSrcAddr4 4 Binary If the flag NMTP_IPSRSrcAddrDef is set,
and the NMTP_IPSRIPv6 flag is not set,
this field contains an IPv4 source address.
If flag NMTP_IPSRSrcAddrRangeDef is not
set, this is the only source IP address;
otherwise; this is the beginning source IP
address in a range.

20(X'14') NMTP_IPSRSrcAddr6 16 Binary If the flag NMTP_IPSRSrcAddrDef is set,
and the NMTP_IPSRIPv6 flag is set, this
field contains an IPv6 source address. If
flag NMTP_IPSRSrcAddrRangeDef is not
set, this is the only source IP address;
otherwise; this is the beginning source IP
address in a range.

36(X'24') NMTP_IPSRDestAddr4 4 Binary If the flag NMTP_IPSRDestAddrDef is set,
and the NMTP_IPSRIPv6 flag is not set,
this field contains an IPv4 destination
address. If flag
NMTP_IPSRDestAddrRangeDef is not set,
this is the only destination IP address;
otherwise; this is the beginning destination
IP address in a range.

36(X'24') NMTP_IPSRDestAddr6 16 Binary If the flag NMTP_IPSRDestAddrDef is set,
and the NMTP_IPSRIPv6 flag is set, this
field contains an IPv6 destination address.
If flag NMTP_IPSRDestAddrRangeDef is
not set, this is the only destination IP
address; otherwise; this is the beginning
destination IP address in a range.

52(X'34') NMTP_IPSRSrcAddr4End 4 Binary If the flag NMTP_IPSRSrcAddrRangeDef is
set, and the NMTP_IPSRIPv6 flag is not set,
this field contains the ending IPv4 source
IP address in a range. The beginning source
IP address in the range is contained in the
NMTP_IPSRSrcAddr4 field.

52(X'34') NMTP_IPSRSrcAddr6End 16 Binary If the flag NMTP_IPSRSrcAddrRangeDef is
set, and the NMTP_IPSRIPv6 flag is set,
this field contains the ending IPv6 source
IP address in a range. The beginning source
IP address in the range is contained in the
NMTP_IPSRSrcAddr6 field.

Appendix E. Type 119 SMF records 813

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|

Table 198. TCP/IP profile record IPSec Rule section (continued)

Offset Name Length Format Description

68(X'44') NMTP_IPSRDestAddr4End 4 Binary If the flag NMTP_IPSRDestAddrRangeDef
is set, and the NMTP_IPSRIPv6 flag is not
set, this field contains the ending IPv4
destination IP address in a range. The
beginning destination IP address in the
range is contained in the
NMTP_IPSRDestAddr4 field.

68(X'44') NMTP_IPSRDestAddr6End 16 Binary If the flag NMTP_IPSRDestAddrRangeDef
is set, and the NMTP_IPSRIPv6 flag is set,
this field contains the ending IPv6
destination IP address in a range. The
beginning destination IP address in the
range is contained in the
NMTP_IPSRDestAddr6 field.

84(X'54') NMTP_IPSRSrcPortEnd 2 Binary If the flag NMTP_IPSRSrcPortRangeDef is
set, this field contains the ending source
port number in a range. The beginning port
number in the range is contained in the
NMTP_IPSRSrcPort field.

86(X'56') NMTP_IPSRDestPortEnd 2 Binary If the flag NMTP_IPSRDestPortRangeDef is
set, this field contains the ending
destination port number in a range. The
beginning port number in the range is
contained in the NMTP_IPSRDestPort field.

TCP/IP profile record network access section
This section provides network access control information from the NETACCESS
profile statement. There can be multiple sections in the record, one per
NETACCESS network substatement.

Table 199 shows the TCP/IP profile record network access section.

Table 199. TCP/IP profile record network access section

Offset Name Length Format Description

0(X'0') NMTP_NETAEye 4 EBCDIC NETA eyecatcher

814 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||
|
|
|
|
|
|

|||||
|
|
|
|
|
|

|||||
|
|
|
|

|||||
|
|
|
|

Table 199. TCP/IP profile record network access section (continued)

Offset Name Length Format Description

4(X'4') NMTP_NETAFlags 1 Binary NETACCESS flags:

X'80', NMTP_NETAIPv6
If set IP addresses are IPv6,
otherwise IP addresses are
IPv4.

X'40', NMTP_NETAInBound
If set, inbound network
access control checking is in
effect.

X'20', NMTP_NETAOutBound
If set, outbound network
access control checking is in
effect.

X'10', NMTP_NETADefault
If set, this is a DEFAULT
entry.

X'08', NMTP_NETADefaultHome
If set, this is a
DEFAULTHOME entry.

5(X'5') NMTP_NETANetwPfxLen 1 Binary Network address prefix length for
the IPv4 or IPv6 network value.

Appendix E. Type 119 SMF records 815

Table 199. TCP/IP profile record network access section (continued)

Offset Name Length Format Description

6(X'6') NMTP_NETACache 1 Binary
NMTP_NETACacheAll (1)

When a SAF call is made to
check if a user has access to
a security zone, the result is
cached regardless of
whether access is permitted
or denied.

NMTP_NETACachePermit (2)
When a SAF call is made to
check if a user has access to
a security zone, the result is
cached if access is permitted,
but is not cached if access is
denied.

NMTP_NETACacheSame (3)
When a SAF call is made to
check if a user has access to
a security zone, the result is
cached if access is permitted,
but is not cached if access is
denied. In addition, a new
SAF call is made for a
previously permitted
security zone in one of the
following situations:

v If the user that is
associated with the socket
changes.

v If the IP address that is
being accessed changes
from the IP address in the
previous packet that was
received or sent over the
socket.

7(X'7') 1 Binary Reserved

8(X'8') NMTP_NETASafName 8 EBCDIC SAF resource name, padded with
trailing blanks.

16(X'10') NMTP_NETANetwAddr4 4 Binary One of the following values:

v If the NMTP_NETAIPv6 flag is not
set, and this is not a DEFAULT or
DEFAULTHOME entry, this field
contains the IPv4 network value.
The network value is the IPv4
network address ANDed with the
prefix length.

v If the NMTP_NETAIPv6 flag is set,
and this is not a DEFAULT or
DEFAULTHOME entry, this field
contains the IPv6 network value.
The network value is the IPv6
network address ANDed with the
prefix length.

816 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 199. TCP/IP profile record network access section (continued)

Offset Name Length Format Description

16(X'10') NMTP_NETANetwAddr6 16 Binary One of the following values:

v If the NMTP_NETAIPv6 flag is not
set, and this is not a DEFAULT or
DEFAULTHOME entry, this field
contains the IPv4 network value.
The network value is the IPv4
network address ANDed with the
prefix length.

v If the NMTP_NETAIPv6 flag is set,
and this is not a DEFAULT or
DEFAULTHOME entry, this field
contains the IPv6 network value.
The network value is the IPv6
network address ANDed with the
prefix length.

TCP/IP profile record dynamic VIPA (DVIPA) address section
This section provides information about dynamic VIPA (DVIPA) address and
interfaces, from the following VIPADYNAMIC profile substatements:
v VIPABACKUP
v VIPADEFINE
v VIPARANGE

There can be multiple sections in the record, one per each of the above profile
substatements. If requested configuration changes for this section were cancelled,
then:
v Only one section is provided in the record.
v Flag NMTP_DVCFChgCancelled is set. If this flag is set, no other information is

provided in the section.

Table 200 shows the dynamic VIPA address section.

Table 200. TCP/IP profile record dynamic VIPA (DVIPA) address section

Offset Name Length Format Description

0(X'0') NMTP_DVCFEye 4 EBCDIC DVCF eyecatcher

Appendix E. Type 119 SMF records 817

Table 200. TCP/IP profile record dynamic VIPA (DVIPA) address section (continued)

Offset Name Length Format Description

4(X'4') NMTP_DVCFFlags 2 Binary DVIPA flags:

X'8000', NMTP_DVCFChgCancelled:
If set, pending configuration changes
for this section were cancelled
because the stack is not currently
joined to the sysplex group. If this
flag is set, no other information is
provided in this section.

X'4000', NMTP_DVCFIPv6:
If set, IP addresses are IPv6;
otherwise, IP addresses are IPv4.

X'2000', NMTP_DVCFMoveImmed:
This flag is valid only when the
value of NMTP_DVCFType is Backup
or Define. If set, the DVIPA can be
immediately moved to another stack
when the other stack requests
ownership of it, but existing
connections are preserved. If this flag
is not set, the DVIPA cannot move to
another stack until all current
connections have ended.

X'1000', NMTP_DVCFMoveNonDisrupt:
This flag is valid only if the value of
NMTP_DVCFType is Range. If set,
the DVIPA can be immediately
moved to another stack when the
other stack requests ownership of it,
but existing connections are
preserved. If this flag is not set:

v A subsequent BIND on another
stack for the same DVIPA address
fails. A subsequent SIOCSVIPA
ioctl on another stack succeeds and
the DVIPA is deleted from this
stack. Any connections to the
DVIPA on this offset are
terminated.

v A subsequent SIOCSVIPA ioctl on
another stack succeeds and the
DVIPA is deleted from this stack.
Any connections to the DVIPA on
this stack are terminated.

818 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 200. TCP/IP profile record dynamic VIPA (DVIPA) address section (continued)

Offset Name Length Format Description

4(X'4')
(Cont) X'0800', NMTP_DVCFCpcScope

If set, the DVIPA cannot be moved to
or taken over by another TCP/IP
stack that is in a different central
processor complex (CPC). This flag is
valid only if field NMTP_DVCFType
is set to Backup or Define.

X'0400', NMTP_DVCFTier1
If set, the DVIPA is used to distribute
incoming requests to non-z/OS
targets. This flag is valid only if field
NMTP_DVCFType is set to Backup
or Define.

X'0200', NMTP_DVCFTier2
If set, the DVIPA is used to distribute
incoming requests from Tier1 targets
to server applications and the DVIPA
cannot be moved to or taken over by
another TCP/IP stack that is in a
different CPC. This flag is valid only
if field NMTP_DVCFType is set to
Backup or Define.

X'0100', NMTP_DVCFServMgr
If set, and this DVIPA is distributed,
MultiNode Load Balancing (MNLB)
is performed as part of the
distribution. This flag is not
supported.

X'0080', NMTP_DVCFDeactivated
If set, the associated DVIPA address
is currently deactivated. DVIPA
addresses and interfaces can be
deactivated by way of the VARY
TCPIP,,SYSPLEX,DEACTIVATE
command. This flag is valid only if
NMTP_DVCFType is Backup or
Define.

X'0040', NMTP_DVCFSAFNameSet
If set, the SAF parameter is specified
on the VIPARANGE statement. Field
NMTP_DVCFSAFName contains the
SAF parameter value.

6(X'6') NMTP_DVCFType 1 Binary DVIPA entry type:

NMTP_DVCFBackup(1)
Backup

NMTP_DVCFDefine(2)
Define

NMTP_DVCFRange(3)
Range

7(X'7') NMTP_DVCFBackupRank 1 Binary If the NMTP_DVCFType value is Backup, this
field contains the rank value.

Appendix E. Type 119 SMF records 819

Table 200. TCP/IP profile record dynamic VIPA (DVIPA) address section (continued)

Offset Name Length Format Description

8(X'8') NMTP_DVCFPfxLen 8 EBCDIC One of the following values:

v If the NMTP_DVCFType value is Define or
Backup, and the NMTP_DVCFIPv6 flag is
not set, this field contains the IPv4 subnet
prefix length.

v If the NMTP_DVCFType value is Define or
Backup, and the NMTP_DVCFIPv6 flag is
set, this field contains the IPv6 subnet
prefix length.

v If the NMTP_DVCFType value is Range,
and the NMTP_DVCFIPv6 flag is not set,
this field contains the prefix length used to
create the IPv4 VIPARANGE prefix.

v If the NMTP_DVCFType value is Range,
and the NMTP_DVCFIPv6 flag is set, this
field contains the prefix length used to
create the IPv6 VIPARANGE prefix.

v 0 if a prefix length was not specified.

9(X'9') 7 Binary Reserved

16(X'10') NMTP_DVCFAddr4 4 Binary One of the following values:

v If the NMTP_DVCFIPv6 flag is not set, this
field contains the IPv4 DVIPA IP address.

v If the NMTP_DVCFIPv6 flag is set, this
field contains the IPv6 DVIPA IP address.

16(X'10) NMTP_DVCFAddr6 16 Binary One of the following values:

v If the NMTP_DVCFIPv6 flag is not set, this
field contains the IPv4 DVIPA IP address.

v If the NMTP_DVCFIPv6 flag is set, this
field contains the IPv6 DVIPA IP address.

32(X'20') NMTP_DVCFIntfName 16 EBCDIC If the NMTP_DVCFIPv6 flag is set, this field
contains the IPv6 DVIPA interface name,
padded with trailing blanks.

48(X'30') NMTP_DVCFSAFName 8 EBCDIC If the NMTP_DVCFSAFNameSet flag is set,
this field contains the name specified on the
SAF parameter of the VIPARANGE statement,
padded with trailing blanks.

TCP/IP profile record dynamic VIPA (DVIPA) routing section
This section provides information about routes configured for dynamic VIPA
(DVIPA) distribution on the VIPADYNAMIC VIPAROUTE profile substatement.

There can be multiple sections in the record, one for each VIPAROUTE
substatement. If requested configuration changes for this section were cancelled,
then:
v Only one section is provided in the record
v Flag NMTP_DVRTChgCancelled is set. If this flag is set, no other information is

provided in the section.

Table 201 on page 821 shows the dynamic VIPA routing section.

820 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 201. TCP/IP profile record dynamic VIPA (DVIPA) routing section

Offset Name Length Format Description

0(X'0') NMTP_DVRTEye 4 EBCDIC DVRT eyecatcher

4(X'4') NMTP_DVRTFlags 1 Binary DVIPA route flags:

X'80', NMTP_DVRTChgCancelled:
If set, pending configuration changes
for this section were cancelled
because the stack is not currently
joined to the sysplex group. If this
flag is set, no other information is
provided in this section.

X'40', NMTP_DVRTIPv6:
If set, IP addresses are IPv6;
otherwise, IP addresses are IPv4.

5(X'5') 3 Binary Reserved

8(X'8') NMTP_DVRTDynXcfAddr4 4 Binary One of the following values:

v If the NMTP_DVRTIPv6 flag is not set, this
field contains the IPv4 dynamic XCF IP
address.

v If the NMTP_DVRTIPv6 flag is set, this
field contains the IPv6 dynamic XCF IP
address.

8(X'8') NMTP_DVRTDynXcfAddr6 16 Binary One of the following values:

v If the NMTP_DVRTIPv6 flag is not set, this
field contains the IPv4 dynamic XCF IP
address.

v If the NMTP_DVRTIPv6 flag is set, this
field contains the IPv6 dynamic XCF IP
address.

24(X'18') NMTP_DVRTTargetAddr4 4 Binary One of the following values:

v If the NMTP_DVRTIPv6 flag is not set, this
field contains the IPv4 target IP address.

v If the NMTP_DVRTIPv6 flag is set, this
field contains the IPv6 target IP address.

24(X'18') NMTP_DVRTTargetAddr6 16 Binary One of the following values:

v If the NMTP_DVRTIPv6 flag is not set, this
field contains the IPv4 target IP address.

v If the NMTP_DVRTIPv6 flag is set, this
field contains the IPv6 target IP address.

TCP/IP profile record distributed dynamic VIPA (DVIPA)
section

This section provides information about distributed TCP connection processing for
dynamic VIPA (DVIPA) interfaces. This information is configured on the
VIPADYNAMIC VIPADISTRIBUTE profile statement. There can be multiple
sections in the record. Each section represents one distributed dynamic VIPA, per
one distributed port, per one destination to a target TCP/IP stack or non-z/OS
target.

If requested configuration changes for this section were cancelled, then the
following occurs:

Appendix E. Type 119 SMF records 821

v Only one section is provided in the record.
v Flag NMTP_DDVSChgCancelled is set. If this flag is set, no other information is

provided in the section.

Table 202 shows the Distributed dynamic VIPA section.

Table 202. TCP/IP profile record Distributed dynamic VIPA (DVIPA) section
Offset Name Length Format Description

0(X'0') NMTP_DDVSEye 4 EBCDIC DDVS eyecatcher

4(X'4') NMTP_DDVSFlags 2 Binary Distributed DVIPA flags:

X'8000', NMTP_DDVSChgCancelled:
If set, pending configuration changes for this
section were cancelled because the stack is not
currently joined to the sysplex group. If this flag is
set, no other information is provided in this section.

X'4000', NMTP_DDVSIPv6:
If set, this is an IPv6 entry; otherwise, it is an IPv4
entry.

X'2000', NMTP_DDVSPort:
If set, the PORT parameter was specified and field
NMTP_DDVSDistPortNum contains the distributed
port number.

X'1000', NMTP_DDVSDestipAll:
If set, connections to the DVIPA address can be
distributed to all stacks connected to this stack by
way of a dynamic XCF interface of the same
protocol type (IPv4 or IPv6) as the DVIPA address.
If flag NMTP_DDVSTier2 is set, connections can be
distributed only to targets on the same CPC as the
Tier2 distributor.

X'0800', NMTP_DDVSOptLocal:
If set, target stacks should normally process new
connection requests locally instead of sending them
to the sysplex distributor stack, depending on the
OPTLOCAL value in field
NMTP_DDVSOptLocalValue.

X'0400', NMTP_DDVSSysplexPorts:
If set, coordinated sysplex-wide ephemeral port
assignment is activated for the distributed DVIPA
on all stacks where the DVIPA is defined.

822 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 202. TCP/IP profile record Distributed dynamic VIPA (DVIPA) section (continued)
Offset Name Length Format Description

4(X'4') (Cont)
X'0200', NMTP_DDVSTier1:

If this parameter is set, and the
NMTP_DDVSTier1Gre flag is set, incoming
connection requests to the distributed DVIPA are
distributed to non-z/OS targets. If this parameter is
set, and the NMTP_DDVSTier1Gre flag is not set,
incoming connection requests to the distributed
DVIPA are distributed to z/OS targets.

v If NMTP_DDVSIPv6 is not set, the
NMTP_DDVSDestipAddr4 field contains the IPv4
target IP address.

v If NMTP_DDVSIPv6 is set, the
NMTP_DDVSDestipAddr6 fields contain the IPv6
target IP address.

v The NMTP_DDVSTierGroupName field contains
the TIER1 group name.

v If the NMTP_DDVSTier1Gre flag is set, the
NMTP_DDVSControlPortNum field contains the
control port number.

X'0100', NMTP_DDVSTier1Gre:
If set and NMTP_DDVSIPv6 is not set, generic
routing encapsulation (GRE) is used to distribute
requests to IPv4 tier 1 non-z/OS targets. If set and
NMTP_DDVSIPv6 is set, IPv6 routing encapsulation
is used to distribute requests to IPv6 tier 1
non-z/OS targets. This flag can be set only if flag
NMTP_DDVSTier1 is set.

X'0080', NMTP_DDVSTier2:
If set, the DVIPA is used to distribute incoming
requests from tier 1 targets to server applications.
The NMTP_DDVSTierGroupName field contains the
TIER2 group name.

X'0040', NMTP_DDVSDeactivated:
If set, the associated distributed DVIPA is currently
deactivated. DVIPA distribution can be deactivated
by using the VARY TCPIP,,SYSPLEX,DEACTIVATE
command to deactivate the corresponding DVIPA
address.

X'0020', NMTP_DDVSSrvTypePreferred:
When the value of NMTP_DDVSDistMethod is
HotStandby, this flag is set if the server type is
Preferred:

1 This is the preferred server.

0 This is not the preferred server.

Appendix E. Type 119 SMF records 823

Table 202. TCP/IP profile record Distributed dynamic VIPA (DVIPA) section (continued)
Offset Name Length Format Description

4(X'4') (Cont)
X'0010', NMTP_DDVSSrvTypeBackup:

When the value of NMTP_DDVSDistMethod is
HotStandby, this flag is set if the server type is
Backup:

1 This is a backup server.

0 This is not a backup server.

X'0008', NMTP_DDVSAutoSwitchBack:
When the value of NMTP_DDVSDistMethod is
HotStandby, this flag is the AUTOSWITCHBACK
setting:

1 AUTOSWITCHBACK is configured.

0 NOAUTOSWITCHBACK is configured

X'0004', NMTP_DDVSHealthSwitch:
When the value of NMTP_DDVSDistMethod is
HotStandby, this flag is the HEALTHSWITCH
setting:

1 HEALTHSWITCH is configured.

0 NOHEALTHSWITCH is configured.

6(X'6') NMTP_DDVSDistMethod 1 Binary One of the following distribution methods:

NMTP_DDVSBaseWlm(1)
BaseWlm

NMTP_DDVSRoundRobin(2)
RoundRobin

NMTP_DDVSServerWlm(3)
ServerWlm

NMTP_DDVSWeightedActive(4)
WeightedActive

NMTP_DDVSTargetControlled(5)
TargetControlled

NMTP_DDVSHotStandby(6)
HotStandby

7(X'7') NMTP_DDVSBWProcTypeCp 1 Binary When the value of NMTP_DDVSDistMethod is BaseWlm, this
field contains the proportion of the workload that is expected
to use conventional processors.

8(X'8') NMTP_DDVSBWProcTypeZaap 1 Binary When the value of NMTP_DDVSDistMethod is BaseWlm, this
field contains the proportion of the workload that is expected
to use zAAP processors.

9(X'9') NMTP_DDVSBWProcTypeZiip 1 Binary When the value of NMTP_DDVSDistMethod is BaseWlm, this
field contains the proportion of the workload that is expected
to use zIIP processors.

10(X'A') NMTP_DDVSSWProcXcostZaap 1 Binary When the value of NMTP_DDVSDistMethod is ServerWlm,
this field contains the crossover cost of running the targeted
zAAP workload on a conventional processor instead of the
zAAP processor.

11(X'B') NMTP_DDVSSWProcXcostZiip 1 Binary When the value of NMTP_DDVSDistMethod is ServerWlm,
this field contains the crossover cost of running the targeted
zIIP workload on a conventional processor instead of the zIIP
processor.

12(X'C') NMTP_DDVSSWIlWeighting 1 Binary When the value of NMTP_DDVSDistMethod is ServerWlm,
this field contains the weighting factor WLM uses when
comparing displaceable capacity at different importance levels
(IL's) as it determines a SERVERWLM recommendation for
each system.

13(X'D') NMTP_DDVSWADestipWeight 1 Binary When the value of NMTP_DDVSDistMethod is
WeightedActive, this field contains the weight used by the
distributor to determine the proportion of active connections
on this target.

824 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 202. TCP/IP profile record Distributed dynamic VIPA (DVIPA) section (continued)
Offset Name Length Format Description

14(X'E') NMTP_DDVSOptLocalValue 1 Binary If flag NMTP_DDVSOptLocal is set, this field contains the
OPTLOCAL value.

15(X'F') NMTP_DDVSBackupRank 1 Binary When the flag NMTP_DDVSSrvTypeBackup is set, this field
contains the rank of the backup server.

16(X'10') 2 Binary Reserved

18(X'12') NMTP_DDVSTimedAffinity 2 Binary The number of seconds during which connection requests from
a client are routed to the same target server. This value is valid
only if the NMTP_DDVSOptlocal flag is not set.

20(X'14') NMTP_DDVSControlPortNum 2 Binary If flag NMTP_DDVSTier1 is set, this field contains the
destination port number to be used when establishing a control
connection to the Tier1 target.

22(X'16') NMTP_DDVSDistPortNum 2 Binary If flag NMTP_DDVSPort is set, this field contains the port
number for one of the distributed ports.

24(X'18') NMTP_DDVSTierGroupName 16 EBCDIC If either flag NMTP_DDVSTier1 or flag NMTP_DDVSTier2 is
set, this field contains the group name.

40(X'28') NMTP_DDVSDistAddr 4 Binary One of the following values:

v If the NMTP_DDVSIPv6 flag is not set, this field contains the
IPv4 distributed DVIPA IP address.

v If the NMTP_DDVSIPv6 flag is set, this field contains the
IPv6 distributed DVIPA interface name.

40(X'28') NMTP_DDVSDistIntfName 16 EBCDIC One of the following values:

v If the NMTP_DDVSIPv6 flag is not set, this field contains the
IPv4 distributed DVIPA IP address.

v If the NMTP_DDVSIPv6 flag is set, this field contains the
IPv6 distributed DVIPA interface name.

56(X'38') NMTP_DDVSDestipAddr4 4 Binary If the flag NMTP_DDVSDestipAll is not set, this field contains
one of the destinations to which connections requests are sent.
If the NMTP_DDVSIPv6 flag is set, this field contains an IPv6
IP address, otherwise it contains an IPv4 IP address. The
address is one of the following values:

v If the NMTP_DDVSTier1Gre flag is not set, a dynamic XCF
IP address to a target stack.

v If the NMTP_DDVSTier1GRE flag is set, a non- z/OS target's
IP address.

56(X'38') NMTP_DDVSDestipAddr6 16 Binary If the flag NMTP_DDVSDestipAll is not set, this field contains
one of the destinations to which connections requests are sent.
If the NMTP_DDVSIPv6 flag is set, this field contains an IPv6
IP address, otherwise it contains an IPv4 IP address. The
address is one of the following values:

v If the NMTP_DDVSTier1Gre flag is not set, a dynamic XCF
IP address to a target stack.

v If the NMTP_DDVSTier1GRE flag is set, a non- z/OS target's
IP address.

TCP/IP profile record policy table for IPv6 default address
selection section

This section provides information about the policy table for IPv6 default address
selection. This information is configured on the DEFADDRTABLE profile
statement. Multiple sections can be in the record, one per policy.

Table 203. TCP/IP profile record policy table for IPv6 default address selection section

Offset Name Length Format Description

0(X'0') NMTP_DASPEye 4 EBCDIC Eyecatcher

4(X'4') NMTP_DASPPrefix 16 Binary IPv6 address prefix

20(X'14') NMTP_DASPPfxLen 1 Binary IPv6 prefix length

21(X'15') NMTP_DASPRsv 3 Binary Reserved

Appendix E. Type 119 SMF records 825

Table 203. TCP/IP profile record policy table for IPv6 default address selection
section (continued)

Offset Name Length Format Description

24(X'18') NMTP_DASPPrecedence 2 Binary Policy precedence

26(X'1A') NMTP_DASPLabel 2 Binary Policy label

TCP/IP statistics record (subtype 5)
The TCP/IP statistics record is collected at user-specified intervals. The record
provides data about IP, TCP, UDP, and ICMP activity in the reporting TCP stack
during the previous recording interval, including TCP activity for Shared Memory
Communications over Remote Direct Memory Access (SMC-R) processing. For
those fields that provide an interval value, the cumulative value for each statistic
reported can be obtained by adding the values reported for the statistic in the
individual TCP/IP statistics interval records. Other fields provide the current value
of a statistic and are not interval values. If TCP/IP statistics recording is turned off
dynamically, or the TCP stack terminates, a final TCP/IP statistics record is
generated to report close-out statistics.

The Type 119 TCP/IP statistics record is generated using the same user specified
interval time value as the equivalent Type 118 TCPIPSTATISTICS record.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TCP/IP statistics record, the TCP/IP stack identification section
indicates STACK as the subcomponent and X'08' (event record), X'20' (recording
stop), or X'10' (recording shutdown) as the record reason.

Table 204 shows the TCP/IP statistics record self-defining section:

Table 204. SMF records: TCP/IP statistics record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
5(X'5')

Self-defining section

24(X'5') SMF119SD_TRN 2 Binary Number of triplets in this record (7)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to IPv4 IP statistics section

40(X'28') SMF119S1Len 2 Binary Length of IPv4 IP statistics section

42(X'2A') SMF119S1Num 2 Binary Number of IPv4 IP statistics sections

44(X'2C') SMF119S2Off 4 Binary Offset to TCP statistics section

48(X'30') SMF119S2Len 2 Binary Length of TCP statistics section

50(X'32') SMF119S2Num 2 Binary Number of TCP statistics sections

52(X'34') SMF119S3Off 4 Binary Offset to UDP statistics section

826 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 204. SMF records: TCP/IP statistics record self-defining section (continued)

Offset Name Length Format Description

56(X'38') SMF119S3Len 2 Binary Length of UDP statistics section

58(X'3A') SMF119S3Num 2 Binary Number of UDP statistics sections

60(X'3C') SMF119S4Off 4 Binary Offset to IPv4 ICMP statistics section

64(X'40') SMF119S4Len 2 Binary Length of IPv4 ICMP statistics
section

66(X'42') SMF119S4Num 2 Binary Number of IPv4 ICMP statistics
sections

68 (X'44') SMF119S5Off 4 Binary Offset to IPv6 IP statistics section

72 (X'48') SMF119S5Len 2 Binary Length of IPv6 IP statistics section

74 (X'4A') SMF119S5Num 2 Binary Number of IPv6 IP statistics sections

76 (X'4C') SMF119S6Off 4 Binary Offset to IPv6 ICMP statistics section

80 (X'50') SMF119S6Len 2 Binary Length of IPv6 ICMP statistics
section

82 (X'52') SMF119S6Num 2 Binary Number of IPv6 ICMP statistics
sections

84 (X'54') SMF119S7Off 4 Binary Offset to storage statistics section

88 (X'58') SMF119S7Len 2 Binary Length of storage statistics section

90 (X'5A') SMF119S7Num 2 Binary Number of storage statistics sections

Table 205 shows the IP statistics section:

Table 205. IP statistics section

Offset Name Length Format Description

0(X'0') SMF119AP_TSIPDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(X'8') SMF119AP_TSIPRecData 4 Binary Number of datagrams received

12(X'C') SMF119AP_TSIPDscData 4 Binary Number of input datagrams
discarded due to errors in their IP
headers

16(X'10') SMF119AP_TSIPDscDAddr 4 Binary Number of input datagrams
discarded because the IP address in
their IP header's destination field was
not valid

20(X'14') SMF119AP_TSIPAttFwdData 4 Binary Number of attempts to forward
datagrams

24(X'18') SMF119AP_TSIPDscDUnkPr 4 Binary Number of datagrams discarded
because of an unknown or
unsupported protocol

28(X'1C') SMF119AP_TSIPDscDOth 4 Binary Number of input datagrams
discarded that are not accounted for
in another input discard counter

32(X'20') SMF119AP_TSIPDlvData 4 Binary Number of datagrams delivered

36(X'24') SMF119AP_TSIPXData 4 Binary Number of datagrams transmitted

Appendix E. Type 119 SMF records 827

Table 205. IP statistics section (continued)

Offset Name Length Format Description

40(X'28') SMF119AP_TSIPXDscOth 4 Binary Number of outbound transmitted
datagrams discarded, due to reasons
other than no route being available

44(X'2C') SMF119AP_TSIPXDscRoute 4 Binary Number of outbound transmitted
datagrams discarded, due to no route
being available

48(X'30') SMF119AP_TSIPTimeouts 4 Binary Number of reassembly timeouts

52(X'34') SMF119AP_TSIPRecDRsbm 4 Binary Number of received datagrams
requiring assembly

56(X'38') SMF119AP_TSIPRsmb 4 Binary Number of datagrams reassembled

60(X'3C') SMF119AP_TSIPFailRsmb 4 Binary Number of failed reassembly
attempts

64(X'40') SMF119AP_TSIPRecFgmt 4 Binary Number of fragmented datagrams
received

68(X'44') SMF119AP_TSIPDscDFgmt 4 Binary Number of discarded datagrams due
to fragmentation failures

72(X'48') SMF119AP_TSIPXFgmt 4 Binary Number of fragments generated

76(X'4C') SMF119AP_TSIPRouteDisc 4 Binary Number of routing discards

80(X'50') SMF119AP_TSIPMaxRsmb 4 Binary Maximum active number of
reassemblies

84(X'54') SMF119AP_TSIPCurRsmb 4 Binary Number of currently active
reassemblies

88(X'58') SMF119AP_TSIPRsmbFlags 4 Binary Reassembly flags

92(X'5C') SMF119AP_TSIPInCalls 4 Binary Number of inbound calls from device
layer

96(X'60') SMF119AP_TSIPInUerrs 4 Binary Number of received frame unpacking

100(X'64') SMF119AP_TSIPIDMem 4 Binary Number of discarded datagrams, due
to memory shortages

104(X'68') SMF119AP_TSIPODSync 4 Binary Number of transmitted datagrams
discarded, due to Sync errors

108(X'6C') SMF119AP_TSIPODAsyn 4 Binary Number of transmitted datagrams
discarded, due to Async errors

112(X'70') SMF119AP_TSIPODMem 4 Binary Number of transmitted datagrams
discarded due to memory shortages

Table 206 shows the TCP statistics section:

Table 206. TCP statistics section

Offset Name Length Format Description

0(X'0') SMF119AP_TSTCDuration 8 Binary Duration of
recording interval in
microseconds,
where bit 51 is
equivalent to one
microsecond

8(X'8') SMF119AP_TSTCAlg 4 Binary Retransmission
algorithm

828 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 206. TCP statistics section (continued)

Offset Name Length Format Description

12(X'C') SMF119AP_TSTCMinRet 4 Binary Minimum
retransmission time,
in milliseconds

16(X'10') SMF119AP_TSTCMxRet 4 Binary Maximum
retransmission time,
in milliseconds

20(X'14') SMF119AP_TSTCMxCon 4 Binary Maximum TCP
connections

24(X'18') SMF119AP_TSTCOpenConn 4 Binary Number of active
open connections,
including active
open connections
across SMC-R links

28(X'1C') SMF119AP_TSTCPassConn 4 Binary Number of passive
open connections,
including passive
open connections
across SMC-R links

32(X'20') SMF119AP_TSTCOFails 4 Binary Number of open
connection failures

36(X'24') SMF119AP_TSTCConReset 4 Binary Number of
connection resets,
including resets for
connections across
SMC-R links

40(X'28') SMF119AP_TSTCEstab 4 Binary Number of current
establishments,
including
establishments for
connections across
SMC-R links

44(X'2C') SMF119AP_TSTCInSegs 4 Binary Number of input
TCP segments,
including input TCP
segments for
connections across
SMC-R links

48(X'30') SMF119AP_TSTCOSegs 4 Binary Number of output
TCP segments,
including output
TCP segments for
connections across
SMC-R links

52(X'34') SMF119AP_TSTCRxSegs 4 Binary Number of
retransmitted
segments

56(X'38') SMF119AP_TSTCInErrs 4 Binary Number of input
errors

Appendix E. Type 119 SMF records 829

Table 206. TCP statistics section (continued)

Offset Name Length Format Description

60(X'3C') SMF119AP_TSTCReset 4 Binary Number of resets
sent, including
resets for
connections across
SMC-R links

64(X'40') SMF119AP_TSTCConCls 4 Binary Number of TCP
connections closed,
including
connections across
SMC-R links

68(X'44') SMF119AP_TSTCConAttD 4 Binary Number of TCP
connection attempts
discarded

72(X'48') SMF119AP_TSTCTWRef 4 Binary Number of TCP
Timewait
connections
assassinated

76(X'4C') SMF119AP_TSTCHOKAck 4 Binary Number of header
predictions (OK for
ACK)

80(X'50') SMF119AP_TSTCHOKDat 4 Binary Number of header
predictions (OK for
Data)

84(X'54') SMF119AP_TSTCIDupAck 4 Binary Number of
duplicate ACKs
received

88(X'58') SMF119AP_TSTCDscChecksum 4 Binary Number of received
packets discarded
due to bad
checksum values

92(X'5C') SMF119AP_TSTCDscLen 4 Binary Number of received
packets discarded
due to bad header
length

96(X'60') SMF119AP_TSTCDscInsData 4 Binary Number of received
packets discarded
due to insufficient
data

100(X'64') SMF119AP_TSTCDscOldTime 4 Binary Number of received
packets discarded
due to old
timestamp
information

104(X'68') SMF119AP_TSTCICmpDupSeg 4 Binary Number of received
complete duplicate
segments

108(X'6C') SMF119AP_TSTCIPartDupSeg 4 Binary Number of received
partial duplicate
segments

830 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 206. TCP statistics section (continued)

Offset Name Length Format Description

112(X'70') SMF119AP_TSTCICmpSegsWin 4 Binary Number of complete
segments received
after window
closure

116(X'74') SMF119AP_TSTCIPartSegsWin 4 Binary Number of partial
segments received
after window
closure

120(X'78') SMF119AP_TSTCIOOrder 4 Binary Number of
out-of-order
segments received

124(X'7C') SMF119AP_TSTCISegCls 4 Binary Number of
segments received
after the TCP
connection closed

128(X'80') SMF119AP_TSTCIWinPr 4 Binary Number of received
window probes

132(X'84') SMF119AP_TSTCIWinUp 4 Binary Number of received
window updates

136(X'88') SMF119AP_TSTCOWinPr 4 Binary Number of
transmitted window
probes

140(X'8C') SMF119AP_TSTCOWinUp 4 Binary Number of
transmitted window
updates

144(X'90') SMF119AP_TSTCODlAck 4 Binary Number of
transmitted delayed
ACKs

148(X'94') SMF119AP_TSTCOKApr 4 Binary Number of
transmitted
keepalive probes,
including keepalive
probes sent on the
TCP path for
connections across
SMC-R links

152(X'98') SMF119AP_TSTCRxTim 4 Binary Number of
retransmitted
timeouts

156(X'9C') SMF119AP_TSTCRxMTU 4 Binary Number of
retransmitted Path
MTU discovery
packets

160(X'A0') SMF119AP_TSTCPathM 4 Binary Number of Path
MTUs beyond
retransmit limit

164(X'A4') SMF119AP_TSTCDropPr 4 Binary Number of TCP
connections
dropped due to
probes

Appendix E. Type 119 SMF records 831

Table 206. TCP statistics section (continued)

Offset Name Length Format Description

168(X'A8') SMF119AP_TSTCDropKA 4 Binary Number of TCP
connections
dropped by
KeepAlive,
including
connections across
SMC-R links

172(X'AC') SMF119AP_TSTCDropF2 4 Binary Number of TCP
connections
dropped because
the FINWAIT2 timer
expired before
receiving FIN
segments, including
connections across
SMC-R links

176(X'B0') SMF119AP_TSTCDropRx 4 Binary Number of TCP
connections
dropped due to
retransmits

180(X'B4') SMF119AP_TSTCEphPortExh 4 Binary Number of bind()
requests that failed
because no TCP
ephemeral ports
were available

184(X'B8') SMF119AP_TSTCEphPortAvail 2 Binary Number of available
TCP ephemeral
ports

186(X'BA') SMF119AP_TSTCEphPortInUse 2 Binary Number of TCP
ephemeral ports
currently in use

188(X'BC') SMF119AP_TSTCEphPortMxUse 2 Binary Maximum number
of TCP ephemeral
ports that are used

190(X'BE') SMF119AP_TSrsvd1 2 Binary Reserved

192(X'C0') SMF119AP_TSSMCRCurrEstabLnks 4 Binary Number of current
active SMC-R links

196(X'C4') SMF119AP_TSSMCRLnkActTimeOut 4 Binary Number of SMC-R
link activation
attempts for which
a timeout occurred

200(X'C8') SMF119AP_TSSMCRActLnkOpened 4 Binary Number of active
SMC-R links that
have been opened

204(X'CC') SMF119AP_TSSMCRPasLnkOpened 4 Binary Number of passive
SMC-R links that
have been opened

208(X'D0') SMF119AP_TSSMCRLnksClosed 4 Binary Number of SMC-R
links that have been
closed

832 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 206. TCP statistics section (continued)

Offset Name Length Format Description

212(X'D4') SMF119AP_TSSMCRCurrEstab 4 Binary Current number of
TCP connections
that are across
SMC-R links

216(X'D8') SMF119AP_TSSMCRActiveOpened 4 Binary Number of active
TCP connections
that have been
opened across
SMC-R links

220(X'DC') SMF119AP_TSSMCRPassiveOpened 4 Binary Number of passive
TCP connections
that have been
opened across
SMC-R links

224(X'E0') SMF119AP_TSSMCRConnClosed 4 Binary Number of closed
TCP connections
that were across
SMC-R links

228(X'E4') SMF119AP_TSrsvd2 4 Binary Reserved

232(X'E8') SMF119AP_TSSMCRInSegs 8 Binary Number of SMC-R
inbound write
operations

240(X'F0') SMF119AP_TSSMCROutSegs 8 Binary Number of SMC-R
outbound write
operations

248(X'F8') SMF119AP_TSSMCRInRsts 4 Binary Number of SMC-R
inbound write
operations that
contained the
abnormal close flag

252(X'FC') SMF119AP_TSSMCROutRsts 4 Binary Number of SMC-R
outbound write
operations that
contained the
abnormal close flag

Table 207 shows the UDP statistics section:

Table 207. UDP statistics section

Offset Name Length Format Description

0(X'0') SMF119AP_TSUDDuration 8 Binary Duration of
recording interval in
microseconds,
where bit 51 is
equivalent to one
microsecond

8(X'8') SMF119AP_TSUDRecData 8 Binary Number of UDP
datagrams received

Appendix E. Type 119 SMF records 833

Table 207. UDP statistics section (continued)

Offset Name Length Format Description

16(X'10') SMF119AP_TSUDRecNoPort 4 Binary Number of UDP
datagrams received
with no port
defined

20(X'14') SMF119AP_TSUDNoRec 4 Binary Number of other
UDP datagrams not
received

24(X'18') SMF119AP_TSUDXmtData 8 Binary Number of UDP
datagrams sent

32(X'20') SMF119AP_TSUDEphPortExh 4 Binary Number of bind()
requests that failed
because no UDP
ephemeral ports
were available

36(X'24') SMF119AP_TSUDEphPortAvail 2 Binary Number of available
UDP ephemeral
ports

38(X'26') SMF119AP_TSUDEphPortInUse 2 Binary Number of UDP
ephemeral ports
currently in use

40(X'28') SMF119AP_TSUDEphPortMxUse 2 Binary Maximum number
of UDP ephemeral
ports that are used

Table 208 shows the ICMP statistics section:

Table 208. ICMP statistics section

Offset Name Length Format Description

0(X'0') SMF119AP_TSICDuration 8 Binary Duration of recording interval
in microseconds, where bit 51
is equivalent to one
microsecond

8(X'8') SMF119AP_TSICInMsg 4 Binary Number of inbound ICMP
messages

12(X'C') SMF119AP_TSICInError 4 Binary Number of inbound ICMP
error messages

16(X'10') SMF119AP_TSICInDstUnreach 4 Binary Number of inbound ICMP
destination unreachable
messages

20(X'14') SMF119AP_TSICInTimeExcd 4 Binary Number of inbound ICMP
time exceeded messages

24(X'18') SMF119AP_TSICInParmProb 4 Binary Number of inbound ICMP
parameter problem messages

28(X'1C') SMF119AP_TSICInSrcQuench 4 Binary Number of inbound ICMP
source quench messages

32(X'20') SMF119AP_TSICInRedirect 4 Binary Number of inbound ICMP
redirect messages

36(X'24') SMF119AP_TSICInEcho 4 Binary Number of inbound ICMP
echo request messages

834 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 208. ICMP statistics section (continued)

Offset Name Length Format Description

40(X'28') SMF119AP_TSICInEchoRep 4 Binary Number of inbound ICMP
echo reply messages

44(X'2C') SMF119AP_TSICInTstamp 4 Binary Number of inbound ICMP
timestamp request messages

48(X'30') SMF119AP_TSICInTstampRep 4 Binary Number of inbound ICMP
timestamp reply messages

52(X'34') SMF119AP_TSICInAddrMask 4 Binary Number of inbound ICMP
address mask request
messages

56(X'38') SMF119AP_TSICInAddrMRep 4 Binary Number of inbound ICMP
address mask reply messages

60(X'3C') SMF119AP_TSICOutMsg 4 Binary Number of outbound ICMP
messages

64(X'40') SMF119AP_TSICOutError 4 Binary Number of outbound ICMP
error messages

68(X'44') SMF119AP_TSICOutDstUnreach 4 Binary Number of outbound ICMP
destination unreachable
messages

72(X'48') SMF119AP_TSICOutTimeExcd 4 Binary Number of outbound ICMP
time exceeded messages

76(X'4C') SMF119AP_TSICOutParmProb 4 Binary Number of outbound ICMP
parameter problem messages

80(X'50') SMF119AP_TSICOutSrcQuench 4 Binary Number of outbound ICMP
source quench messages

84(X'54') SMF119AP_TSICOutRedirect 4 Binary Number of outbound ICMP
redirect messages

88(X'58') SMF119AP_TSICOutEcho 4 Binary Number of outbound ICMP
echo request messages

92(X'5C') SMF119AP_TSICOutEchoRep 4 Binary Number of outbound ICMP
echo reply messages

96(X'60') SMF119AP_TSICOutTstamp 4 Binary Number of outbound ICMP
timestamp request messages

100(X'64') SMF119AP_TSICOutTstampRep 4 Binary Number of outbound ICMP
timestamp reply messages

104(X'68') SMF119AP_TSICOutAddrMask 4 Binary Number of outbound ICMP
address mask request
messages

108(X'6C') SMF119AP_TSICOutAddrMRep 4 Binary Number of outbound ICMP
address mask reply messages

Table 209 shows the IPv6 IP statistics section:

Table 209. IPv6 IP statistics section

Offset Name Length Format Description

0 (X'00') SMF119AP_TSP6Duration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(X'08') SMF119AP_TSP6RecData 4 Binary Number of IPv6 datagrams received

Appendix E. Type 119 SMF records 835

Table 209. IPv6 IP statistics section (continued)

Offset Name Length Format Description

12(X'0C') SMF119AP_TSP6DscData 4 Binary Number of input IPv6 datagrams
discarded due to errors in their IP
header

16(X'10') SMF119AP_TSP6DscAddr 4 Binary Number of input IPv6 datagrams
discarded because the IP address in
their IP header's destination field was
not valid

20(X'14') SMF119AP_TSP6AttFwdData 4 Binary Number of attempts to forward IPv6
datagrams

24(X'18') SMF119AP_TSP6DscDUnkPr 4 Binary Number of IPv6 datagrams discarded
because of an unknown or
unsupported protocol

28(X'1C') SMF119AP_TSP6DscDOth 4 Binary Number of input IPv6 datagrams
discarded that are not accounted for
in another input discard counter

32(X'20') SMF119AP_TSP6DlvData 4 Binary Number of IPv6 datagrams delivered

36(X'24') SMF119AP_TSP6XData 4 Binary Number of IPv6 datagrams
transmitted

40(X'28') SMF119AP_TSP6XDscOth 4 Binary Number of IPv6 outbound datagrams
discarded, due to reasons other than
no route being available

44(X'2C') SMF119AP_ TSP6XDscRoute 4 Binary Number of IPv6 outbound datagrams
discarded, due to no route being
available

48(X'30') SMF119AP_TSP6Timeouts 4 Binary Number of IPv6 reassembly timeouts

52(X'34') SMF119AP_ TSP6RecDRsmb 4 Binary Number of received IPv6 datagrams
requiring reassembly

56(X'38') SMF119AP_TSP6Rsmb 4 Binary Number of received IPv6 datagrams
reassembled

60(X'3C') SMF119AP_TSP6FailRsmb 4 Binary Number of failed reassembly
attempts on IPv6 datagrams

64(X'40') SMF119AP_TSP6RecFgmt 4 Binary Number of fragmented IPv6
datagrams received

68(X'44') SMF119AP_ TSP6DscDFgmt 4 Binary Number of IPv6 datagrams discarded
due to fragmentation failure

72(X'48') SMF119AP_TSP6XFgmt 4 Binary Number of IPv6 datagram fragments
generated

76(X'4C') SMF119AP_ TSP6RouteDisc 4 Binary Number of IPv6 routing discards

Table 210 shows the IPv6 ICMP statistics section:

Table 210. IPv6 ICMP statistics section

Offset Name Length Format Description

0 (X'00') SMF119AP_TSC6Duration 8 Binary Duration of recording interval
in microseconds, where bit 51
is equivalent to one
microsecond

836 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 210. IPv6 ICMP statistics section (continued)

Offset Name Length Format Description

8(X'08') SMF119AP_TSC6InMsg 4 Binary Number of inbound IPv6 ICMP
messages

12(X'0C') SMF119AP_TSC6InError 4 Binary Number of inbound IPv6 ICMP
error messages

16(X'10') SMF119AP_ TSC6InDstUnreach 4 Binary Number of inbound IPv6 ICMP
destination unreachable
messages

20(X'14') SMF119AP_ TSC6InTimeExcd 4 Binary Number of inbound IPv6 ICMP
time exceeded messages

24(X'18') SMF119AP_ TSC6InParmProb 4 Binary Number of inbound IPv6 ICMP
parameter problem messages

28(X'1C') SMF119AP_ TSC6InAdmProhib 4 Binary Number of inbound IPv6 ICMP
administratively prohibited
messages

32(X'20') SMF119AP_ TSC6InPktTooBig 4 Binary Number of inbound IPv6 ICMP
packet too big messages

36(X'24') SMF119AP_TSC6InEcho 4 Binary Number of inbound IPv6 ICMP
echo request messages

40(X'28') SMF119AP_ TSC6InEchoRep 4 Binary Number of inbound IPv6 ICMP
echo reply messages

44(X'2C') SMF119AP_ TSC6InRtSolicit 4 Binary Number of inbound IPv6 ICMP
router solicitation messages

48(X'30') SMF119AP_TSC6InRtAdv 4 Binary Number of inbound IPv6 ICMP
router advertisement messages

52(X'34') SMF119AP_ TSC6InNbSolicit 4 Binary Number of inbound IPv6 ICMP
neighbor solicitation messages

56(X'38') SMF119AP_TSC6InNbAdv 4 Binary Number of inbound IPv6 ICMP
neighbor advertisement
messages

60(X'3C') SMF119AP_ TSC6InRedirect 4 Binary Number of inbound IPv6 ICMP
redirect messages

64(X'40') SMF119AP_TSC6InGrpMemQry 4 Binary Number of inbound IPv6 ICMP
multicast listener discovery
membership query messages

68(X'44') SMF119AP_ TSC6InGrpMemRsp 4 Binary Number of inbound IPv6 ICMP
multicast listener discovery
membership reply messages

72(X'48') SMF119AP_ TSC6InGrpMemRed 4 Binary Number of inbound IPv6 ICMP
multicast listener discovery
membership reduction
messages

76(X'4C') SMF119AP_TSC6OutMsg 4 Binary Number of outbound IPv6
ICMP messages

80 (X'50') SMF119AP_TSC6OutError 4 Binary Number of outbound IPv6
ICMP error messages

84 (X'54') SMF119AP_ TSC6OutDstUnrch 4 Binary Number of outbound IPv6
ICMP destination unreachable
messages

Appendix E. Type 119 SMF records 837

Table 210. IPv6 ICMP statistics section (continued)

Offset Name Length Format Description

88 (X'58') SMF119AP_ TSC6OutTimeExcd 4 Binary Number of outbound IPv6
ICMP time exceeded messages

92 (X'5C') SMF119AP_ TSC6OutParmProb 4 Binary Number of outbound IPv6
ICMP parameter problem
messages

96 (X'60') SMF119AP_
TSC6OutAdmProhib

4 Binary Number of outbound IPv6
ICMP administratively
prohibited messages

100 (X'64') SMF119AP_TSC6OutPktTooBig 4 Binary Number of outbound IPv6
ICMP packet too big messages

104 (X'68') SMF119AP_TSC6OutEcho 4 Binary Number of outbound IPv6
ICMP echo request messages

108 (X'6C') SMF119AP_ TSC6OutEchoRep 4 Binary Number of outbound IPv6
ICMP echo reply messages

112 (X'70') SMF119AP_ TSC6OutRtSolicit 4 Binary Number of outbound IPv6
ICMP router solicitation
messages

116 (X'74') SMF119AP_TSC6OutRtAdv 4 Binary Number of outbound IPv6
ICMP router advertisement
messages

120 (X'78') SMF119AP_ TSC6OutNbSolicit 4 Binary Number of outbound IPv6
ICMP neighbor solicitation
messages

124 (X'7C') SMF119AP_ TSC6OutNbAdv 4 Binary Number of outbound IPv6
ICMP neighbor advertisement
messages

128 (X'80') SMF119AP_ TSC6OutRedirect 4 Binary Number of outbound IPv6
ICMP redirect messages

132 (X'84') SMF119AP_
TSC6OutGrpMemQry

4 Binary Number of outbound IPv6
ICMP multicast listener
discovery membership query
messages

136 (X'88') SMF119AP_
TSC6OutGrpMemRsp

4 Binary Number of outbound IPv6
ICMP multicast listener
discovery membership report
messages

140 (X'8C') SMF119AP_
TSC6OutGrpMemRed

4 Binary Number of outbound IPv6
ICMP multicast listener
discovery membership
reduction messages

Table 211 shows the storage statistics section.

Table 211. Storage statistics section

Offset Name Length Format Description

0(X'0') SMF119AP_TSSTECSACurrent 8 Binary Current number of ECSA
storage bytes allocated

838 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 211. Storage statistics section (continued)

Offset Name Length Format Description

8(X'8') SMF119AP_TSSTECSAFree 8 Binary Current number of ECSA
storage bytes allocated but
not in use

16(X'10') SMF119AP_TSSTPrivateCurrent 8 Binary Current number of
authorized private subpool
storage bytes allocated

24(X'18') SMF119AP_TSSTPrivateFree 8 Binary Current number of
authorized private subpool
storage bytes allocated but
not in use.

32(X'20') SMF119AP_TSSTSMCRFixedCurrent 8 Binary Current amount of fixed
64-bit storage bytes allocated
for SMC-R

40(X'28') SMF119AP_TSSTSMCRFixedMax 8 Binary Maximum amount of fixed
64-bit storage bytes ever
allocated for SMC-R

48(X'30') SMF119AP_TSSTSMCRSendCurrent 8 Binary Current amount of fixed
64-bit storage bytes allocated
for SMC-R outbound
processing

56(X'38') SMF119AP_TSSTSMCRSendMax 8 Binary Maximum amount of fixed
64-bit storage bytes ever
allocated for SMC-R
outbound processing

64(X'40') SMF119AP_TSSTSMCRRecvCurrent 8 Binary Current amount of fixed
64-bit storage bytes allocated
for SMC-R inbound
processing

72(X'48') SMF119AP_TSSTSMCRRecvMax 8 Binary Maximum amount of fixed
64-bit storage bytes ever
allocated for SMC-R inbound
processing

Interface statistics record (subtype 6)
The Interface statistics record is collected at user specified intervals. The record
provides statistical data about the interfaces of a stack, one interface specific
section per interface. This SMF record does not provide data for VIPA, loopback,
OSAENTA, or 10GbE RoCE Express interfaces. It does not provide data for any
interface in the process of being deleted from the stack at the time of interval
reporting. For 10GbE RoCE Express interface statistics, see “RDMA network
interface card (RNIC) interface statistics record (subtype 44)” on page 909.

Each interface specific section reports statistical data about the interface for the
previous recording interval. To determine a cumulative value for a given statistic
reported, the user must sum the values reported for the statistic in the individual
Interface statistics interval records. If interface statistics recording is turned off
dynamically, or the TCP stack terminates, a final interface statistics record is
generated to report close-out data. If a given LINK or INTERFACE statement is
deleted during a recording interval, any data related to that interface during the
recording interval is lost (for example, is not reported in the next interval record).

Appendix E. Type 119 SMF records 839

Depending on the number of interfaces, this report can be spread across multiple
records, in which case the self-defining section for each record specifies the content
layout of that particular record.

There is no Type 118 record equivalent to the link interface statistics record.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the interface statistics record, the TCP/IP stack identification section
indicates IP as the subcomponent and one of the six possible interval record reason
settings, depending on if the reporting is due to interval expiration, statistics
collection termination, or collection shutdown, and whether one or more physical
records are needed to report all the interface statistics.

Table 212 shows the interface statistics record self-defining section:

Table 212. Interface statistics record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
6(X'6')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to first interface section

40(X'28') SMF119S1Len 2 Binary Length of each interface section

42(X'2A') SMF119S1Num 2 Binary Number of interface sections

44 (X'2C') SMF119S2Off 4 Binary Offset to first IPv6 additional HOME
IP address section

48 (X'30') SMF119S2Len 4 Binary Length of each IPv6 additional
HOME IP address section

50 (X'32') SMF119S2Num 2 Binary Number of IPv6 additional HOME IP
address sections

Table 213 shows the interface statistics specific record (one per LINK or
INTERFACE definition):

Table 213. Interface statistics section

Offset Name Length Format Description

0(X'0') SMF119IS_IFDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(X'8') SMF119IS_IFLnkHome 16 Binary Interface HOME address. For IPv6
interfaces, additional addresses might
be specified in subsequent HOME IP
address sections.

24(X'18') SMF119IS_IFName 16 EBCDIC Link or interface name

840 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 213. Interface statistics section (continued)

Offset Name Length Format Description

40(X'28') SMF119IS_IFDevName 16 EBCDIC Device name

56(X'38') SMF119IS_IFDesc 18 EBCDIC Interface Description (TCPIP
PROFILE keyword for LINK or
INTERFACE type.) Possible values
include:

v ATM

v CDLC

v CTC

v ETHERnet

v ETHEROR802.3

v FDDI

v HCH

v IBMTR

v IP

v IPAQENET

v IPAQIDIO

v IPAQTR

v MPCPTP

v OSAENET

v OSAFDDI

v SAMEHOST

v Unknown

v 802.3

v IPAQENET6

v IPAQIDIO6

v MPCPTP6

v IPAQIQDX

v IPAQIQDX6

v RNIC

74(X'4A') SMF119IS_IFFlags 1 Binary Flags

v X'80': SMCR is configured.

v X'40': PNetID is provided.

75(X'4B') 1 Binary Reserved

76(X'4C') SMF119IS_IFActualMtu 4 Binary MTU size

80(X'50') SMF119IS_IFSPeed 4 Binary Speed
Guideline: If the interface speed
exceeds X'FFFFFFFF', then this field
contains X'FFFFFFFF'. If this field
contains X'FFFFFFFF', then use the
SMF119IS_IFHSpeed field to
determine the interface speed.

84(X'54') SMF119IS_IFHSpeed 4 Binary HSpeed

88(X'58') SMF119IS_IFInBytes 8 Binary Number of inbound bytes

96(X'60') SMF119IS_IFInUniC 8 Binary Number of inbound unicast packets

104(X'68') SMF119IS_IFInBroadC 8 Binary Number of inbound broadcast
packets

Appendix E. Type 119 SMF records 841

Table 213. Interface statistics section (continued)

Offset Name Length Format Description

112(X'70') SMF119IS_IFInMultiC 8 Binary Number of inbound multicast packets

120(X'78') SMF119IS_IFInDisc 4 Binary Number of inbound discarded
packets

124(X'7C') SMF119IS_IFInError 4 Binary Number of inbound packets in error

128(X'80') SMF119IS_IFInUProt 4 Binary Number of inbound packets with
unknown protocol.

132(X'84') SMF119IS_IFOutBytes 8 Binary Number of outbound bytes

140(X'8C') SMF119IS_IFOutUniC 8 Binary Number of outbound unicast packets

148(X'94') SMF119IS_IFOutBroadC 8 Binary Number of outbound broadcast
packets

156(X'9C') SMF119IS_IFOutMultiC 8 Binary Number of outbound multicast
packets

164(X'A4') SMF119IS_IFOutDisc 4 Binary Number of outbound discarded
packets

168(X'A8') SMF119IS_IFOutError 4 Binary Number of outbound packets in error

172(X'AC') SMF119IS_IFOQL 4 Binary Current output queue length

176(X'B0') SMF119IS_IFIQDXName 16 EBCDIC For IPAQENET and IPAQENET6
interfaces that are defined with
CHPIDTYPE OSX and with an
associated IQDX interface, this field is
the associated IQDX interface name.
Otherwise, this field is blank and the
following four counters are not valid.

192(X'C0') SMF119IS_IFInIQDXBytes 8 Binary Number of inbound bytes that were
received over the associated IQDX
interface. This field is valid only if
the SMF119IS_IFIQDXName field is
not blank.

200(X'C8') SMF119IS_IFInIQDXUniC 8 Binary Number of inbound unicast packets
that were received over the associated
IQDX interface. This field is valid
only if the SMF119IS_IFIQDXName
field is not blank.

208(X'D0') SMF119IS_IFOutIQDXBytes 8 Binary Number of outbound bytes that were
sent over the associated IQDX
interface. This field is valid only if
the SMF119IS_IFIQDXName field is
not blank.

216(X'D8') SMF119IS_IFOutIQDXUniC 8 Binary Number of outbound unicast packets
that were sent over the associated
IQDX interface. This field is valid
only if the SMF119IS_IFIQDXName
field is not blank.

224(X'E0') SMF119IS_IFPNetID 16 EBCDIC Physical network ID. This field is
valid for only IPAQENET and
IPAQENET6 interfaces that are active
for Shared Memory Communications
over RDMA (SMC-R).

Table 214 on page 843 shows the HOME IP Address section:

842 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 214. HOME IP Address section

Offset Name Length Format Description

0 (X'0') SMF119IS_IFAddIntfName 16 EBCDIC Interface name, used to correlate this
additional address to the interface
statistics record in Table 213 on page
840

16 (X'10') SMF119IS_IFAddIntfHome 16 Binary Additional interface HOME address

Server port statistics record (subtype 7)
The Port Statistics record, as an interval record, periodically records statistics on
ports that have been configured with the PORT statement in the TCP/IP PROFILE.
All ports that were defined by the PORTRANGE statement, ports for which the
RESERVED flag has been set, or ports that were defined by the PORT UNRSV
statement are excluded.

Each TCP or UDP port's activity is reported; connection information is provided
for TCP ports, and traffic information is provided for UDP ports.

Depending on the number of reserved ports, this report might actually be spread
across multiple records.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the server Port Statistics record, the TCP/IP stack identification section
indicates STACK as the subcomponent and one of the six possible interval record
reason settings, depending on if the reporting is due to interval expiration,
statistics collection termination, or collection shutdown, and whether one or more
physical records are needed to report all the Port statistics.

Table 215 shows the server port statistics record self-defining section:

Table 215. Server port statistics record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
7(X'7')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to first TCP server port section

40(X'28') SMF119S1Len 2 Binary Length of each TCP server port
section

42(X'2A') SMF119S1Num 2 Binary Number of TCP server port sections

44(X'2C') SMF119S2Off 4 Binary Offset to first UDP server port
section

Appendix E. Type 119 SMF records 843

Table 215. Server port statistics record self-defining section (continued)

Offset Name Length Format Description

48(X'30') SMF119S2Len 2 Binary Length of each UDP server port
section

50(X'32') SMF119S2Num 2 Binary Number of UDP server port sections

Table 216 shows TCP server Port statistics specific section (one per reserved port
definition).

Table 216. TCP server port statistics section

Offset Name Length Format Description

0(X'0') SMF119SP_TCDuration 8 Binary Duration of recording interval in
microseconds, where bit 51 is
equivalent to one microsecond

8(X'8') SMF119SP_TCRName 8 EBCDIC Server socket resource name (the
name specified on the PORT
reservation statement)

16(X'10') SMF119SP_TCBindIP 16 Binary For bind-specific port reservations:
the local IP address

32(X'20') SMF119SP_TCPort 2 Binary Port number

34(X'22') 2 Binary Reserved

36(X'24') SMF119SP_TCConn 4 Binary Number of successful connection
establishments

40(X'28') SMF119SP_TCBinds 4 Binary Number of socket binds to this port
reservation

44(X'2C') SMF119SP_TCBusySrv 4 Binary Number of connection requests
rejected due to server Busy conditions

48(X'30') SMF119SP_TCSynAttack 4 Binary Number of connection requests
rejected due to SYN Attack detect
conditions

52(X'34') SMF119SP_TCHighwater 4 Binary Highest number of active TCP
connections

56(X'38') SMF119SP_TCNumConns 4 Binary Number of active TCP connections

Table 217 shows the UDP server port statistics record (one per reserved port
definition being collected):

Table 217. UDP server port statistics section

Offset Name Length Format Description

0(X'0') SMF119SP_UDDuration 8 Binary Duration of recording interval

8(X'8') SMF119SP_UDRName 8 EBCDIC Server socket resource name (the
name specified on the PORT
reservation statement)

16(X'10') SMF119SP_UDBindIP 16 Binary For bind-specific port reservations:
the local IP address

32(X'20') SMF119SP_UDPort 2 Binary Port number

34(X'22') 2 Binary Reserved

36(X'24') SMF119SP_UDIDgrams 8 Binary Number of inbound UDP datagrams
to server port

844 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 217. UDP server port statistics section (continued)

Offset Name Length Format Description

44(X'2C') SMF119SP_UDODgrams 8 Binary Number of outbound UDP datagrams
from server port

52(X'34') SMF119SP_UDIBytes 8 Binary Number of inbound bytes

60(X'3C') SMF119SP_UDOBytes 8 Binary Number of outbound bytes

TCP/IP stack start/stop record (subtype 8)
The TCP/IP stack start/stop record is collected when an individual TCP/IP stack
becomes available for processing and when the stack ceases to be available for
processing. The record can be used as a beginning and ending bookmark with
which to delineate all other SMF recording activity for a given TCP/IP stack.

Guideline: There is no Type 118 record equivalent for the TCP/IP stack start/stop
record.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TCP/IP stack start/stop record, the TCP/IP stack identification
section indicates TCP as the subcomponent and X'08' (event record) as the record
reason.

Table 218 shows the TCP/IP stack start/stop record self-defining section:

Table 218. TCP/IP stack start/stop record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
8(X'8')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to TCP/IP start/stop section

40(X'28') SMF119S1Len 2 Binary Length of TCP/IP start/stop section

42(X'2A') SMF119S1Num 2 Binary Number of TCP/IP start/stop
sections

Table 219 on page 846 shows the TCP/IP stack start/stop specific section of this
SMF record.

Appendix E. Type 119 SMF records 845

Table 219. TCP/IP stack start/stop record section

Offset Name Length Format Description

0(X'0') SMF119TC_STType 1 Binary Event type:

v X'80': Stack start up

v X'40': Stack termination

v X'20': Stack unplanned termination

1(X'1') SMF119TC_STFlags 1 Binary Event flags:

v X'80': IPv6 supported on this stack

v X'40': IPSEC configured on this
stack

v X'20': IPSEC6 configured on this
stack

2(X'2') 2 Reserved

4(X'4') SMF119TC_STTime 4 Binary Time of day stack startup or
termination

8(X'8') SMF119TC_STDate 4 Packed Date of stack startup or termination

12(X'C') SMF119TC_STECSAMax 8 Binary Maximum number of ECSA storage
bytes allocated since the TCP/IP
stack was started

20(X'14') SMF119TC_STECSALimit 8 Binary Maximum number of ECSA storage
bytes allowed, as specified on the
GLOBALCONFIG statement in the
TCP/IP profile. The value 0 indicates
that there is no limit.

28(X'1C') SMF119TC_STPrivateMax 8 Binary Maximum number of authorized
private subpool storage bytes
allocated since the TCP/IP stack was
started.

36(X'24') SMF119TC_STPrivateLimit 8 Binary Maximum number of authorized
private subpool storage bytes
allowed, as specified on the
GLOBALCONFIG statement in the
TCP/IP profile. The value 0 indicates
that there is no limit.

UDP socket close record (subtype 10)
The UDP socket close record is collected whenever a UDP socket is closed (note
that this is not collected for individual datagrams sent using the sendto API call).
This record contains pertinent information about the socket, such as timestamps for
its opening and closing, and bytes flowing through the socket.

Guidelines:

v The socket's partner information is contained in this record; however, this
documents the partner only at the time of socket close. Hence, this information
would be more meaningful for a client UDP application than a server UDP
application.

v Because this record is generated for every single UDP socket, this can generate
significant load on a server and rapidly fill the SMF data sets. Care should be
exercised in its use.

846 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v The local IP address is 0.0.0.0 unless the application explicitly binds to a local IP
address on this socket.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the UDP socket close record, the TCP/IP Sstack identification section
indicates UDP as the subcomponent and X'08' (event record) as the record reason.

Table 220 shows the UDP socket close record self-defining section:

Table 220. UDP socket close record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
10(X'A')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to UDP socket close section

40(X'28') SMF119S1Len 2 Binary Length of UDP socket close section

42(X'2A') SMF119S1Num 2 Binary Number of UDP socket close sections

Table 221 shows the UDP socket close specific section of this SMF record.

Table 221. UDP socket close record section

Offset Name Length Format Description

0(X'0') SMF119UD_UCRname 8 EBCDIC UDP socket resource name (address
space name of address space that
opens this socket)

8(X'8') SMF119UD_UCConnID 4 Binary UDP socket resource ID (connection
ID)

12(X'C') SMF119UD_UCSubTask 4 Binary Subtask ID. This is the task TCB for
the task owning the socket.

16(X'10') SMF119UD_UCOTime 4 Binary Time of day of socket open

20(X'14') SMF119UD_UCODate 4 Packed Date of socket open

24(X'18') SMF119UD_UCCTime 4 Binary Time of day of socket close

28(X'1C') SMF119UD_UCCDate 4 Packed Date of socket close

32(X'20') SMF119UD_UCRIP 16 Binary Remote IP of last datagram received
on socket

48(X'30') SMF119UD_UCLIP 16 Binary Local IP address at time of socket
close

64(X'40') SMF119UD_UCRPort 2 Binary Remote port of last datagram
received on socket

Appendix E. Type 119 SMF records 847

Table 221. UDP socket close record section (continued)

Offset Name Length Format Description

66(X'42') SMF119UD_UCLPort 2 Binary Local port number at time of socket
close

68(X'44') SMF119UD_UCType 1 Binary UDP Socket Type:

v X'01': Standard

v X'02': Enterprise Extender

69(X'45') SMF119UD_UCReason 1 Binary Reason for socket close:

v X'01': Normal

v X'02': Abnormal: application error
or stack termination

70(X'46') 2 Binary Reserved

72(X'48') SMF119UD_UCInDgrams 8 Binary Number of inbound UDP datagrams

80(X'50') SMF119UD_UCOutDgrams 8 Binary Number of outbound UDP datagrams

88(X'58') SMF119UD_UCInBytes 8 Binary Number of inbound bytes

96(X'60') SMF119UD_UCOutBytes 8 Binary Number of outbound bytes

TN3270E Telnet server SNA session initiation record (subtype 20)
The Type 119 TN3270E Telnet server (Telnet) SNA session initiation record is
collected when the z/OS TN3270E Telnet server establishes a SNA session with a
Telnet client. The information in this record relates to a given LU-LU session, and
not to the TCP/IP Telnet connection; for example, if multiple LU-LU sessions use
the same Telnet connection, separate SNA session initiation records for each LU-LU
session are reported.

The Type 119 Telnet SNA session initiation record is collected at the same point in
session processing as the equivalent Type 118 TN3270E Telnet server "LOGN" SMF
record.

Guideline: Because the Telnet SNA session initiation record contains a subset of
the information that the Telnet SNA session termination record contains, you
should collect only the Telnet SNA session termination records.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the Telnet SNA session initiation record, the TCP/IP stack
identification section indicates TN3270S as the subcomponent and X'08' (event
record) as the record reason. Table 222 shows the Telnet SNA initiation-specific
section of this SMF record.

Table 222. TN3270E Telnet server SNA session initiation record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
20(X'14')

Self-defining section

24(X'0') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'18') 2 Binary Reserved

28(X'1A') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

848 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 222. TN3270E Telnet server SNA session initiation record self-defining section (continued)

Offset Name Length Format Description

32(X'1C') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'20') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to Telnet SNA session
initiation section

40(X'28') SMF119S1Len 2 Binary Length of Telnet SNA session
initiation section

42(X'2A') SMF119S1Num 2 Binary Number of Telnet SNA session
initiation sections

Table 223 shows the Telnet SNA session initiation section (TCP/IP identification
section). TN3270S is the subcomponent, and X'08' (event record) is the record
reason.

Table 223. TN3270E Telnet server SNA session initiation section

Offset Name Length Format Description

0(X'0') SMF119TN_NILU 8 EBCDIC Telnet LU name

8(X'8') SMF119TN_NIAppl 8 EBCDIC Host application name

16(X'10') SMF119TN_NILdev 4 Binary Telnet server internal logical device
number

20(X'14') SMF119TN_NIRIP 16 Binary Remote IP address

36(X'24') SMF119TN_NILIP 16 Binary Local IP address

52(X'30') SMF119TN_NIRPort 2 Binary Remote (client) port number

54(X'34') SMF119TN_NILPort 2 Binary Local port number

56(X'38') SMF119TN_NITime 4 Binary Time of day of session initiation

60(X'3C') SMF119TN_NIDate 4 Packed Date of session initiation

TN3270E Telnet server SNA session termination record (subtype 21)
The Type 119 TN3270E Telnet server (Telnet) SNA session termination record is
collected when the z/OS TN3270E Telnet server terminates a SNA session with a
Telnet client. The information in this record is associated with a given LU-LU
session, and not to the TCP/IP Telnet connection; for example, if multiple LU-LU
sessions use the same Telnet connection, separate SNA session termination records
are reported for each LU-LU session.

The Type 119 Telnet SNA Session termination record is collected at the same point
in session processing as the equivalent Type 118 TN3270E Telnet server "LOGF"
SMF record.

Guideline: Because the Telnet SNA session termination record contains a superset
of the information that the Telnet SNA session initiation record contains, you
should collect only the Telnet SNA session termination records.

Appendix E. Type 119 SMF records 849

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the Telnet SNA session termination record, the TCP/IP stack
identification section indicates TN3270S as the subcomponent and X'08' (event
record) as the record reason.

Table 224 shows the Telnet SNA session termination record self-defining section:

Table 224. TN3270E Telnet server SNA session termination record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
21(X'15')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (5)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to Telnet SNA session
termination section

40(X'28') SMF119S1Len 2 Binary Length of Telnet SNA session
termination section

42(X'2A') SMF119S1Num 2 Binary Number of Telnet SNA session
termination sections

44(X'2C') SMF119S2Off 4 Binary Offset to TN3270 server host name
section

48(X'30') SMF119S2Len 2 Binary Length of TN3270 server host name
section

50(X'32') SMF119S2Num 2 Binary Number of TN3270 server host name
sections

52(X'34') SMF119S3Off 4 Binary Offset to TN3270 server session
performance data section

56(X'38') SMF119S3Len 2 Binary Length of TN3270 server session
performance data section

58(X'3A') SMF119S3Num 2 Binary Number of TN3270 server session
performance data sections

60(X'3C') SMF119S4Off 4 Binary Offset to TN3270 server session time
bucket performance data section

64(X'40') SMF119S4Len 2 Binary Length of TN3270 server session time
bucket performance data section

66(X'42') SMF119S4Num 2 Binary Number of TN3270 server session
time bucket performance data
sections

Table 225 on page 851 shows the Telnet SNA session termination section of this
SMF record.

850 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 225. TN3270E Telnet server SNA session termination section

Offset Name Length Format Description

0(X'0') SMF119TN_NTLU 8 EBCDIC Telnet LU name

8(X'8') SMF119TN_NTAppl 8 EBCDIC Host application name

16(X'10') SMF119TN_NTLdev 4 Binary Telnet internal logical device number

20(X'14') SMF119TN_NTRIP 16 Binary Remote (client) IP address

36(X'24') SMF119TN_NTLIP 16 Binary Local (Telnet) IP address

52(X'34') SMF119TN_NTRPort 2 Binary Remote (client) port number

54(X'36') SMF119TN_NTLPort 2 Binary Local (Telnet) port number

56(X'38') SMF119TN_NTHostNm 8 EBCDIC TCP/IP Host name

64(X'40') SMF119TN_NTInByte 8 Binary Inbound byte count

72(X'48') SMF119TN_NTOutByte 8 Binary Outbound byte count

80(X'50') SMF119TN_NTiTime 4 Binary Time of session initiation

84(X'54') SMF119TN_NTiDate 4 Packed Date of session initiation

88(X'58') SMF119TN_NTtTime 4 Binary Time of session termination

92(X'5C') SMF119TN_NTtDate 4 Packed Date of session termination

96(X'60') SMF119TN_NTDur 4 Binary Session duration in units of 1/100
seconds

100(X'64') SMF119TN_NTSType 1 Binary Telnet session type:

v 0: UNKNOWN

v 1: TN3270

v 2: TN3270E

v 3: LINEMODE

v 4: DBCSTRANSFORM

v 5: BINARY

101(X'65') SMF119TN_NTLUSel 1 Binary Telnet LU selection method:

v 0: LU chosen by server

v 1: LU chosen by client

Appendix E. Type 119 SMF records 851

Table 225. TN3270E Telnet server SNA session termination section (continued)

Offset Name Length Format Description

102(X'66') SMF119TN_NTSSL 1 Binary SSL status:

v 0: No SSL session

v 1: Server authentication only

v 2: Server and client authentication
(REQUIRED/SSLCERT):

– If AT-TLS policy (REQUIRED),
then check SAF, and user ID is
not required to be returned.

– If TN profile control (SSLCERT),
then no SAF.

v 3: Server and client authentication
(SAFCHECK/SAFCERT):

– If AT-TLS policy (SAFCHECK),
then SAF check requires user ID
returned.

– If TN profile control
(SAFCERT), then SAF check
requires user ID returned.

v 4: Server and client authentication
(FULL):

– AT-TLS policy only. Optional
client certificate. SSL cert if
provided. SAF check, user ID is
not required.

v 5: Server and client authentication
(PASSTHRU)

– AT-TLS policy only. Optional
client certificate. No SSL cert if
provided. SAF check, user ID is
not required.

103(X'67') 1 Binary Reserved

104(X'68') SMF119TN_NTCopt 1 Binary Telnet connection options negotiated
for this connection:

v 1000 0000: TN3270E

v 0100 0000: Terminal type

v 0010 0000: End of Record

v 0001 0000: Transmit binary

v 0000 1000: Echos

v 0000 0100: Suppress go ahead

v 0000 0010: Timemark

v 0000 0001: New Environment

TN3270E connection options
negotiated for this connection. More
than one of these options can be set.

105(X'69') 1 Binary Reserved

852 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 225. TN3270E Telnet server SNA session termination section (continued)

Offset Name Length Format Description

106(X'6A') SMF119TN_NT32opt 2 Binary TN3270E connection options
negotiated for this connection.

First Byte:

v 1000 0000: Bind image

v 0100 0000: SysRequest

v 0010 0000: Responses

v 0001 0000: SCS control codes

v 0000 1000: DCS control codes

v 0000 0100: Contention Resolution

v 0000 0010: FMH Support

v 0000 0001: SNA Sense Support

Second Byte:

v 1000 0000: Suppress Header Byte
Doubling

v 0xxx xxxx: Reserved

TN3270E connection options
negotiated for this connection. More
than one of these options can be set.

108(X'6C') SMF119TN_NTRCode 8 EBCDIC Session termination reason code. The
values in this field are the same as
those displayed in message EZZ6034I
as value for the object variable.

116(X'74') SMF119TN_NTLMode 8 EBCDIC SNA logmode

124(X'7C') SMF119TN_NTDevt 20 EBCDIC Telnet device type

Table 226 shows the Telnet server host name section. This section is optional and is
present if HNGROUP was applicable for this connection.

Table 226. TN3270E Telnet server host name section

Offset Name Length Format Description

0(X'0') SMF119TN_NTHostname n EBCDIC Host name associated with this
session

Table 227 shows the TN3270E Telnet server round trip performance section. This
section is optional and is present when performance data is being collected for this
connection as a result of a MONITORGROUP being mapped to this connection.

Table 227. TN3270E Telnet server Round Trip Performance section

Offset Name Length Format Description

0(X'0') SMF119TN_NTRRts 4 Binary Sum of round trip times for
this session in milliseconds

4(X'4') SMF119TN_NTRIPRts 4 Binary Sum of IP portion of round
trip times for this session in
milliseconds

Appendix E. Type 119 SMF records 853

Table 227. TN3270E Telnet server Round Trip Performance section (continued)

Offset Name Length Format Description

8(X'8') SMF119TN_NTRCountTrans 4 Binary Count of transactions used to
measure round trip times for
this session

12(X'C') SMF119TN_NTRCountIP 4 Binary Count of IP transactions used
to measure the IP portion of
the round trip time

16(X'10') SMF119TN_NTRElapsRndTrpSq 8 Binary The sum of the square of
each round trip time

24(X'18') SMF119TN_NTRElapsIpRtSq 8 Binary The sum of the square of
each IP portion of round trip
time

32(X'20') SMF119TN_NTRElapsSnaRtSq 8 Binary The sum of the square of
each SNA portion of round
trip time

40(X'28') SMF119TN_NTRGrpIndex 4 Binary The index into the master
MonitorGroup table this
connection is using

44(X'2C') SMF119TN_NTRDR 1 Binary Indicator how IP trip time is
measured:

v '80'x: Definite Response
used

v '40'x: Timemark used

45(X'2D') 3 Binary Reserved

Table 228 shows the Telnet SNA session termination time bucket performance data
section. This section is optional and is present if performance data is being
collected for this connection as a result of a MONITORGROUP being mapped to
this connection and time bucket data has been requested. The upper boundary of
one bucket is the lower boundary of the next bucket. A transaction is added to a
bucket when its round trip time falls within the bounds of that bucket.

Table 228. TN3270E Telnet server time bucket performance section

Offset Name Length Format Description

0(X'0') SMF119TN_NTBucketBndry1 4 Binary Upper boundary for bucket 1 in
milliseconds

4(X'4') SMF119TN_NTBucketBndry2 4 Binary Upper boundary for bucket 2 in
milliseconds

8(X'8') SMF119TN_NTBucketBndry3 4 Binary Upper boundary for bucket 3 in
milliseconds

12(X'C') SMF119TN_NTBucketBndry4 4 Binary Upper boundary for bucket 4 in
milliseconds

16(X'10') SMF119TN_NTBucket1Rts 4 Binary Number of transactions with a round
trip time meeting bucket 1 criteria

20(X'14') SMF119TN_NTBucket2Rts 4 Binary Number of transactions with a round
trip time meeting bucket 2 criteria

24(X'18') SMF119TN_NTBucket3Rts 4 Binary Number of transactions with round
trip time meeting bucket 3 criteria

854 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 228. TN3270E Telnet server time bucket performance section (continued)

Offset Name Length Format Description

28(X'1C') SMF119TN_NTBucket4Rts 4 Binary Number of transactions with a round
trip time meeting bucket 4 criteria

32(X'20') SMF119TN_NTBucket5Rts 4 Binary Number of transactions with a round
trip time that exceeds bucket 4 time

TSO Telnet client connection initiation record (subtype 22)
The TSO Telnet client connection Initiation record is collected at the establishment
of a connection using the TSO Telnet client. This denotes the connection, rather
than a particular session. This record contains pertinent information about the
connection available at the time of its opening.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TSO Telnet client connection initiation record, the TCP/IP stack
identification section indicates TN3270C as the subcomponent and X'08' (event
record) as the record reason.

Table 229 shows the TSO Telnet client connection initiation record self-defining
section:

Table 229. TSO Telnet client connection initiation section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
22(X'16')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to TSO Telnet client connection
initiation section

40(X'28') SMF119S1Len 2 Binary Length of TSO Telnet client
connection initiation section

42(X'2A') SMF119S1Num 2 Binary Number of TSO Telnet client
connection initiation sections

Table 230 shows the TSO Telnet client connection initiation identification section of
this SMF record.

Table 230. TSO Telnet client connection initiation record TCP/IP identification section

Offset Name Length Format Description

0(X'0') SMF119TN_CIRIP 16 Binary Remote (server) IP address

16 (X'10') SMF119TN_CILIP 16 Binary Local IP address

Appendix E. Type 119 SMF records 855

Table 230. TSO Telnet client connection initiation record TCP/IP identification section (continued)

Offset Name Length Format Description

32(X'20') SMF119TN_CIRPort 2 Binary Remote (server) port number

34 (X'22') SMF119TN_CILPort 2 Binary Local port number

36 (X'24') SMF119TN_CITime 4 Binary Time of day of session initiation

40(X'28') SMF119TN_CIDate 4 Packed Date of session initiation

TSO Telnet client connection termination record (subtype 23)
The TSO Telnet client connection termination record is collected at the termination
of a connection using the TSO Telnet client. This denotes the connection, rather
than a particular session. This record contains all pertinent information about the
connection, such as elapsed time, bytes transferred, and so on.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the TSO Telnet client connection termination record, the TCP/IP stack
identification section indicates TN3270C as the subcomponent and X'08' (event
record) as the record reason.

Table 231 shows the TSO Telnet client connection termination record self-defining
section:

Table 231. TSO Telnet client connection termination record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
23(X'17')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to TSO Telnet client connection
termination section

40(X'28') SMF119S1Len 2 Binary Length of TSO Telnet client
connection termination section

42(X'2A') SMF119S1Num 2 Binary Number of TSO Telnet client
connection termination sections

Table 232 shows the TSO Telnet client connection termination specific section of
this SMF record.

Table 232. TSO Telnet client connection termination section

Offset Name Length Format Description

0(X'0') SMF119TN_CTRIP 16 Binary Remote (server) IP address

16 (X'10') SMF119TN_CTLIP 16 Binary Local IP address

856 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 232. TSO Telnet client connection termination section (continued)

Offset Name Length Format Description

32(X'20') SMF119TN_CTRPort 2 Binary Remote (server) port number

34 (X'22') SMF119TN_CTLPort 2 Binary Local port number

36 (X'24') SMF119TN_CTNJENode 8 EBCDIC NJE Node Name

44(X'2C') SMF119TN_CTInBytes 8 Binary Inbound byte count

52(X'34') SMF119TN_CTOutBytes 8 Binary Outbound byte count

60(X'3C') SMF119TN_CTiTime 4 Binary Time of day of session initiation

64(X'40') SMF119TN_CTiDate 4 Packed Date of session initiation

68(X'44') SMF119TN_CTtTime 4 Binary Time of day of session termination

72(X'48') SMF119TN_CTtDate 4 Packed Date of session termination

76(X'4C') SMF119TN_CTDur 4 Binary Telnet client session duration in
1/100 seconds

80(X'50') SMF119TN_CTCOpt 1 Binary Telnet connection options negotiated
for this connection:

v x000 0000: Reserved

v 0100 0000: Terminal type

v 0010 0000: End of record

v 0001 0000: Transmit binary

v 0000 1000: Echos

v 0000 0100: Suppress go ahead

v 0000 00xx: Reserved

81(X'51') 3 Binary Reserved

84(X'54') SMF119TN_CTDevt 20 EBCDIC Telnet device type

TN3270E Telnet server profile event record (subtype 24)
The TN3270E Telnet server profile record provides profile information for the
Telnet server. The first or only record always contains the following sections:
v SMF header
v Self-defining section with 30 section triplets
v TCP/IP identification section
v Profile information common section
v Profile information data set name section

See Table 182 on page 770 for a list of all the sections of information that can be
provided in this SMF record.

This record is created as an event record during the following processing:
v During the initialization of the server.
v If the profile is changed by using the VARY TCPIP,tnproc,OBEYFILE command.

In either case, the profile that the SMF record describes is for the current profile.
Previous profiles that are still in use will not be described.

In the self-defining section, the triplet field values are zero for sections for which
no information was available.

Appendix E. Type 119 SMF records 857

If the profile data set that the VARY TCPIP,tnproc,OBEYFILE command references
changes the TELNETGLOBALS SMFPROFILE setting from SMFPROFILE to
NOSMFPROFILE, one final SMF event record is created and written to the MVS
SMF data sets to record this change.

The SMF record might be created even if some errors occurred during the
TCPIP,tnproc,OBEYFILE command processing. Application programs that process
these records must compare the sections of changed information with the previous
profile settings to determine whether profile setting were changed.

Relationship to GetTnProfile Callable NMI
The information that this record provides is also available from the TCP/IP
Callable NMI by invoking this NMI with the GetTnProfile
(NWMTNPROFILETYPE) request. The GetTnProfile request always returns
complete profile information. For more information about the GetProfile request
output, see “TCP/IP NMI response format” on page 618. There are some minor
differences in the information between this SMF record and the GetTnProfile
request output.

TelnetGlobals Section
Both the SMF record and the GetTnProfile request provide a flag bit
indicating whether the community name parameter was specified on the
TNSACONFIG profile statement. But, for security reasons, the actual
community name value is returned only by the GetTnProfile request.

Continuing the SMF record
If the information for the record exceeds 32746 bytes, additional Telnet profile
records are created to provide all the information. For sections with multiple
entries, all the entries that fit in the current record are provided in the current
record. Any entries that did not fit in the current record are provided in a
subsequent record with additional sections that did not fit in the current record.

The value in the SMF119TI_Reason field indicates whether the record is complete.
If the record is incomplete, it is followed by an additional record or records. The
Telnet Profile information sections with the common and data set name are
included only in the first record. The intermediate and final SMF records contain
the TCP/IP identification section only plus the additional sections of configured
information.

Data format concepts
The following concepts apply to the fields in the record sections:
v All fields with a binary format are set to binary zeros if no value for the field

exists.
v All fields with an EBCDIC format are set to EBCDIC blanks (X'40') if no value

for the field exitsts.
v The value in all fields that use an EBCDIC format is padded with trailing

blanks.
v Time stamps in store clock units are adjusted to local time.
v Time stamps as binary fullwords that are in units of hundredths of seconds since

midnight are adjusted to local time.
v Date stamps that are in packed decimal format with the century indicating the

twenty century are adjusted to local time.

858 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v Each configuration section (SMF119TN_TP to SMF119TN_MM) contains data for
multiple ports. The SMF119TN_TPIndex field identifies each unique
configuration. The port number and index are repeated in each entry of each
section. For example, assume two ports, port 23 and port 623, are defined. The
value of the SMF119TN_TPIndex field is 3 for port 23 and 4 for port 623. All the
entries in each section, which have an index value of 3, apply to the
configuration for port 23. All the entries in each section, which have an index
value of 4, apply to the configuration for port 623.

Note: Configurations that are qualified by LINKNAME or IP address are
considered to be described in separate SMF119TN_TP records and have a unique
index value.

v The SMF119TN_ID structure contains the description for a Client Identifier. If the
SMF119TN_IDType field describes an IP address (SMF119TN_ID_IPADDR or
SMF119TN_ID_DESTIP), the SMF119TNID_Family field describes the IP address
family (Ipv4 or Ipv6) in the SMF119TN_IDIpaddr field. If the SMF119TN_IDType
field describes a host name (SMF119TN_ID_HNAME), the length of the host
name is in the SMF119TN_IDHLen field.

v Some of the data in the response output uses data structures in a variable size.
Do not rely on the documented size of the data structure for accessing data. You
must use the length field of the response output section descriptors (triplets) to
determine the correct size of each response.

TN3270E Telnet server profile record self-defining section
Table 233 shows the TCP/IP profile record self-defining section.

Table 233. TN3270E Telnet server profile record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (??)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to Profile information common
section

40(X'28') SMF119S1Len 2 Binary Length of Profile information
common section

42(X'2A') SMF119S1Num 2 Binary Number of Profile information
common sections

44(X'2C') SMF119S2Off 4 Binary Offset of Profile information common
data set name section

48(X'30') SMF119S2Len 2 Binary Length of Profile information
common data set name section

50(X'32') SMF119S2Num 2 Binary Number of Profile information
common data set name sections

Appendix E. Type 119 SMF records 859

Table 233. TN3270E Telnet server profile record self-defining section (continued)

Offset Name Length Format Description

52(X'34') SMF119S3Off 4 Binary Offset to TelnetGlobals procedure
section

56(X'38') SMF119S3Len 2 Binary Length of TelnetGlobals procedure
section

58(X'3A') SMF119S3Num 2 Binary Number of TelnetGlobals procedure
sections

60 (X'3C') SMF119S4Off 4 Binary Offset to TelnetParms configuration
section

64 (X'40') SMF119S4Len 2 Binary Length of TelnetParms configuration
section

66 (X'42') SMF119S4Num 2 Binary Number of TelnetParms configuration
sections

70(X'46') SMF119S5Off 4 Binary Offset to LU section

72 (X'48') SMF119S5Len 2 Binary Length of LU section

74 (X'4A') SMF119S5Num 2 Binary Number of LU sections

76(X'4C') SMF119S6Off 4 Binary Offset to LUGroup section

80(X'50') SMF119S6Len 2 Binary Length of LUGroup section

82(X'52') SMF119S6Num 2 Binary Number of LUGroup sections

84(X'54') SMF119S7Off 4 Binary Offset to SLUGROUP section

88(X'58') SMF119S7Len 2 Binary Length of SLUGROUP section

90(X'5A') SMF119S7Num 2 Binary Number of SLUGROUP sections

92(X'5C') SMF119S8Off 4 Binary Offset to APPL LU section

96(X'60') SMF119S8Len 2 Binary Length of APPL LU section

98(X'62') SMF119S8Num 2 Binary Number of APPL LU sections

100(X'64') SMF119S9Off 4 Binary Offset to Printer section

104(X'68') SMF119S9Len 2 Binary Length of Printer section

106(X'6A') SMF119S9Num 2 Binary Number of Printer sections

108(X'6C') SMF119S10Off 4 Binary Offset to PrtGroup section

112(X'70') SMF119S10Len 2 Binary Length of PrtGroup section

114(X'72') SMF119S10Num 2 Binary Number of PrtGroup sections

116(X'74') SMF119S11Off 4 Binary Offset to SPrtGroup section

120(X'78') SMF119S11Len 2 Binary Length of SPrtGroup section

122(X'7A') SMF119S11Num 2 Binary Number of SPrtGroup sections

124(X'7C') SMF119S12Off 4 Binary Offset to ParmsGroup section

128(X'80') SMF119S12Len 2 Binary Length of ParmsGroup section

130(X'82') SMF119S12Num 2 Binary Number of ParmsGroup sections

132(X'84') SMF119S13Off 4 Binary Offset to MonitorGroup section

136(X'88') SMF119S13Len 2 Binary Length of MonitorGroup section

138(X'8A') SMF119S13Num 2 Binary Number of MonitorGroup sections

140(X'8C') SMF119S14Off 4 Binary Offset to LinkGroup section

144(X'90') SMF119S14Len 2 Binary Length of LinkGroup section

146(X'92') SMF119S14Num 2 Binary Number of LinkGroup sections

860 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 233. TN3270E Telnet server profile record self-defining section (continued)

Offset Name Length Format Description

148(X'94') SMF119S15Off 4 Binary Offset to IpGroup section

152(X'98') SMF119S15Len 2 Binary Length of IpGroup section

154(X'9A') SMF119S15Num 2 Binary Number of IpGroup sections

156(X'9C') SMF119S16Off 4 Binary Offset to UserGroup section

160(X'A0') SMF119S16Len 2 Binary Length of UserGroup section

162(X'A2') SMF119S16Num 2 Binary Number of UserGroup sections

164(X'A4') SMF119S17Off 4 Binary Offset to DestIpGroup section

168(X'A8') SMF119S17Len 2 Binary Length of DestIpGroup section

170(X'AA') SMF119S17Num 2 Binary Number of DestIpGroup sections

172(X'AC') SMF119S18Off 4 Binary Offset to HnGroup section

176(X'B0') SMF119S18Len 2 Binary Length of HnGroup section

178(X'B2') SMF119S18Num 2 Binary Number of HnGroup sections

180(X'B4') SMF119S19Off 4 Binary Offset to AllowAppl/RestrictAppl
section

184(X'B8') SMF119S19Len 2 Binary Length of AllowAppl/RestrictAppl
section

186(X'BA') SMF119S190Num 2 Binary Number of AllowAppl/RestrictAppl
sections

188(X'BC') SMF119S20Off 4 Binary Offset to DefaultAppl section

192(X'C0') SMF119S20Len 2 Binary Length of DefaultAppl section

194(X'C2') SMF119S20Num 2 Binary Number of DefaultAppl sections

196(X'C4') SMF119S21Off 4 Binary Offset to PrtDefaultAppl section

200(X'C8') SMF119S21Len 2 Binary Length PrtDefaultAppl section

202(X'CA') SMF119S21Num 2 Binary Number of PrtDefaultAppl sections

204(X'CC') SMF119S22Off 4 Binary Offset to LineModeAppl section

208(X'D0') SMF119S22Len 2 Binary Length of LineModeAppl section

210(X'D2') SMF119S22Num 2 Binary Number of LineModeAppl sections

212(X'D4') SMF119S23Off 4 Binary Offset to MapAppl section

216(X'D8') SMF119S23Len 2 Binary Length of MapAppl section

218(X'DA') SMF119S23Num 2 Binary Number of MapAppl sections

220(X'DC') SMF119S24Off 4 Binary Offset to UssTcp section

224(X'E0') SMF119S24Len 2 Binary Length of UssTcp section

226(X'E2') SMF119S24Num 2 Binary Number of UssTcp sections

228(X'E4') SMF119S25Off 4 Binary Offset to INTERPTCP section

232(X'E8') SMF119S25Len 2 Binary Length of INTERPTCP section

234(X'EA') SMF119S25Num 2 Binary Number of INTERPTCP sections

236(X'EC') SMF119S26Off 4 Binary Offset to ParmsMap section

240(X'F0') SMF119S26Len 2 Binary Length of ParmsMap section

242(X'F2') SMF119S26Num 2 Binary Number of ParmsMap sections

244(X'F4') SMF119S27Off 4 Binary Offset to LUMap section

248(X'F8') SMF119S27Len 2 Binary Length of LUMap section

Appendix E. Type 119 SMF records 861

Table 233. TN3270E Telnet server profile record self-defining section (continued)

Offset Name Length Format Description

250(X'FA') SMF119S27Num 2 Binary Number of LUMap sections

252(X'FC') SMF119S28Off 4 Binary Offset to PrtMap section

256(X'100') SMF119S28Len 2 Binary Length of PrtMap section

258(X'102') SMF119S28Num 2 Binary Number of PrtMap sections

260(X'104') SMF119S29Off 4 Binary Offset to MonitorMap section

264(X'108') SMF119S29Len 2 Binary Length MonitorMap section

266(X'10A') SMF119S29Num 2 Binary Number of MonitorMap sections

TN3270E Telnet server profile record TCP/IP stack
identification section

“Common TCP/IP identification section” on page 749 shows the contents of the
TCP/IP stack identification section. For the TN3270E Telnet server profile record,
the TCP/IP stack identification section indicates TELNET as the subcomponent.
The record reason field is set to one of the following bit values:
v X'08' (event record)
v X'48' (event record incomplete, more records follow)

TN3270E Telnet server profile record profile information
common section

This section provides some general TN3270E Telnet server values and information
about the last time when the profile was changed. Only one of these sections exists
in the record.

Table 234 shows the profile information common section.

Table 234. Profile information common section

Offset Name Length Format Description

0(X'0') SMF119TN_PIEye 4 EBCDIC TNPI eyecatcher

4(X'4') 4 Binary Reserved

8(X'8') SMF119TN_PIStartStck 8 Binary Time TN3270E Telnet server was started
(TOD clock value)

16(X'10') SMF119TN_PIStartTime 4 Binary Time TN3270E Telnet server was started.
Hundredths of seconds

20(X'14') SMF119TN_PIStartDate 4 Packed Date TN3270E Telnet server was started

24(X'18') SMF119TN_PIProfStck 8 Binary Stck time when TN3270E Telnet profile
processed

32(X'20') SMF119TN_PIProfTime 4 Binary Time when TN3270E Telnet profile created
in hundredths of seconds

36(X'24') SMF119TN_PIProfDate 4 Packed Date when TN3270E Telnet profile created
in 0CYYDDDF

40(X'28') SMF119TN_PIFlags 1 Binary Flag:

X'80', SMF119TN_PIInitProfile:
This is the initial profile.

41(X'29') 1 Binary Reserved

862 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 234. Profile information common section (continued)

Offset Name Length Format Description

42(X'2A') 2 Binary Reserved

44(X'2C') 4 Binary Reserved

48(X'30') SMF119TN_PIConsName 8 EBCDIC Name of console from which VARY
TCPIP,tnproc,OBEYFILE command was
issued.

56(X'38') SMF119TN_PIUserToken 80 Binary RACF® user security token of user
responsible for change. For a mapping of
the fields, see the ICHRUTKN data area
in z/OS Security Server RACF Data
Areas.

TN320E Telnet server profile record profile information data
set name section

This section provides a list of the data sets that are used for the initial profile and
the data sets that are used for the last VARY TCPIP,tnproc,OBEYFILE command
processing. Multiple sections can be in the record, one per data set name.

Table 235 shows the Profile information data set name section.

Table 235. Profile information data set name section

Offset Name Length Format Description

0(X'0') SMF119TN_DSEye 4 EBCDIC TNDS eyecatcher

4(X'4') SMF119TN_DSFlag 1 Binary Indicates whether it was the main
profile data set or was specified on
an INCLUDE profile statement.

X'40', SMF119TN_DSInclude
Include data set. If set, the
data set was specified on an
INCLUDE statement. If not
set, the data set was the
main data set.

5(X'5') 1 Binary Reserved

6(X'6') SMF119TN_DSName 54 EBCDIC The data set name value is padded
with trailing blanks.

TN3270E Telnet server profile record TelnetGlobals section
This section provides the values of the profile values that can be set only on a
TelnetGlobals group. Only one of these sections exists in the record.

Table 236 shows the TelnetGlobals section.

Table 236. TelnetGlobals section

Offset Name Length Format Description

0(X'0') SMF119TN_TGEye 4 EBCDIC TNTG eyecatcher

Appendix E. Type 119 SMF records 863

Table 236. TelnetGlobals section (continued)

Offset Name Length Format Description

4(X'4') SMF119TN_TGFlag1 1 Binary Flags:

X'80', SMF119TN_TGFmt_Long

v Format Long 1

v Format Short 0

X'40', SMF119TN_TGShareACB

v ShareAcb 1

v NoShareACB 0

X'20', SMF119TN_TGSMFProfile

v SMFPROFILE 1

v NOSMFPROFILE 0

X'10', SMF119TN_TGSMF_GrpDtl

v SMFPROFILE GroupDetail 1

v SMFPROFILE NOGroupDetail 0

5(X'5') SMF119TN_TGFlag2 1 Binary Flags:

X'80', SMF119TN_TGSAEnable

v TNSACONFIG ENABLE 1

v TNSACONFIG DISABLE 0

X'40', SMF119TN_TGSATrace

v TNSACONFIG TRACE 1

v TNSACONFIG NOTRACE 0

6(X'6') SMF119TN_TGFlag3 1 Binary Flags:

X'80', SMF119TN_TGXCFJoin

v XCF JOIN 1

v XCF NOJOIN 0

X'40', SMF119TN_TGLUPrimary

v LUNS Primary 1

v LUNS Backup 0

7(X'7') SMF119TN_TGFlag4 1 Binary Reserved

8(X'8') SMF119TN_TGTCPName 8 EBCDIC TCPIP Jobname

16(X'10') SMF119TN_TGSACacheTime 4 Binary TNSACONFIG CacheTime

20(X'14') SMF119TN_TGSACommName 32 EBCDIC TNSACONFIG Community

v Blank if in an SMF record.

v Non-blank in an NMI call.

52(X'34') SMF119TN_TGSAPort 2 Binary TNSACONFIG AGENT Port

56(X'38') SMF119TN_TGXCFSubplex 8 EBCDIC XCF Subplex name

64(X'40') SMF119TN_TGXCFMon 4 Binary XCF XCFMonitor

68(X'44') SMF119TN_TGXCFConnTO 4 Binary XCF ConnectionTimeout

72(X'48') SMF119TN_TGXCFRcvyTO 4 Binary XCF RecoveryTimeout

864 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 236. TelnetGlobals section (continued)

Offset Name Length Format Description

78(X'4E') SMF119TN_TGLUPort 2 Binary LUNS Port

80(X'50') SMF119TN_TGLUIpAddr 16 Binary LUNS Ip address

96(X'60') SMF119TN_TGLURank 4 Binary LUNS Rank

100(X'64') SMF119TN_TGLDAPPort 2 Binary CRL LDAP Port number

102(X'66') SMF119TN_TGLDAPNameLen 2 Binary CRL LDAP Name Length

104(X'68') SMF119TN_TGLDAPNames 256 EBCDIC CRL LDAP Names

A set of up to five names that are separated
by a space.

TN3270E Telnet server profile record TelnetParms section
This section provides the values of the profile value statements that can be set only
on a TelnetParms group. One of these sections for each server port exists in the
record.

Table 237 shows the TelnetParms section.

Table 237. TelnetParms section

Offset Name Length Format Description

0(X'0') SMF119TN_TPEye 4 EBCDIC TNTP eyecatcher

4(X'4') SMF119TN_TPPortNum 2 Binary Port number

6(X'6') SMF119TN_TPIndex 2 Binary TNTP index

8(X'8') SMF119TN_TPPortIpAddr 16 Binary Port Qualified IP address

24(X'18') SMF119TN_TPPortLink 16 EBCDIC Port Qualified Link name (Valid for
TelnetParms sections)

24(X'18') SMF119TN_TPGroupName 8 EBCDIC ParmsGroup group name (Valid for
ParmsGroup section)

40(X'28') SMF119TN_TPFlag00 1 Binary Flag byte 00

X'80', SMF119TN_TPPQ_Link
Port Qualification is LinkName

X'40', SMF119TN_TPPQ_IPaddr
Port Qualification is IP address

Appendix E. Type 119 SMF records 865

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

41(X'29') SMF119TN_TPFlag01 1 Binary Flag byte 01

X'80', SMF119TN_TPBinLMode

v BINARYLINEMODE 1

v NOBINARYLINEMODE 0

X'40', SMF119TN_TPCCConn

v CHECKCLIENTCONN 1

v NOCCHECKCLIENTCONN 0

X'08', SMF119TN_TPCodePage

v CODEPAGE 1

v NOCODEPAGE 0

X'04', SMF119TN_TPDbcsTrace

v DBCSTRACE 1

v NODBCSTRACE 0

X'02', SMF119TN_TPDbcs

v DBCSTRANSFORM 1

v NODBCSTRANSFORM 0

42(X'2A') SMF119TN_TPFlag02 1 Binary Flag byte 02

X'80', SMF119TN_TPConnT_SSL
CONNTYPE SSL

X'40', SMF119TN_TPConnT_NegTSSL
CONNTYPE NETTSSL

X'20', SMF119TN_TPConnT_Any
CONNTYPE ANY

X'10', SMF119TN_TPConnT_Basic
CONNTYPE BASIC

X'08', SMF119TN_TPConnT_None
CONNTYPE NONE

X'04', SMF119TN_TPClAuth_SSL
CLIENTAUTH SSL

X'02', SMF119TN_TPClAuth_SAF
CLIENTAUTH SAF

X'04', SMF119TN_TPClAuth_None
CLIENTAUTH None

866 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

43(X'2B') SMF119TN_TPFlag03 Flag 1 Binary Flag byte 03

X'80', SMF119TN_TPDrpAscPrt

v DROPASSOCPRINTER 1

v NODROPASSOCPRINTER 0

X'40', MF119TN_TPExpLogon

v EXPRESSLOGON 1

v NOEXPRESSLOGON 0

X'20', SMF119TN_TPFDTrace

v FULLDATATRACE 1

v NOFULLDATATRACE 0

X'10', SMF119TN_TPFKR_SAF
KEYRING SAF 1

X'08', SMF119TN_TPFKR_MVS
KEYRING MVS

X'04', SMF119TN_TPFKR_HFS
KEYRING HFS

X'02', SMF119TN_TPLUSess_P

v LUSESSIONPEND 1

v NOLUSESSIONPEND 0

X'01', SMF119TN_TPMsg07

v MSG07 1

v NOMSG07 0

Appendix E. Type 119 SMF records 867

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

44(X'2C') SMF119TN_TPFlag04 1 Binary Flag byte 04

X'80', SMF119TN_TPOldSol

v OLDSOLICITOR 1

v NOOLDSOLICITOR 0

X'40', SMF119TN_TPPPhrase

v PASSWORDPHRASE 1

v NOPASSWORDPHRASE 0

X'20', SMF119TN_TPDisPPhrase

DISABLEPASSWORDPHRASE 1

X'10', SMF119TN_TPSecurePort

v SECUREPORT 1

v PORT 0

X'08', SMF119TN_TPTTLSPort

v TTLSPORT 1

v PORT 0

X'04', SMF119TN_TPRefMsg10

v REFRESHMSG10 1

v NOREFRESHMSG10 0

X'02', SMF119TN_TPSeqLu

v SEQUENTIALLU 1

v NOSEQUENTIALLU 0

X'01', SMF119TN_TPSGA

v SGA 1

v NOSGA 0

v DISABLESGA 0

868 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

45(X'2D') SMF119TN_TPFlag05 1 Binary Flag byte 05

X'80', SMF119TN_TPSimCliLu

v SIMCLIENTLU 1

v NOSIMCLIENTLU 0

X'40', SMF119TN_TPSingleAttn

v SINGLEATTN10 1

v NOSINGLEATTN 0

X'20', SMF119TN_TPSMFInit119

v SMFINIT TYPE119 1

v SMFINIT NOTYPE119 0

X'10', SMF119TN_TPSMFTerm119

v SMFTERM TYPE119 1

v SMFTERM NOTYPE119 0

X'08', SMF119TN_TPSNAExt

v SNAEXT 1

v NOSNAEXT 0

X'04', SMF119TN_TPSSLV2

v SSLV2 1

v NOSSLV2 0

X'02', SMF119TN_TPSSLV3

v SSLV3 1

v NOSSLV3 0

46(X'2E') SMF119TN_TPFlag06 1 Binary Flag byte 06

X'80', SMF119TN_TPTKOGenLu
TKOGENLU 1

X'40', SMF119TN_TPTKOGenLuR
TKOGENLURecon 1

X'20', SMF119TN_TPTKOGKeepON

v KEEPONTMRESET 1

v NOKEEPONTMRESET 0

X'10', SMF119TN_TPTKOGSameIP

v SAMEIPADDR 1

v NOSAMEIPADDR 0

X'08', SMF119TN_TPTKOGSameCT

v SAMECONNTYPE 1

v NOSAMECONNTYPE 0

Appendix E. Type 119 SMF records 869

|

|

|

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

47(X'2F') SMF119TN_TPFlag07 1 Binary Flag byte 07

X'80', SMF119TN_TPTKOSpecLu
TKOSPECLU 1

X'40', SMF119TN_TPTKOSpecLuR
TKOSPECLURecon 1

X'20', SMF119TN_TPTKOSKeepON

v KEEPONTMRESET 1

v NOKEEPONTMRESET 0

X'10', SMF119TN_TPTKOSSameIP

v SAMEIPADDR 1

v NOSAMEIPADDR 0

X'08', SMF119TN_TPTKOSSameCT

v SAMECONNTYPE 1

v NOSAMECONNTYPE 0

48(X'30') SMF119TN_TPFlag08 1 Binary Flag byte 08

X'80', SMF119TN_TPTN3270E

v TN3270E 1

v NOTN3270E 0

X'40', SMF119TN_TPUnlKybd_B

v UNLOCK BeforeRead 1

v UNLOCK AfterRead 0

X'20', SMF119TN_TPTN3270Bind

v TN3270BIND 1

v NOTN3270BIND 0

49(X'31') SMF119TN_TPFlag09 1 Binary Flag byte 09

50(X'32') SMF119TN_TPProfId 2 Binary Profile Id

52(X'34') SMF119TN_TPCConnSec 4 Binary CHECKCLIENTCONN sec

56(X'38') SMF119TN_TPCConnMax 4 Binary CHECKCLIENTCONN maxconns

60(X'3C') SMF119TN_TPCodePage_A 12 EBCDIC Codepage ASCII

72(X'48') SMF119TN_TPCodePage_E 12 EBCDIC Codepage EBCDIC

84(X'54') SMF119TN_TPCipherCnt 2 Binary Number of ENCYRPTION algorithms

86(X'56') SMF119TN_TPV3Cipher 64 EBCDIC ENCRYPTION algorithms

86(X'56') SMF119TN_TPCipher(32) 2 EBCDIC ENCRYPTION algorithms

150(X'96') MF119TN_TPKeyRingLen 2 Binary Length of TPKeyRing

152(X'98') SMF119TN_TPInactSec 4 Binary INACTIVE sec

156(X'9C') SMF119TN_TPKeepInact 4 Binary KEEPINACTIVE sec

160(X'A0') SMF119TN_TPKeepLUSec 4 Binary KEEPLU sec

164(X'A4') SMF119TN_TPKeyRing 256 EBCDIC KEYRING data set name. See
SMF119TN_TPKeyRingLen last 255 bytes
of name if the name is longer than 255.

870 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

420(X'1A4') SMF119TN_TPMaxRcv 4 Binary MAXRECEIVE bytes

424(X'1A8') SMF119TN_TPMaxReqSess 4 Binary MAXREQSESS num_req

428(X'1AC') SMF119TN_TPMax_RUChain 4 Binary MAXRUCHAIN num_RUs

432(X'1B0') SMF119TN_TPMaxTcpSendQ 4 Binary MAXTCPSENDQ bytes

436(X'1B4') SMF119TN_TPMaxVtamSend 4 Binary MAXVTAMSENDQ num_rpls

440(X'1B8') SMF119TN_TPNacUserId 8 EBCDIC NACUSERID NAC_name

448(X'1C0') SMF119TN_TPPrtInact 4 Binary PRTINACTIVE sec

452(X'1C4') SMF119TN_TPProfInact 4 Binary PROFILEINACTIVE sec

456(X'1C8') SMF119TN_TPScan_Sec 4 Binary SCANINTERVAL sec1

460(X'1CC') SMF119TN_TPTMark_Sec 4 Binary TIMEMARK sec2

464(X'1D0') SMF119TN_TPSMFInit118 1 Binary SMFINIT nn

465(X'1D1') SMF119TN_TPSMFTerm118 1 Binary SMFTERM nn

468(X'1D4') SMF119TN_TPSSL_Sec 4 Binary SSLTIMEOUT sec

472(X'1D8') SMF119TN_TPTelnetDevice 336 EBCDIC TELNETDEVICE

472(X'1D8') SMF119TN_TPDevEntry(21) 16 EBCDIC Device logmode entries:

v SMF119TN_TP_IBM_3277 1

v SMF119TN_TP_IBM_3278_2_E 2

v SMF119TN_TP_IBM_3278_2 3

v SMF119TN_TP_IBM_3278_3_E 4

v SMF119TN_TP_IBM_3278_3 5

v SMF119TN_TP_IBM_3278_4_E 6

v SMF119TN_TP_IBM_3278_4 7

v SMF119TN_TP_IBM_3278_5_E 8

v SMF119TN_TP_IBM_3278_5 9

v SMF119TN_TP_IBM_3279_2_E 10

v SMF119TN_TP_IBM_3279_2 11

v SMF119TN_TP_IBM_3279_3_E 12

v SMF119TN_TP_IBM_3279_3 13

v SMF119TN_TP_IBM_3279_4_E 14

v SMF119TN_TP_IBM_3279_4 15

v SMF119TN_TP_IBM_3279_5_E 16

v SMF119TN_TP_IBM_3279_5 17

v SMF119TN_TP_UNKNOWN 18

v SMF119TN_TP_IBM_DYNAMIC19

v SMF119TN_TP_IBM_3287_1 20

v SMF119TN_TP_IBM_TRANSFORM 21

472(X'1D8') SMF119TN_TPLogmode 8 EBCDIC TN3270 Logmode

480(X'1E0') SMF119TN_TPeLogmode 8 EBCDIC TN3270E logmode

808(X'328') SMF119TN_TPTKOGLu_sec 4 Binary TKOGENLU sec

812(X'32C') SMF119TN_TPTKOSLu_sec 4 Binary TKOSPECLU sec

816(X'330') SMF119TN_TPDBG_Flags 8 Binary Flags for debug

Appendix E. Type 119 SMF records 871

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

816(X'330') SMF119TN_TPDBG_ConnFlg 1 Binary Debug CONN flags

X'80', SMF119TN_TPDBG_ConnExc
DEBUG CONN EXCEPTION

X'40', SMF119TN_TPDBG_ConnSum
DEBUG CONN SUMMARY

X'20', SMF119TN_TPDBG_ConnDet
DEBUG CONN DETAIL

X'10', SMF119TN_TPDBG_ConnOFF
DEBUG CONN OFF

X'08', SMF119TN_TPDBG_ConnVOff
DEBUG CONN Vary off

X'03',
SMF119TN_TPDBG_ConnFlg_Route

v X'01' : CONSOLE

v X'02' : JOBLOG

v X'03' : CTRACE

817(X'331') SMF119TN_TPDBG_ConnTrace 1 Binary Debug CONN TRACE flags

X'80', SMF119TN_TPDBG_ConnTrc
DEBUG CONN TRACE

X'40', SMF119TN_TPDBG_ConnTrcOff
DEBUG CONN NOTRACE

X'20', SMF119TN_TPDBG_ConnTrcVOff
DEBUG CONN TRACE vary off

X'0C',
SMF119TN_TPDBG_ConnFlg_Route

v X'01' : CONSOLE

v X'02' : JOBLOG

v X'03' : CTRACE

818(X'332') SMF119TN_TPDBG_TaskFlg 1 Binary Debug CONN flags

X'80', SMF119TN_TPDBG_TaskExc
DEBUG TASK EXCEPTION

X'20', SMF119TN_TPDBG_TaskDet
DEBUG TASK DETAIL

X'10', SMF119TN_TPDBG_TaskOff
DEBUG TASK OFF

X'08', SMF119TN_TPDBG_TaskVOff

X'03',
SMF119TN_TPDBG_TaskFlg_Route

v X'01' : CONSOLE

v X'02' : JOBLOG

v X'03' : CTRACE

872 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 237. TelnetParms section (continued)

Offset Name Length Format Description

819(X'333') SMF119TN_TPDBG_resv3x 1 Binary Reserved

820(X'334') SMF119TN_TPDBG_ConfFlg 1 Binary Debug CONFIG flags

X'80', SMF119TN_TPDBG_ConfExc
DEBUG CONFIG EXCEPTION

X'10', SMF119TN_TPDBG_ConfOff
DEBUG CONFIG OFF

X'08', SMF119TN_TPDBG_ConfOff
DEBUG CONFIG Vary Off

X'03',
SMF119TN_TPDBG_ConfFlg_Route

v X'01' : CONSOLE

v X'02' : JOBLOG

v X'03' : CTRACE

821(X'335') SMF119TN_TPDBG_ConfTrace 1 Binary Debug CONFIG TRACE flags

X'80', SMF119TN_TPDBG_ConfTrc
DEBUG CONFIG TRACE

X'40', SMF119TN_TPDBG_ConfTrcOff
DEBUG CONFIG NOTRACE

X'20', SMF119TN_TPDBG_ConfTrcVOff
DEBUG CONFIG TRACE vary
off

X'0C',
SMF119TN_TPDBG_ConfFlg_Route

v X'01' : CONSOLE

v X'02' : JOBLOG

v X'03' : CTRACE

822(X'336') SMF119TN_TPDBG_resv6x7x 2 Binary Reserved

TN3270E Telnet server profile record LU section
This section provides the values of the LU statements in the BEGINVTAM block.
One entry exists for each statement for each server port.

Table 238 shows the LU section.

Table 238. LU section

Offset Name Length Format Description

0(X'0') SMF119TN_LUEye 4 EBCDIC TNLU eyecatcher

4(X'4') SMF119TN_LUPortNum 2 Binary Port number

6(X'6') SMF119TN_LUIndex 2 Binary TNTP index

8(X'8') SMF119TN_LUName 8 EBCDIC LU name

16(X'10') SMF119TN_LUFlag0 1 Binary Flag byte 0

17(X'11') SMF119TN_LUFlag1 1 Binary Flag byte 1

Appendix E. Type 119 SMF records 873

Table 238. LU section (continued)

Offset Name Length Format Description

18(X'12') SMF119TN_LUFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_LUFlag3 1 Binary Flag byte 3

20(X'14') SMF119TN_LURngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_LURngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_LURngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_LUCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_LURng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_LURngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_LURngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_LURngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270E Telnet server profile record LU Group section
This section provides the values of the LU Group statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 239 shows the LU Group section.

Table 239. LU Group section

Offset Name Length Format Description

0(X'0') SMF119TN_LGEye 4 EBCDIC TNLG eyecatcher

4(X'4') SMF119TN_LGPortNum 2 Binary Port number

6(X'6') SMF119TN_LGIndex 2 Binary TNTP index

8(X'8') SMF119TN_LGName 8 EBCDIC Group name

16(X'10') SMF119TN_LGFlag0 1 Binary Flag byte 0

X'80', SMF119TN_LGExit
EXIT defined with group

17(X'11') SMF119TN_LGFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_LGFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_LGCapacity 1 Binary Capacity percentage

20(X'14') SMF119TN_LGRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_LGRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_LGRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_LGCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_LGRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_LGRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_LGRngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_LGRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

874 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

TN3270E Telnet server profile record SLU Group section
This section provides the values of the SLU Group statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 240 shows the SLU Group section.

Table 240. SLU Group section

Offset Name Length Format Description

0(X'0') SMF119TN_SGEye 4 EBCDIC TNLG eyecatcher

4(X'4') SMF119TN_SGPortNum 2 Binary Port number

6(X'6') SMF119TN_SGIndex 2 Binary TNTP index

8(X'8') SMF119TN_SGName 8 EBCDIC Group name

16(X'10') SMF119TN_SGFlag0 1 Binary Flag byte 0

X'80', SMF119TN_SGExit
EXIT defined with group

17(X'11') SMF119TN_SGFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_SGFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_SGCapacity 1 Binary Capacity percentage

20(X'14') SMF119TN_SGRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_SGRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_SGRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_SGCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_SGRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_SGRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_SGRngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_SGRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270E Telnet server profile record APPL group section
This section provides the values of LUs that were optionally coded on an
ALLOWAPPL statement. If single LUs were listed, Telnet generates an LUGROUP
name to represent the LUs. One entry exists for each statement for each server
port.

Table 241 shows the APPL LU section.

Table 241. APPL group section

Offset Name Length Format Description

0(X'0') SMF119TN_AGEye 4 EBCDIC TNAG eyecatcher

4(X'4') SMF119TN_AGPortNum 2 Binary Port number

6(X'6') SMF119TN_AGIndex 2 Binary TNTP index

8(X'8') SMF119TN_AGName 8 EBCDIC Group name

Appendix E. Type 119 SMF records 875

Table 241. APPL group section (continued)

Offset Name Length Format Description

16(X'10') SMF119TN_AGFlag0 1 Binary Flag byte 0

X'80', SMF119TN_AGExit
EXIT defined with group

17(X'11') SMF119TN_AGFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_AGFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_AGCapacity 1 Binary Capacity percentage

20(X'14') SMF119TN_AGRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_AGRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_AGRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_AGCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_AGRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_AGRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_AGRngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_AGRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270E Telnet server profile record Printer section
This section provides the values of the Print LU statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 242 shows the Print LU section.

Table 242. Printer section

Offset Name Length Format Description

0(X'0') SMF119TN_PREye 4 EBCDIC TNPR eyecatcher

4(X'4') SMF119TN_PRPortNum 2 Binary Port number

6(X'6') SMF119TN_PRIndex 2 Binary TNTP index

8(X'8') SMF119TN_PRName 8 EBCDIC Printer name

16(X'10') SMF119TN_PRFlag0 1 Binary Flag byte 0

17(X'11') SMF119TN_PRFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_PRFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_PRFlag3 1 Binary Flag byte 3

20(X'14') SMF119TN_PRRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_PRRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_PRRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_PRCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_PRRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_PRRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_PRRngHigh 8 EBCDIC High value in range

876 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 242. Printer section (continued)

Offset Name Length Format Description

52(X'34') SMF119TN_PRRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270E Telnet server profile record PrintGroup section
This section provides the values of the PrtGroup statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 243 shows the Print Group section.

Table 243. PrintGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_RGEye 4 EBCDIC TNPR eyecatcher

4(X'4') SMF119TN_RGPortNum 2 Binary Port number

6(X'6') SMF119TN_RGIndex 2 Binary TNTP index

8(X'8') SMF119TN_RGName 8 EBCDIC Printer name

16(X'10') SMF119TN_RGFlag0 1 Binary Flag byte 0

X'80', SMF119TN_RGExit
EXIT defined with group

17(X'11') SMF119TN_RGFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_RGFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_RGCapacity 1 Binary Capacity Percentage

20(X'14') SMF119TN_RGRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_RGRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_RGRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_RGCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_RGRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_RGRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_RGRngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_RGRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270 Telnet server profile record SPRTGROUP section
This section provides the values of the SLU print statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 244 shows the SLU Print section.

Table 244. SLU Print section

Offset Name Length Format Description

0(X'0') SMF119TN_SPEye 4 EBCDIC TNSP eyecatcher

4(X'4') SMF119TN_SPPortNum 2 Binary Port number

6(X'6') SMF119TN_SPIndex 2 Binary TNTP index

Appendix E. Type 119 SMF records 877

Table 244. SLU Print section (continued)

Offset Name Length Format Description

8(X'8') SMF119TN_SPName 8 EBCDIC Group name

16(X'10') SMF119TN_SPFlag0 1 Binary Flag byte 0

X'80', SMF119TN_LGExit
EXIT defined with group

17(X'11') SMF119TN_SPFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_SPFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_SPCapacity 1 Binary Capacity percentage

20(X'14') SMF119TN_SPRngCnt 4 Binary Total number of ranges in the group

24(X'18') SMF119TN_SPRngInx 4 Binary Index into ranges that are defined in
this entry

28(X'1C') SMF119TN_SPRngNum 4 Binary Total number of ranges that are
returned in this entry

32(X'20') SMF119TN_SPCount 4 Binary Number of LUs that are defined

36(X'24') SMF119TN_SPRng(10) 24 EBCDIC Ranges

36(X'24') SMF119TN_SPRngLow 8 EBCDIC Low value in range

44(X'2C') SMF119TN_SPRngHigh 8 EBCDIC High value in range

52(X'34') SMF119TN_SPRngRule 8 EBCDIC Rule that defines this range. A value
of C'FFFFFFFF'.

TN3270 Telnet server profile record ParmsGroup section
This section provides the values of the ParmsGroup statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 245 shows the ParmsGroup section.

Table 245. ParmsGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_PGTP 824 Binary SMF119TN_TP

0(X'0') SMF119TN_PGEye 4 EBCDIC TNPG eyecatcher

4(X'4') SMF119TN_PGPortNum 2 Binary Port number

6(X'6') SMF119TN_PGIndex 2 Binary TNTP index

TN3270E Telnet server profile record MonitorGroup section
This section provides the values of the MonitorGroup statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 246 shows the Monitor Group section.

Table 246. Monitor Group section.

Offset Name Length Format Description

0(X'0') SMF119TN_MGEye 4 EBCDIC TNMG eyecatcher

4(X'4') SMF119TN_MGPortNum 2 Binary Port number

6(X'6') SMF119TN_MGIndex 2 Binary TNTP index

878 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 246. Monitor Group section (continued).

Offset Name Length Format Description

8(X'8') SMF119TN_MGName (see
Note)

8 EBCDIC Group name

16(X'10') 4 Binary Reserved

24(X'18') SMF119TN_MGFlag0 1 Binary Flag byte 0

X'80', SMF119TN_MGIncludeIP
Measure IP transit time

X'40', SMF119TN_MGDynDR
Add the Definite Response
(DR) request

X'20', SMF119TN_MGAverages
Sliding averages calculated.

X'10', SMF119TN_MGBuckets
Time buckets used

25(X'19') SMF119TN_MGFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_MGFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_MGFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_MGSampPeriod 4 Binary Sampling period for a
sliding-window average

32X'20') SMF119TN_MGSampMult 4 Binary Averaging period multiplier

36(X'24') SMF119TN_MGBndry1 4 Binary Bucket 1 boundary time

40(X'28') SMF119TN_MGBndry2 4 Binary Bucket 2 boundary time

44(X'2C') SMF119TN_MGBndry3 4 Binary Bucket 3 boundary time

48(X'30') SMF119TN_MGBndry4 4 Binary Bucket 4 boundary time

Note:

1. Starting at offset 8(X'8'), this section is the layout of the TELNETPARMS section.

TN3270E Telnet server profile record Client Identifier structure
This structure describes the Telnet Client Identifier with the type and name of
resources associated with the statements. This structure is found in several of the
following sections.

Table 247 on page 880 shows the Client Identifier structure.

Appendix E. Type 119 SMF records 879

Table 247. Client Identifier structure

Offset Name Length Format Description

0(X'0') SMF119TN_IDType 1 Binary Type of Client Identifier

SMF119TN_ID_EMPTY (00)
Unknown type

SMF119TN_ID_USERID (01)
IDUser has a USERID

SMF119TN_ID_HNAME (02)
IDHname is a HOSTNAME

SMF119TN_ID_IPADDR (03)
IDIpAddrx is an IPADDR

SMF119TN_ID_USERGRP (04)
IDGrpName is a USERGRP

SMF119TN_ID_HNGRP (05)
IDGrpName is an HNGRP

SMF119TN_ID_IPGRP (06)
IDGrpName is an IPGRP

SMF119TN_ID_DESTIP (07)
IDIpAddrx is a DESTIP

SMF119TN_ID_LNKNAME (08)
IDLinkName is a
LINKNAME

SMF119TN_ID_DIPGRP (09)
IDGrpName is a
DESTIPGRP

SMF119TN_ID_LNKGRP (10)
IDGrpName is a LINKGRP

SMF119TN_ID_NULL (11)
No ID is associated

1(X'1') SMF119TN_IDFamily 1 Binary IpAddress family

SMF119TN_IDAF_INet (2)
IpV4 family

SMF119TN_IDAF_INet6 (19)
IpV6 family

1(X'1') SMF119TN_IDHlen 1 Binary Length of host name

2(X'2') SMF119TN_IDUser 8 EBCDIC User ID

2(X'2') SMF119TN_IDLinkName 16 EBCDIC Link name

2(X'2') SMF119TN_IDGrpName 16 EBCDIC Group name

2(X'2') SMF119TN_IDIPAddr 16 Binary IP address

2(X'2') SMF119TN_IDHName 255 EBCDIC Host name

TN3270E Telnet server profile record LinkGroup section
This section provides the values of the LinkGroup statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 248 on page 881 shows the LinkGroup section.

880 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 248. LinkGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_LKEye 4 EBCDIC TNLK eyecatcher

4(X'4') SMF119TN_LKPortNum 2 Binary Port number

6(X'6') SMF119TN_LKIndex 2 Binary TNTP index

8(X'8') SMF119TN_LKName 16 EBCDIC Group name

24(X'18') SMF119TN_LKFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_LKFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_LKFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_LKFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_LKRngCnt 4 Binary Total number of ranges in the group

32(X'20') SMF119TN_LKRngInx 4 Binary Index into ranges that are defined in
this entry

36(X'24') SMF119TN_LKRngNum 4 Binary Total number of ranges that are
returned in this entry

40(X'28') SMF119TN_LKRng(10) 16 Binary Link names

40(X'28') SMF119TN_LKName 16 EBCDIC LINKNAME

TN3270E Telnet server profile record IpGroup section
This section provides the values of the IpGroup statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 249 shows the IpGroup section.

Table 249. IpGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_IGEye 4 EBCDIC TNIG eyecatcher

4(X'4') SMF119TN_IGPortNum 2 Binary Port number

6(X'6') SMF119TN_IGIndex 2 Binary TNTP index

8(X'8') SMF119TN_IGName 16 EBCDIC Group name

24(X'18') SMF119TN_IGFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_IGFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_IGFlag2 1 Binary Flag byte 2

27(X'1B') SSMF119TN_IGFlag3 1 Binary Flag bByte 3

28(X'1C') SMF119TN_IGRngCnt 4 Binary Total number of ranges in the group

32(X'20') SMF119TN_IGRngInx 4 Binary Index into ranges that are defined in
this entry

36(X'24') SMF119TN_IGRngNum 4 Binary Total number of ranges that are
returned in this entry

40(X'28') SMF119TN_IGRng(10) 34 Binary Ranges

40(X'28') SMF119TN_IGFamily 1 Binary IP address family

SMF119TN_IGIpV4 (2)
IpV4 family

SMF119TN_IGIpV6 (19)
IpV6 family

Appendix E. Type 119 SMF records 881

Table 249. IpGroup section (continued)

Offset Name Length Format Description

41(X'29') SMF119TN_IGPrefix 1 Binary Prefix value

42(X'2A') SMF119TN_IGIpLow 16 Binary Single IP address or first range IP
address

58(X'3A') SMF119TN_IGIpa2 16 Binary Second range IP address

TN3270E Telnet server profile record UserGroup section
This section provides the values of the UserGroup statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 250 shows the UserGroup section.

Table 250. UserGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_UGEye 4 EBCDIC TNUG eyecatcher

4(X'4') SMF119TN_UGPortNum 2 Binary Port number

6(X'6') SMF119TN_UGIndex 2 Binary TNTP index

8(X'8') SMF119TN_UGName 16 EBCDIC Group name

24(X'18') SMF119TN_UGFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_UGFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_UGFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_UGFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_UGRngCnt 4 Binary Total number of ranges in the group

32(X'20') SMF119TN_UGRngInx 4 Binary Index into ranges that are defined in
this entry

36(X'24') SMF119TN_UGRngNum 4 Binary Total number of ranges that are
returned in this entry

40(X'28') SMF119TN_UGRng(10) 8 EBCDIC User ID

40(X'28') SMF119TN_UGUserId 8 EBCDIC A User ID

TN3270E Telnet server profile record DestIPGroup section
This section provides the values of the DestIPGroup statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 251 shows the DestIPGroup section.

Table 251. DestIPGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_DGEye 4 EBCDIC TNDG eyecatcher

4(X'4') SMF119TN_DGPortNum 2 Binary Port number

6(X'6') SMF119TN_DGIndex 2 Binary TNTP index

8(X'8') SMF119TN_DGName 16 EBCDIC Group name

24(X'18') SMF119TN_DGFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_DGFlag1 1 Binary Flag byte 1

882 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 251. DestIPGroup section (continued)

Offset Name Length Format Description

26(X'1A') SMF119TN_DGFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_DGFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_DGRngCnt 4 Binary Total number of ranges in the group

32(X'20') SMF119TN_DGRngInx 4 Binary Index into ranges that are defined in
this entry

36(X'24') SMF119TN_DGRngNum 4 Binary Total number of ranges that are
returned in this entry

40(X'28') SMF119TN_DGRng(10) 34 Binary Ranges

40(X'28') SMF119TN_DGFamily 1 Binary IP address family

SMF119TN_DGIpV4 (2)
IpV4 family

SMF119TN_DGIpV6 (19)
IpV6 family

41(X'29') SMF119TN_DGPrefix 1 Binary Prefix value

42(X'2A') SMF119TN_DGIpLow 16 Binary Single IP address or first range IP
address

58(X'3A') SMF119TN_DGIpa2 16 Binary Second range IP address

TN3270E Telnet server profile record HnGroup section
This section provides the values of the HnGroup statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 252 shows the HnGroup section.

Table 252. HnGroup section

Offset Name Length Format Description

0(X'0') SMF119TN_HGEye 4 EBCDIC TNHG eyecatcher

4(X'4') SMF119TN_HGPortNum 2 Binary Port number

6(X'6') SMF119TN_HGIndex 2 Binary TNTP index

8(X'8') SMF119TN_HGName 16 EBCDIC Group name

24(X'18') SMF119TN_HGFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_HGFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_HGFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_HGFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_HGRngCnt 4 Binary Total number of ranges in the group

32(X'20') SMF119TN_HGRngInx 4 Binary Index into ranges that are defined in
this entry

36(X'24') SMF119TN_HGRngNum 4 Binary Total number of ranges that are
returned in this entry

40(X'28') SMF119TN_HGRng 256 Binary

40(X'28') SMF119TN_HGHlen 1 Binary Host name length

41(X'29') SMF119TN_HGHName 255 EBCDIC Host name

Appendix E. Type 119 SMF records 883

TN3270E Telnet server profile record AllowAppl/RestrictAppl
section

This section provides the values of the AllowAppl/RestrictAppl statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 253 shows the AllowAppl/RestrictAppl section.

Table 253. AllowAppl/RestrictAppl section

Offset Name Length Format Description

0(X'0') SMF119TN_AREye 4 EBCDIC TNAR eyecatcher

4(X'4') SMF119TN_ARPortNum 2 Binary Port number

6(X'6') SMF119TN_ARIndex 2 Binary TNTP index

8(X'8') SMF119TN_ARName 8 EBCDIC Application name

16(X'10') SMF119TN_ARFlag0 1 Binary Flag byte 0

X'80', SMF119TN_ARAllow
On if AllowAppl

X'40', SMF119TN_ARRestrict
On if RestrictAppl

X'20', SMF119TN_ARaDisc
Disconnect on AllowAppl

X'10', SMF119TN_ARaQSess
Qsession on AllowAppl

X'08', SMF119TN_ARrDisc
Disconnect on RestrictAppl

X'04', SMF119TN_ARrQSess
Qsession on RestrictAppl

X'02', SMF119TN_ARrCertauth
CertPath on RestrictAppl

X'01', SMF119TN_ARrAllowPrt
RestrictAppl AllowPrinter

17(X'11') SMF119TN_ARFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_ARFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_ARFlag3 1 Binary Flag byte 3

20(X'14') SMF119TN_ARLstCnt 4 Binary Number of items defined

24(X'18') SMF119TN_ARLstIdx 4 Binary Index into items defined in entry

28(X'1C') SMF119TN_ARLstNum 4 Binary Number of items in this entry

32(X'24') SMF119TN_ARLst(10) 16 EBCDIC User ID and LU group names

36(X'24') SMF119TN_ARUser 8 EBCDIC User ID

44(X'2C') SMF119TN_ARLug 8 EBCDIC LU group name

TN3270E Telnet server profile record DefaultAppl section
This section provides the values of the DefaultAppl statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 254 on page 885 shows the DefaultAppl section.

884 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 254. DefaultAppl section

Offset Name Length Format Description

0(X'0') SMF119TN_DAEye 4 EBCDIC TNDA eyecatcher

4(X'4') SMF119TN_DAPortNum 2 Binary Port number

6(X'6') SMF119TN_DAIndex 2 Binary TNTP index

8(X'8') SMF119TN_DANetId 8 EBCDIC Net ID

16(X'10') SMF119TN_DAName 8 EBCDIC Application name

24(X'18') SMF119TN_DAFlag0 1 Binary Flag byte 0

X'08', SMF119TN_DALogAppl
LogAppl

X'04', SMF119TN_DAQInit
Qinit

X'02', SMF119TN_DADefOnly
DefOnly

X'01', SMF119TN_DA1stOnly
1stOnly

25(X'19') SMF119TN_DAFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_DAFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_DAFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_DACLid 257 Binary Client identifier

TN3270E Telnet server profile record PrtDefaultAppl section
This section provides the values of the PrtDefaultAppl statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 255 shows the PrtDefaultAppl section.

Table 255. PrtDefaultAppl section

Offset Name Length Format Description

0(X'0') SMF119TN_PAEye 4 EBCDIC TNPA eyecatcher

4(X'4') SMF119TN_PAPortNum 2 Binary Port number

6(X'6') SMF119TN_PAIndex 2 Binary TNTP index

8(X'8') SMF119TN_PANetId 8 EBCDIC Net ID

16(X'10') SMF119TN_PAName 8 EBCDIC Application name

24(X'18') SMF119TN_PAFlag0 1 Binary Flag byte 0

X'08', SMF119TN_PALogAppl
LogAppl

X'04', SMF119TN_PAQInit
Qinit

X'02', SMF119TN_PADefOnly
DefOnly

X'01', SMF119TN_PA1stOnly
1stOnly

25(X'19') SMF119TN_PAFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_PAFlag2 1 Binary Flag byte 2

Appendix E. Type 119 SMF records 885

Table 255. PrtDefaultAppl section (continued)

Offset Name Length Format Description

27(X'1B') SMF119TN_PAFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_PACLid 257 Binary Client identifier

TN3270E Telnet server profile record LineModeAppl section
This section provides the values of the LineModeAppl statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 256 shows the LineModeAppl section.

Table 256. LineModeAppl section

Offset Name Length Format Description

0(X'0') SMF119TN_LAEye 4 EBCDIC TNLA eyecatcher

4(X'4') SMF119TN_LAPortNum 2 Binary Port number

6(X'6') SMF119TN_LAIndex 2 Binary TNTP index

8(X'8') SMF119TN_LANetId 8 EBCDIC Net ID

16(X'10') SMF119TN_LAName 8 EBCDIC Application name

24(X'18') SMF119TN_LAFlag0 1 Binary Flag byte 0

X'08', SMF119TN_LALogAppl
LogAppl

X'04', SMF119TN_LAQInit
Qinit

X'02', SMF119TN_LADefOnly
DefOnly

X'01', SMF119TN_LA1stOnly
1stOnly

25(X'19') SMF119TN_LAFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_LAFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_LAFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_LACLid 257 Binary Client identifier

TN3270E Telnet server profile record MapAppl section
This section provides the values of the DEFAPPLs that are defined on LUMAP and
PRTMAP statements in the BEGINVTAM block. One entry exists for each
statement for each server port.

Table 257 shows the MapAppl section.

Table 257. MapAppl section

Offset Name Length Format Description

0(X'0') SMF119TN_MAEye 4 EBCDIC TNMA eyecatcher

4(X'4') SMF119TN_MAPortNum 2 Binary Port number

6(X'6') SMF119TN_MAIndex 2 Binary TNTP index

8(X'8') SMF119TN_MANetId 8 EBCDIC Net ID

16(X'10') SMF119TN_MAName 8 EBCDIC Application name

886 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 257. MapAppl section (continued)

Offset Name Length Format Description

24(X'18') SMF119TN_MAFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_MAFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_MAFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_MAFlag3 1 Binary Flag byte 3

TN3270E Telnet server profile record USSTCP section
This section provides the values of the USSTCP statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 258 shows the USSTCP section.

Table 258. USSTCP section

Offset Name Length Format Description

0(X'0') SMF119TN_USEye 4 EBCDIC TNUS eyecatcher

4(X'4') SMF119TN_USPortNum 2 Binary Port number

6(X'6') SMF119TN_USIndex 2 Binary TNTP index

8(X'8') 8 EBCDIC Reserved

16(X'10') SMF119TN_USName 8 EBCDIC Table name

24(X'18') SMF119TN_USFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_USFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_USFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_USFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_USCLid 257 Binary Client identifier

TN3270E Telnet server profile record INTERPTCP section
This section provides the values of the INTERPTCP statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 259 shows the INTERPTCP section.

Table 259. INTERPTCP section

Offset Name Length Format Description

0(X'0') SMF119TN_ITEye 4 EBCDIC TNIT eyecatcher

4(X'4') SMF119TN_ITPortNum 2 Binary Port number

6(X'6') SMF119TN_ITIndex 2 Binary TNTP index

8(X'8') 8 EBCDIC Reserved

16(X'10') SMF119TN_ITName 8 EBCDIC Table name

24(X'18') SMF119TN_ITFlag0 1 Binary Flag byte 0

25(X'19') SMF119TN_ITFlag1 1 Binary Flag byte 1

26(X'1A') SMF119TN_ITFlag2 1 Binary Flag byte 2

27(X'1B') SMF119TN_ITFlag3 1 Binary Flag byte 3

28(X'1C') SMF119TN_ITCLid 257 Binary Client identifier

Appendix E. Type 119 SMF records 887

TN3270E Telnet server profile record ParmsMap section
This section provides the values of the ParmsMap statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 260 shows the ParmsMap section.

Table 260. ParmsMap section

Offset Name Length Format Description

0(X'0') SMF119TN_PMEye 4 EBCDIC TNPM eyecatcher

4(X'4') SMF119TN_PMPortNum 2 Binary Port number

6(X'6') SMF119TN_PMIndex 2 Binary TNTP index

8(X'8') SMF119TN_PMName 8 EBCDIC ParmsGroup name

16(X'10') SMF119TN_PMCLid 8 Binary Client identifier

TN3270E Telnet server profile record LUMap section
This section provides the values of the LUMap statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 261 shows the LUMap section.

Table 261. LUMap section

Offset Name Length Format Description

0(X'0') SMF119TN_LMEye 4 EBCDIC TNLM eyecatcher

4(X'4') SMF119TN_LMPortNum 2 Binary Port number

6(X'6') SMF119TN_LMIndex 2 Binary TNTP index

8(X'8') SMF119TN_LMName 8 EBCDIC LU or LUGROUP name

16(X'10') SMF119TN_LMFlag0 1 Binary Flag byte 0

X'40', SMF119TN_LMKeepOpen
Keepopen

X'20', SMF119TN_LMSpecific
Specific

X'10', SMF119TN_LMGeneric
Generic

X'08', SMF119TN_LMLogAppl
LogAppl

X'04', SMF119TN_LMQInit
QINIT

X'02', SMF119TN_LMDefOnly
DefOnlyl

X'01', SMF119TN_LM1stOnly
FirstOnlyl

17(X'11') SMF119TN_LMFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_LMFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_LMFlag3 1 Binary Flag byte 3

20(X'14') SMF119TN_LMDANetid 8 EBCDIC Network ID

28(X'1C') SMF119TN_LMDAName 8 EBCDIC Application name

888 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 261. LUMap section (continued)

Offset Name Length Format Description

36(X'24') SMF119TN_LMRname 8 EBCDIC Printer LU or Printer LUGROUP

44(X'2C') SMF119TN_LMPName 8 EBCDIC ParmsGroup name

52(X'34') SMF119TN_LMClid 257 Binary Client identifier

TN3270E Telnet server profile record PrtMap section
This section provides the values of the PrtMap statements in the BEGINVTAM
block. One entry exists for each statement for each server port.

Table 262 shows the PrtMap section.

Table 262. PrtMap section

Offset Name Length Format Description

0(X'0') SMF119TN_RMEye 4 EBCDIC TNRM eyecatcher

4(X'4') SMF119TN_RMPortNum 2 Binary Port number

6(X'6') SMF119TN_RMIndex 2 Binary TNTP index

8(X'8') SMF119TN_RMName 8 EBCDIC Printer LU or PRTGROUP name

16(X'10') SMF119TN_RMFlag0 1 Binary Flag byte 0

X'40', SMF119TN_RMKeepOpen
Keepopen

X'20', SMF119TN_RMSpecific
Specific

X'10', SMF119TN_RMGeneric
Generic

X'08', SMF119TN_RMLogAppl
LogAppl

X'04', SMF119TN_RMQInit
QINIT

X'02', SMF119TN_RMDefOnly
DefOnlyl

X'01', SMF119TN_RM1stOnly
FirstOnlyl

17(X'11') SMF119TN_RMFlag1 1 Binary Flag byte 1

18(X'12') SMF119TN_RMFlag2 1 Binary Flag byte 2

19(X'13') SMF119TN_RMFlag3 1 Binary Flag byte 3

20(X'14') SMF119TN_RMDANetid 8 EBCDIC Network ID

28(X'1C') SMF119TN_RMDAName 8 EBCDIC Application name

36(X'24') SMF119TN_RMPName 8 EBCDIC ParmsGroup name

44(X'2C') SMF119TN_RMClid 257 Binary Client identifier

TN3270E Telnet server profile record MonitorMap section
This section provides the values of the MonitorMap statements in the
BEGINVTAM block. One entry exists for each statement for each server port.

Table 263 on page 890 shows the MonitorMap section.

Appendix E. Type 119 SMF records 889

Table 263. MonitorMap section

Offset Name Length Format Description

0(X'0') SMF119TN_MMEye 4 EBCDIC TNMM eyecatcher

4(X'4') SMF119TN_MMPortNum 2 Binary Port number

6(X'6') SMF119TN_MMIndex 2 Binary TNTP index

8(X'8') SMF119TN_MMName 8 EBCDIC MonitorGroup name

16(X'10') SMF119TN_MMClid 257 Binary Client identifier

DVIPA status change record (subtype 32)
The dynamic virtual IP address (DVIPA) status change record is created when a
DVIPA is defined and when the status of a DVIPA changes on a TCP/IP stack.
This record is not created when the TCP/IP stack leaves the sysplex group and a
DVIPA becomes inactive. Creation of this SMF record is controlled by the
following:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement
If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA status change record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the
record reason.

Table 264 shows the DVIPA status change record self-defining section:

Table 264. DVIPA status change record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
32(X'20')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA status change section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA status change
section

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA status change
sections

890 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 265 shows the DVIPA status change specific section of this SMF record:

Table 265. DVIPA status change section

Offset Name Length Type Description

0(X'0') SMF119DV_SCIPAddr4 4 Binary If SMF119DV_SCFlags_IPv6 is not set,
this field contains the IPv4 DVIPA
address.

0(X'0') SMF119DV_SCIPAddr6 16 Binary If SMF119DV_SCFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_SCFlags 1 Binary Various flags:

v X'80', SMF119DV_SCFlags_IPv6: If
set, this record describes an IPv6
DVIPA address.

17(X'11') SMF119DV_SCOrigin 1 Binary The origin of this DVIPA and how it
was configured to the stack:

v X'01', SMF119DV_Orig_Unknown

A value of X'01' should not occur
and represents an error.

v X'02', SMF119DV_Orig_Backup

v X'03', SMF119DV_Orig_Define

v X'04', SMF119DV_Orig_RangeBIND

v X'05',
SMF119DV_Orig_RangeIOCTL

v X'06', SMF119DV_Orig_DistTarget

18(X'12') SMF119DV_SCStatus 1 Binary The status of this DVIPA on the stack:

v X'01', SMF119DV_Stat_Unknown

A value of X'01' should not occur
and represents an error.

v X'02', SMF119DV_Stat_Active

v X'03', SMF119DV_Stat_Backup

v X'04', SMF119DV_Stat_Moving

v X'05', SMF119DV_Stat_Quiescing

v X'06', SMF119DV_Stat_Deact

v X'07', SMF119DV_Stat_DeactLG

v X'08', SMF119DV_Stat_DeactAuto

v X'09', SMF119DV_Stat_InactLG

v X'0A', SMF119DV_Stat_InactAuto

Appendix E. Type 119 SMF records 891

Table 265. DVIPA status change section (continued)

Offset Name Length Type Description

19(X'13') SMF119DV_SCOptions 1 Binary Flags indicating DVIPA options
specified:

v X'80', SMF119DV_Opt_MoveImmed

v X'40', SMF119DV_Opt_MoveIdle

v X'20',
SMF119DV_Opt_MoveNonDis

v X'10',
SMF119DV_Opt_MoveDisrupt

This field does not apply to DVIPAs
whose SMF119DV_SCOrigin field is
set to SMF119DV_Orig_DistTarget.

20(X'14') SMF119DV_SCRank 2 Binary The rank of this stack in the chain of
backup stacks for this DVIPA. For
entries where the
SMF119DV_SCOrigin value is not
SMF119DV_Orig_Backup or
SMF119DV_Orig_Define, this field
does not apply and is set to X'FFFF'.

22(X'16') 2 Binary Reserved

24(X'18') SMF119DV_SCActTime 4 Binary DVIPA activation time, or the time
when this DVIPA was activated on
the local stack, either because the
stack is the owner of the DVIPA or
because the stack is a target for this
DVIPA.

28(X'1C') SMF119DV_SCActDate 4 Packed DVIPA activation date

DVIPA removed record (subtype 33)
The dynamic virtual IP address (DVIPA) removed record is created when a DVIPA
is removed from a TCP/IP stack. Creation of this SMF record is controlled by the
following:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement
If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA removed record, the TCP/IP stack identification section
indicates STACK as the subcomponent and X'08' (event record) as the record
reason.

Table 266 on page 893 shows the DVIPA removed record self-defining section:

892 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 266. DVIPA removed record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
33(X'21')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA removed section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA removed section

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA removed sections

Table 267 shows the DVIPA removed specific section of this SMF record:

Table 267. DVIPA removed section

Offset Name Length Type Description

0(X'0') SMF119DV_RmIPAddr4 4 Binary If SMF119DV_RmFlags_IPv6 is not
set, this field contains the IPv4
DVIPA address.

0(X'0') SMF119DV_RmIPAddr6 16 Binary If SMF119DV_RmFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_RmFlags 1 Binary Various flags:

v X'80', SMF119DV_RmFlags_IPv6: If
set, this record describes an IPv6
DVIPA address.

17(X'11') SMF119DV_RmOrigin 1 Binary The origin of this DVIPA and how it
was configured to the stack:

v X'01', SMF119DV_Orig_Unknown

A value of X'01' should not occur
and represents an error.

v X'02', SMF119DV_Orig_Backup

v X'03', SMF119DV_Orig_Define

v X'04', SMF119DV_Orig_RangeBIND

v X'05',
SMF119DV_Orig_RangeIOCTL

v X'06', SMF119DV_Orig_DistTarget

Appendix E. Type 119 SMF records 893

Table 267. DVIPA removed section (continued)

Offset Name Length Type Description

18(X'12') SMF119DV_RmStatus 1 Binary The status of this DVIPA on the stack
before it was removed:

v X'01', SMF119DV_Stat_Unknown

A value of X'01' should not occur
and represents an error.

v X'02', SMF119DV_Stat_Active

v X'03', SMF119DV_Stat_Backup

v X'04', SMF119DV_Stat_Moving

v X'05', SMF119DV_Stat_Quiescing

v X'06', SMF119DV_Stat_Deact

v X'07', SMF119DV_Stat_DeactLG

v X'08', SMF119DV_Stat_DeactAuto

v X'09', SMF119DV_Stat_InactLG

v X'0A', SMF119DV_Stat_InactAuto

19(X'13') SMF119DV_RmOptions 1 Binary Flags indicating DVIPA options
specified:

v X'80', SMF119DV_Opt_MoveImmed

v X'40', SMF119DV_Opt_MoveIdle

v X'20',
SMF119DV_Opt_MoveNonDis

v X'10',
SMF119DV_Opt_MoveDisrupt

20(X'14') SMF119DV_RmRank 2 Binary The rank of this stack in the chain of
backup stacks for this DVIPA. For
entries where the
SMF119DV_RmOrigin value is not
SMF119DV_Orig_Backup or
SMF119DV_Orig_Define, this field
does not apply and is set to X'FFFF'.

22(X'16') 10 Binary Reserved

DVIPA target added record (subtype 34)
The dynamic virtual IP address (DVIPA) target added record is created by a
sysplex distributor stack when it determines that a designated target stack is
active. A separate record is created for each DVIPA and port.

Creation of this SMF record is controlled by the following:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement
If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

894 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA target added record, the TCP/IP stack identification section
indicates STACK as the subcomponent and X'08' (event record) as the record
reason.

Table 268 shows the DVIPA target added record self-defining section:

Table 268. DVIPA target added record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
34(X'22')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA target added section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA target added
section

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA target added
sections

Table 269 shows the DVIPA target added specific section of this SMF record:

Table 269. DVIPA target added section

Offset Name Length Type Description

0(X'0') SMF119DV_TAIPAddr4 4 Binary If SMF119DV_TAFlags_IPv6 is not
set, this field contains the IPv4
DVIPA address.

0(X'0') SMF119DV_TAIPAddr6 16 Binary If SMF119DV_TAFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_TADxcfAddr4 4 Binary If SMF119DV_TAFlags_IPv6 is not
set, this field contains the IPv4
dynamic XCF address of the target
stack that was added.

16(X'10') SMF119DV_TADxcfAddr6 16 Binary If SMF119DV_TAFlags_IPv6 is set,
this field contains the IPv6 dynamic
XCF address of the target stack that
was added.

Appendix E. Type 119 SMF records 895

Table 269. DVIPA target added section (continued)

Offset Name Length Type Description

32(X'20') SMF119DV_TAFlags 1 Binary Various flags:

v X'80', SMF119DV_TAFlags_IPv6: If
set, DVIPA address and dynamic
XCF address are IPv6.

v X'40',
SMF119DV_TAFlags_DestIPAll: If
set, DESTIP ALL was specified on
the VIPADISTRIBUTE DEFINE
statement.

v X'20',
SMF119DV_TAFlags_DynPorts: If
set, dynamic ports were specified
for this VIPADISTRIBUTE DEFINE
statement.

33(X'21') 1 Binary Reserved

34(X'22') SMF119DV_TAPort 2 Binary The DVIPA distributed port number.
If dynamic ports are in use for this
target, this port number is 0.

36(X'24') 12 Binary Reserved

DVIPA target removed record (subtype 35)
The dynamic virtual IP address (DVIPA) target removed record is created by a
sysplex distributor stack when an active target stack is removed from distribution.

Creation of this SMF record is controlled by the following parameters and options:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement
If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA target removed record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the
record reason.

Table 270 shows the DVIPA target removed record self-defining section:

Table 270. DVIPA target removed record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
35(X'23')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

896 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 270. DVIPA target removed record self-defining section (continued)

Offset Name Length Format Description

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA target removed
section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA target removed
section

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA target removed
sections

Table 271 shows the DVIPA target removed specific section of this SMF record:

Table 271. DVIPA target removed section

Offset Name Length Type Description

0(X'0') SMF119DV_TRIPAddr4 4 Binary If SMF119DV_TRFlags_IPv6 is not set,
this field contains the IPv4 DVIPA
address.

0(X'0') SMF119DV_TRIPAddr6 16 Binary If SMF119DV_TRFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_TRDxcfAddr4 4 Binary If SMF119DV_TRFlags_IPv6 is not set,
this field contains the IPv4 dynamic
XCF address of the target stack that
was removed.

16(X'10') SMF119DV_TRDxcfAddr6 16 Binary If SMF119DV_TRFlags_IPv6 is set,
this field contains the IPv6 dynamic
XCF address of the target stack that
was removed.

32(X'20') SMF119DV_TRFlags 1 Binary Various flags:

v X'80', SMF119DV_TRFlags_IPv6: If
set, DVIPA address and dynamic
XCF address are IPv6.

v X'40',
SMF119DV_TRFlags_DestIPAll: If
set, DESTIP ALL was specified on
the VIPADISTRIBUTE DELETE
statement.

v X'20',
SMF119DV_TRFlags_DynPorts: If
set, dynamic ports were specified
for this target.

33(X'21') 1 Binary Reserved

Appendix E. Type 119 SMF records 897

Table 271. DVIPA target removed section (continued)

Offset Name Length Type Description

34(X'22') SMF119DV_TRPort 2 Binary The DVIPA distributed port number.
If dynamic ports are in use for this
DVIPA, this port number might be 0.

36(X'24') 12 Binary Reserved

DVIPA target server started record (subtype 36)
The dynamic virtual IP address (DVIPA) target server started record is created by a
sysplex distributor stack when it receives notification from a target stack that a
server has opened a listening socket on a distributed port, or that a server has been
resumed using the V TCPIP,,SYSPLEX,RESUME command.

Creation of this SMF record is controlled by the following:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement
If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA target server started record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the
record reason.

Table 272 shows the DVIPA target server started record self-defining section:

Table 272. DVIPA target server started record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
36(X'24')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA target server started
section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA target server started
section

898 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 272. DVIPA target server started record self-defining section (continued)

Offset Name Length Format Description

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA target server
started sections

Table 273 shows the DVIPA target server started specific section of this SMF record:

Table 273. DVIPA target server started section

Offset Name Length Type Description

0(X'0') SMF119DV_TSSIPAddr4 4 Binary If SMF119DV_TSSFlags_IPv6 is not
set, this field contains the IPv4
DVIPA address.

0(X'0') SMF119DV_TSSIPAddr6 16 Binary If SMF119DV_TSSFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_TSSDxcfAddr4 4 Binary If SMF119DV_TSSFlags_IPv6 is not
set, this field contains the IPv4
destination XCF address of the target
stack on which the target server was
added.

16(X'10') SMF119DV_TSSDxcfAddr6 16 Binary If SMF119DV_TSSFlags_IPv6 is set,
this field contains the IPv6
destination XCF address of the target
stack on which the target server was
added.

32(X'20') SMF119DV_TSSFlags 1 Binary Various flags:

v X'80', SMF119DV_TSSFlags_IPv6: If
set, DVIPA address and destination
XCF address are IPv6.

33(X'21') 1 Binary Reserved

34(X'22') SMF119DV_TSSPort 2 Binary The DVIPA distributed port number.

36(X'24') SMF119DV_TSSReadyCount 4 Binary The number of servers on the
indicated target stack that are ready
to service connection requests for the
indicated port.

40(X'28') 8 Binary Reserved

DVIPA target server ended record (subtype 37)
The dynamic virtual IP address (DVIPA) target server ended record is created by a
sysplex distributor stack when it receives notification from a target stack that a
server has closed a listening socket on a distributed port, or that a server has been
quiesced using the V TCPIP,,SYSPLEX,QUIESCE command.

Creation of this SMF record is controlled by the following:
v DVIPA and NODVIPA parameters on the SMFCONFIG profile statement

If DVIPA is specified, the record is created and written to the SMF MVS data
sets.

v DVIPA and NODVIPA options of the SMFSERVICE parameter on the
NETMONITOR profile statement

Appendix E. Type 119 SMF records 899

If DVIPA is specified, the record is created and written to the real-time TCP/IP
network monitoring NMI. For more information about this NMI, see “Real-time
TCP/IP network monitoring NMI” on page 527.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the DVIPA target server ended record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the
record reason.

Table 274 shows the DVIPA target server ended record self-defining section:

Table 274. DVIPA target server ended record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
37(X'25')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to DVIPA target server ended
section

40(X'28') SMF119S1Len 2 Binary Length of DVIPA target server ended
section

42(X'2A') SMF119S1Num 2 Binary Number of DVIPA target server
ended sections

Table 275 shows the DVIPA target server ended specific section of this SMF record:

Table 275. DVIPA target server ended section

Offset Name Length Type Description

0(X'0') SMF119DV_TSEIPAddr4 4 Binary If SMF119DV_TSEFlags_IPv6 is not
set, this field contains the IPv4
DVIPA address.

0(X'0') SMF119DV_TSEIPAddr6 16 Binary If SMF119DV_TSEFlags_IPv6 is set,
this field contains the IPv6 DVIPA
address.

16(X'10') SMF119DV_TSEDxcfAddr4 4 Binary If SMF119DV_TSEFlags_IPv6 is not
set, this field contains the IPv4
destination XCF address of the target
stack on which the target server was
added.

900 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 275. DVIPA target server ended section (continued)

Offset Name Length Type Description

16(X'10') SMF119DV_TSEDxcfAddr6 16 Binary If SMF119DV_TSEFlags_IPv6 is set,
this field contains the IPv6
destination XCF address of the target
stack on which the target server was
added.

32(X'20') SMF119DV_TSEFlags 1 Binary Various flags:

v X'80', SMF119DV_TSEFlags_IPv6: If
set, DVIPA address and destination
XCF address are IPv6.

33(X'21') 1 Binary Reserved

34(X'22') SMF119DV_TSEPort 2 Binary The DVIPA distributed port number.

36(X'24') SMF119DV_TSEReadyCount 4 Binary The number of servers on the
indicated target stack that are ready
to service connection requests for the
indicated port.

40(X'28') 8 Binary Reserved

SMC-R link group statistics record (subtype 41)
The SMC-R link group statistics record is collected at user-specified intervals. The
record provides data about Shared Memory Communications over Remote Direct
Memory Access (SMC-R) link groups (one link group specific section per link
group) and the SMC-R links within each SMC-R link group (one link specific
section per SMC-R link). All link group specific sections are listed contiguously,
followed by all link specific sections. The link specific section contains an identifier
(SMC-R link group ID) that identifies the SMC-R link group to which the SMC-R
link belongs.

Each link group specific or link specific section reports statistical data about the
SMC-R link group or SMC-R links for the previous recording interval. For those
fields that provide an interval value, to determine a cumulative value for the
particular statistic, add the values reported for the statistic in the individual
SMC-R link group and SMC-R link statistics interval records. Other fields provide
the current or highest value of a statistic and are not interval values. If SMC-R link
group statistics recording is turned off dynamically, or the TCP stack terminates, a
final SMC-R statistics record is generated to report closing data. If a particular
SMC-R link group or SMC-R link is ended during a recording interval, any data
related to that link group or link during the recording interval is lost and is not
reported in the next interval record.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the SMC-R link group statistics record, the TCP/IP stack identification
section indicates SMCR as the subcomponent and one of the six possible interval
record reason settings, depending on whether the reporting is because of interval
expiration, statistics collection termination, or collection shutdown, and whether
one or more physical records are needed to report all the SMC-R link group
statistics.

Table 276 on page 902 shows the SMC-R link group statistics record self-defining
section:

Appendix E. Type 119 SMF records 901

Table 276. SMC-R link group statistics record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
41(X'29')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to first SMC-R link group
specific section

40(X'28') SMF119S1Len 2 Binary Length of each SMC-R link group
specific section

42(X'2A') SMF119S1Num 2 Binary Number of SMC-R link group
specific sections

44 (X'2C') SMF119S2Off 4 Binary Offset to first SMC-R link specific
section

48 (X'30') SMF119S2Len 2 Binary Length of each SMC-R link specific
section

50 (X'32') SMF119S2Num 2 Binary Number of SMC-R link specific
sections

Table 277 shows the SMC-R link group specific section:

Table 277. SMC-R link group specific section

Offset Name Length Format Description

0(X'0') SMF119SM_GSDuration 8 Binary Duration of stack recording interval

8(X'8') SMF119SM_GSLnkGrpId 3 Binary SMC-R link group ID

11(X'B') 1 Binary Reserved

12(X'C') SMF119SM_GSRcvBufTotal 4 Binary Current total amount of fixed 64-bit
storage allocated for SMC-R
inbound processing

16(X'10') SMF119SM_GS32BufTotal 4 Binary Current amount of fixed 64-bit
storage allocated in 32-KB blocks
for SMC-R inbound processing

20(X'14') SMF119SM_GS64BufTotal 4 Binary Current amount of fixed 64-bit
storage allocated in 64-KB blocks
for SMC-R inbound processing

24(X'18') SMF119SM_GS128BufTotal 4 Binary Current amount of fixed 64-bit
storage allocated in 128-KB blocks
for SMC-R inbound processing

28(X'1C') SMF119SM_GS256BufTotal 4 Binary Current amount of fixed 64-bit
storage allocated in 256-KB blocks
for SMC-R inbound processing

902 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 277. SMC-R link group specific section (continued)

Offset Name Length Format Description

32(X'20') SMF119SM_GSOthBufTotal 4 Binary Current amount of fixed 64-bit
storage allocated in blocks greater
than 256 KB for SMC-R inbound
processing

36(X'24') SMF119SM_GSRcvBufTotal_hwi 4 Binary Highest amount of total fixed 64-bit
storage allocated for SMC-R
inbound processing at any time
during this interval

40(X'28') SMF119SM_GS32BufTotal_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 32-KB blocks
for SMC-R inbound processing at
any time during this interval

44(X'2C') SMF119SM_GS64BufTotal_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 64-KB blocks
for SMC-R inbound processing at
any time during this interval

48(X'30') SMF119SM_GS128BufTotal_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 128-KB blocks
for SMC-R inbound processing at
any time during this interval

52(X'34') SMF119SM_GS256BufTotal_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 256-KB blocks
for SMC-R inbound processing at
any time during this interval

56(X'38') SMF119SM_GSOthBufTotal_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in blocks greater
than 256 KB for SMC-R inbound
processing at any time during this
interval

60(X'3C') 4 Binary Reserved

64(X'40') SMF119SM_GSPNetID 16 EBCDIC Physical network ID

Table 278 shows the SMC-R link specific section:

Table 278. SMC-R link specific section

Offset Name Length Format Description

0 (X'0') SMF119SM_LSDuration 8 Binary Duration of stack recording interval

8(X'8') SMF119SM_LSLclLnkId 4 Binary Local SMC-R link ID

12(X'C') SMF119SM_LSRmtLnkId 4 Binary Remote SMC-R link ID

16(X'10') SMF119SM_LSLclGID 16 Binary Local GID

32(X'20') SMF119SM_LSRmtGID 16 Binary Remote GID

48(X'30') SMF119SM_LSLclMACAddr 6 Binary Local MAC address

54(X'36') SMF119SM_LSRmtMACAddr 6 Binary Remote MAC address

60(X'3C') 2 Binary Reserved

62(X'3E') SMF119SM_LSMTU 2 Binary MTU size

64(X'40') SMF119SM_LSVLANId 2 Binary VLAN ID

66(X'42') SMF119SM_LSLclQP 3 Binary Local queue pair (QP)

Appendix E. Type 119 SMF records 903

Table 278. SMC-R link specific section (continued)

Offset Name Length Format Description

69(X'45') SMF119SM_LSRmtQP 3 Binary Remote QP

72(X'48') SMF119SM_LSLnkGrpId 3 Binary SMC-R link group ID

75(X'4B') 1 Binary Reserved

76(X'4C') SMF119SM_LSIntfIndex 4 Binary Interface index

80(X'50') SMF119SM_LSIntfName 16 EBCDIC Interface name

96(X'60') SMF119SM_LSBytesIn 8 Binary Bytes received across this SMC-R
link

104(X'68') SMF119SM_LSInOperations 8 Binary Inbound operations across this
SMC-R link

112(X'70') SMF119SM_LSBytesOut 8 Binary Bytes sent across this SMC-R link

120(X'78') SMF119SM_LSOutOperations 8 Binary Outbound operations across this
SMC-R link

128(X'80') SMF119SM_LSTCPConnTotal 4 Binary Total number of TCP connections
established across this SMC-R link

132(X'84') SMF119SM_LSTCPConnCurr 4 Binary Current number of TCP
connections across this SMC-R link

136(X'88') SMF119SM_LSTCPConn_hwi 4 Binary Highest number of TCP
connections that were active at one
time across this SMC-R link during
this interval

140(X'8C') SMF119SM_LSRcvBufInuse 4 Binary Current amount of fixed 64-bit
storage that is in use for inbound
processing

144(X'90') SMF119SM_LS32BufInuse 4 Binary Current amount of fixed 64-bit
storage allocated in 32-KB blocks
that is in use for inbound
processing

148(X'94') SMF119SM_LS64BufInuse 4 Binary Current amount of fixed 64-bit
storage allocated in 64-KB blocks
that is in use for inbound
processing

152(X'98') SMF119SM_LS128BufInuse 4 Binary Current amount of fixed 64-bit
storage allocated in 128-KB blocks
that is in use for inbound
processing

156(X'9C') SMF119SM_LS256BufInuse 4 Binary Current amount of fixed 64-bit
storage allocated in 256-KB blocks
that is in use for inbound
processing

160(X'A0') SMF119SM_LSOthBufInuse 4 Binary Current amount of fixed 64-bit
storage allocated in blocks greater
than 256 KB that is in use for
inbound processing

164(X'A4') SMF119SM_LSRcvBufInuse_hwi 4 Binary Highest amount of total fixed 64-bit
storage that was in use for
outbound processing in this
interval

904 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 278. SMC-R link specific section (continued)

Offset Name Length Format Description

168(X'A8') SMF119SM_LS32BufInuse_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 32-KB blocks
that was in use for outbound
processing in this interval

172(X'AC') SMF119SM_LS64BufInuse_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 64-KB blocks
that was in use for outbound
processing in this interval

176(X'B0') SMF119SM_LS128BufInuse_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 128-KB blocks
that was in use for outbound
processing in this interval

180(X'B4') SMF119SM_LS256BufInuse_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in 256-KB blocks
that was in use for outbound
processing in this interval

184(X'B8') SMF119SM_LSOthBufInuse_hwi 4 Binary Highest amount of fixed 64-bit
storage allocated in blocks greater
than 256 KB that was in use for
outbound processing in this
interval

188(X'BC') 4 Binary Reserved

SMC-R link state start record (subtype 42)
The SMC-R link state start record is collected whenever a Shared Memory
Communications over Remote Direct Memory Access (SMC-R) link is started. This
record contains the pertinent information that is available about the SMC-R link at
the time that the link is started.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the SMC-R link state start record, the TCP/IP stack identification
section indicates SMCR as the subcomponent and X'08' (event record) as the record
reason.

Table 279 shows the SMC-R link state start record self-defining section:

Table 279. SMC-R link state start record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
42(X'2A')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

Appendix E. Type 119 SMF records 905

Table 279. SMC-R link state start record self-defining section (continued)

Offset Name Length Format Description

36(X'24') SMF119S1Off 4 Binary Offset to first SMC-R link state start
section

40(X'28') SMF119S1Len 2 Binary Length of each SMC-R link state start
section

42(X'2A') SMF119S1Num 2 Binary Number of SMC-R link state start
sections

Table 280 shows the SMC-R link state start specific section of this SMF record.

Table 280. SMC-R link state start specific section

Offset Name Length Format Description

0(X'0') SMF119SM_LILclGID 16 Binary Local GID

16(X'10') SMF119SM_LIRmtGID 16 Binary Remote GID

32(X'20') SMF119SM_LILclMACAddr 6 Binary Local MAC address

38(X'26') SMF119SM_LIRmtMACAddr 6 Binary Remote MAC address

44(X'2C') 4 Binary Reserved

48(X'30') SMF119SM_LIVLANId 2 Binary VLAN ID

50(X'32') SMF119SM_LILclQP 3 Binary Local queue pair (QP)

53(X'35') SMF119SM_LIRmtQP 3 Binary Remote QP

56(X'38') SMF119SM_LILclLnkId 4 Binary Local SMC-R link ID

60(X'3C') SMF119SM_LIRmtLnkId 4 Binary Remote SMC-R link ID

64(X'40') SMF119SM_LILnkGrpId 3 Binary SMC-R link group ID

67(X'43') 1 Binary Reserved

68(X'44') SMF119SM_LISTime 4 Binary Time that the SMC-R link was started

72(X'48') SMF119SM_LISDate 4 Packed Date that the SMC-R link was started

76(X'4C') SMF119SM_LISSTCK 8 Binary TCP/IP stack that started the SMC-R
link

SMC-R link state end record (subtype 43)
The SMC-R link state end record is collected whenever a Shared Memory
Communications over Remote Direct Memory Access (SMC-R) link is ended. This
record contains all pertinent information about the SMC-R link, such as the time
the link started and ended, bytes transferred, and so on.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the SMC-R link state end record, the TCP/IP stack identification
section indicates SMCR as the subcomponent and X'08' (event record) as the record
reason.

Table 281 on page 907 shows the link state end record self-defining section:

906 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 281. SMC-R link state end record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
43(X'2B')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to first SMC-R link state end
section

40(X'28') SMF119S1Len 2 Binary Length of each SMC-R link state end
section

42(X'2A') SMF119S1Num 2 Binary Number of SMC-R link state end
sections

Table 282 shows the SMC-R link state end specific section of this SMF record.

Table 282. SMC-R link state end specific section

Offset Name Length Format Description

0(X'0') SMF119SM_LTLclGID 16 Binary Local GID

16(X'10') SMF119SM_LTRmtGID 16 Binary Remote GID

32(X'20') SMF119SM_LTLclMACAddr 6 Binary Local MAC address

38(X'26') SMF119SM_LTRmtMACAddr 6 Binary Remote MAC address

44(X'2C') 4 Binary Reserved

48(X'30') SMF119SM_LTVLANId 2 Binary VLAN ID

50(X'32') SMF119SM_LTLclQP 3 Binary Local queue pair (QP)

53(X'35') SMF119SM_LTRmtQP 3 Binary Remote QP

56(X'38') SMF119SM_LTLclLnkId 4 Binary Local SMC-R link ID

60(X'3C') SMF119SM_LTRmtLnkId 4 Binary Remote SMC-R link ID

64(X'40') SMF119SM_LTLnkGrpId 3 Binary SMC-R link group ID

67(X'43') 1 Binary Reserved

68(X'44') SMF119SM_LTSTime 4 Binary Time that the SMC-R link was
started

72(X'48') SMF119SM_LTSDate 4 Packed Date that the SMC-R link was
started

76(X'4C') SMF119SM_LTSSTCK 8 Binary TCP/IP stack that started the
SMC-R link

84(X'54') SMF119SM_LTETime 4 Binary Time that the SMC-R link was
ended

Appendix E. Type 119 SMF records 907

Table 282. SMC-R link state end specific section (continued)

Offset Name Length Format Description

88(X'58') SMF119SM_LTEDate 4 Packed Date that the SMC-R link was
ended

92(X'5C') SMF119SM_LTESTCK 8 Binary TCP/IP stack that ended the
SMC-R link

100(X'64') 4 Binary Reserved

104(X'68') SMF119SM_LTBytesIn 8 Binary Bytes received across this SMC-R
link

112(X'70') SMF119SM_LTInOperations 8 Binary Inbound operations across this
SMC-R link

120(X'78') SMF119SM_LTBytesOut 8 Binary Bytes sent across this SMC-R link

128(X'80') SMF119SM_LTOutOperations 8 Binary Outbound operations across this
SMC-R link

136(X'88') SMF119SM_LTTCPConnTotal 4 Binary Total number of TCP connections
that used this SMC-R link

140(X'8C') SMF119SM_LTTCPConn_hwt 4 Binary Highest number of TCP
connections that were active at one
time across this SMC-R link

144(X'90') SMF119SM_LTRcvBufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage that was in use for
outbound processing during the life
of this SMC-R link

148(X'94') SMF119SM_LT32BufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage allocated in 32 KB blocks
that was in use for outbound
processing during the life of this
SMC-R link

152(X'98') SMF119SM_LT64BufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage allocated in 64 KB blocks
that was in use for outbound
processing during the life of this
SMC-R link

156(X'9C') SMF119SM_LT128BufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage allocated in 128 KB blocks
that was in use for outbound
processing during the life of this
SMC-R link

160(X'A0') SMF119SM_LT256BufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage allocated in 256 KB blocks
that was in use for outbound
processing during the life of this
SMC-R link

164(X'A4') SMF119SM_LTOthBufInuse_hwt 4 Binary Highest amount of fixed 64-bit
storage allocated in blocks greater
than 256 KB that was in use for
outbound processing during the life
of this SMC-R link

908 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RDMA network interface card (RNIC) interface statistics record
(subtype 44)

The RNIC Interface statistics record is collected at user specified intervals. The
record provides data only for 10GbE RoCE Express interfaces, one interface specific
section for one 10GbE RoCE Express interface. Any interface in the process of
being deleted from the stack at the time of interval reporting is ignored.

Each interface specific section reports statistical data about the 10GbE RoCE
Express interface for the previous recording interval. For those fields that provide
an interval value, to determine a cumulative value for the given statistic, add the
values reported for the statistic in the individual interface statistics interval records.
Other fields provide the current or highest value of a statistic and are not interval
values. If interface statistics recording is turned off dynamically, or the TCP stack
terminates, a final RNIC interface statistics record is generated to report close-out
data. If a given 10GbE RoCE Express interface is deleted during a recording
interval, any data related to that interface during the recording interval is lost (for
example, is not reported in the next interval record).

See Table 283 for the contents of the TCP/IP stack identification section. For the
RNIC interface statistics record, the TCP/IP stack identification section indicates
SMCR as the subcomponent and one of the six possible interval record reason
settings, depending on whether the reporting is because of interval expiration,
statistics collection termination, or collection shutdown.

Table 283 shows the RNIC interface statistics record self-defining section.

Table 283. RNIC interface statistics record self-defining section

Offset Name Length Format Description

0(X'0) Standard SMF Header 24 Standard SMF header; subtype is
44(X'2C')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to first RNIC interface section

40(X'28') SMF119S1Len 2 Binary Length of each RNIC interface section

42(X'2A') SMF119S1Num 2 Binary Number of RNIC interface sections

Table 284 shows the RNIC interface statistics specific section (one per 10GbE RoCE
Express interface).

Table 284. RNIC interface statistics specific section

Offset Name Length Format Description

0(X'0) SMF119SM_RSDuration 8 Binary Duration of stack recording interval in
microseconds, where bit 51 is
equivalent to one microsecond.

Appendix E. Type 119 SMF records 909

Table 284. RNIC interface statistics specific section (continued)

Offset Name Length Format Description

8(X'8') SMF119SM_RSNam 16 EBCDIC Interface name

24(X'18') SMF119SM_RSPNetID 16 EBCDIC Physical network ID

40(X'28') SMF119SM_RSBytesIn 8 Binary Bytes received across this 10GbE RoCE
Express interface

48(X'30') SMF119SM_RSInOperations 8 Binary Inbound operations across this 10GbE
RoCE Express interface

56(X'38') SMF119SM_RSBytesOut 8 Binary Bytes sent across this 10GbE RoCE
Express interface

64(X'40') SMF119SM_RSOutOperations 8 Binary Outbound operations across this 10GbE
RoCE Express interface

72(X'48') SMF119SM_RSSMCLinks 4 Binary Total number of SMC-R links
established across this 10GbE RoCE
Express interface

76(X'4C') SMF119SM_RSTCPConns 4 Binary Total number of TCP connections
established across this 10GbE RoCE
Express interface

80(X'50') SMF119SM_RSRcvBufInuse 4 Binary Current amount of fixed 64-bit storage
that is in use for inbound processing

84(X'54') SMF119SM_RSFlags 1 Binary Flags

X'80': PNetID provided
If on, SMF119SM_RSPNetID
contains the Physical network
ID.

X'40': Associated RNIC interface
If on, this interface is
associated with those active
interfaces that the SMF
subtype 6 records return. The
SMF subtype 6 records have
the following attributes:

v The interface is defined by
the INTERFACE statement
with CHPID TYPE OSD.

v The interface is enabled for
SMC-R.

v The SMF119SM_RSPNetID
value that is reported for
the 10GbE RoCE Express
interface matches the
SMF119IS_IFPNetID value
that is reported for the OSD
interface.

An associated RNIC interface
can be used for SMC-R links
and load balancing.

910 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

CSSMTP configuration record (CONFIG subtype 48)
This record is written at initialization of the CSSMTP application. The content
reflects what is in the actual configuration file and not the result of name
resolution. The following MODIFY commands will cause a configuration record to
be written if values are changed: MODIFY REFRESH, MODIFY LOG_LEVEL, and
MODIFY USEREXIT.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. The TCP/IP identification section indicates CSSMTP as the subcomponent
and X'08' (event record) as the record reason.

The field SMF119TI_Stack name is blank unless the -p parameter is used to start
the CSSMTP application. If the record is written to NMI, the field SMF119TI_Stack
in the NMI record contains the stack name that the record was written to. This is a
non-connection oriented SMF record.

Table 285 shows the CSSMTP configuration record self-defining section:

Table 285. CSSMTP configuration record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
48(X'30')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to CSSMTP common
information section

40(X'28') SMF119S1Len 2 Binary Length of CSSMTP common
information section

42(X'2A') SMF119S1Num 2 Binary Number of CSSMTP common
information sections

44(X'2C') SMF119S2Off 4 Binary Offset of CSSMTP configuration
section

48(X'30') SMF119S2Len 2 Binary Length of CSSMTP configuration
section

50(X'32') SMF119S2Num 2 Binary Number of CSSMTP configuration
sections

52(X'34') SMF119S3Off 4 Binary Offset to CSSMTP target server
section

56(X'38') SMF119S3Len 2 Binary Length of CSSMTP target server
section

58(X'36') SMF119S3Num 2 Binary Number of CSSMTP target server
sections

Appendix E. Type 119 SMF records 911

Table 285. CSSMTP configuration record self-defining section (continued)

Offset Name Length Format Description

60(X'3C') SMF119S4Off 4 Binary Offset to CSSMTP configuration data
section

64(X'40') SMF119S4Len 2 Binary Length of CSSMTP configuration
data section

66(X'42') SMF119S4Num 2 Binary Number of CSSMTP configuration
data sections

68(X'44') SMF119S5Off 4 Binary Offset to CSSMTP command data
section

72(X'48') SMF119S5Len 2 Binary Length of CSSMTP command data
section

74(X'4A') SMF119S5Num 2 Binary Number of CSSSMTP command data
sections

Table 286 shows the CSSMTP common information section. This section identifies
the CSSMTP JOB that created this SMF record. It is found in subtypes 48, 49, 50, 51
and 52.

Table 286. CSSMTP common information

Offset Name Length Type Description

0(X'0') SMF119ML_CI 36 STRUCTURE CSSMTP common information

0(X'0') SMF119ML_CI_JMR 24 STRUCTURE Job Management Record. See
Standard SMF Record Header in
z/OS MVS System Management
Facilities (SMF) for detailed
information about Job Management
Record format.

0(X'0') SMF119ML_CI_JOB 8 EBCDIC Jobname

8(X'8') SMF119ML_CI_Entry 4 Binary Time since midnight, in hundredths
of a second, that the reader
recognized the CSSMTP JOB card (for
this job).

12(X'C') SMF119ML_CI_EDate 4 Packed Date when the reader recognized the
CSSMTP JOB card (for this job), in
the form 0cyydddF.

16 (X'10') SMF119ML_CI_USEID 8 EBCDIC User-defined identification field
(taken from common exit parameter
area, not from USER=parameter on
job statement).

24 (X'18') SMF119ML_CI_EXTWRT 8 EBCDIC External writer name

32(X'20') SMF119ML_CI_Jes 4 EBCDIC JES subsystem name

Table 287 shows the CSSMTP configuration section when CSSMTP was started or
from a successful MODIFY REFRESH command. This data section appears as
section 2.

Table 287. CSSMTP started or from MODIFY REFRESH command

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CF 144 STRUCTURE CSSMTP configuration

912 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 287. CSSMTP started or from MODIFY REFRESH command (continued)

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CF_Flags 4 BIT(32) Configuration flags

SMF119ML_CF_Targets 1... Target servers updated

SMF119ML_CF_Ntarget .1.. Non-target data updated

SMF119ML_CF_Warning ..1. Warning issued on update

SMF119ML_CF_Modify ...1 MODIFY REFRESH update

SMF119ML_CF_rsvd04 1... Reserved

SMF119ML_CF_rsvd051.. Reserved

SMF119ML_CF_rsvd061. Reserved

SMF119ML_CF_rsvd071 Reserved

1(X'1') SMF119ML_CF_rsvd10 1... Reserved

SMF119ML_CF_IpV4ONly .1.. IPv4 stack. TCP/IP stack is IPV4 only.

SMF119ML_CF_DateHdr ..1. Header Date 0-No 1-Yes

SMF119ML_CF_UserInfo ...1 Header UserInfo 0-No 1-Yes

SMF119ML_CF_NullTrnc 1... Truncate NullTrnc 0-No 1-Yes

SMF119ML_CF_TestMode1.. Testmode 0-No 1-Yes

SMF119ML_CF_DataTrnc1. DataLineTrunc 0-No 1-Yes

SMF119ML_CF_rsvd1x 1 Reserved

2(X'2') SMF119ML_CF_SmfConfg 1... SMF119 Config 0-No 1-Yes

SMF119ML_CF_SmfConn .1.. SMF119 Connect 0-No 1-Yes

SMF119ML_CF_SmfMail ..1. SMF119 Mail 0-No 1-Yes

SMF119ML_CF_SmfSpool ...1 SMF119 Spool 0-No 1-Yes

SMF119ML_CF_SmfStats 1... SMF119 Stats 0-No 1-Yes

SMF119ML_CF_rsvd251.. Reserved

SMF119ML_CF_rsvd261. Reserved

SMF119ML_CF_rsvd271 Reserved

3(X'3') SMF119ML_CF_rsvd3x 1 BIT(8) Reserved

4(X'4') SMF119ML_CF_CfgPidId 4 Binary Process ID value

8(X'8') SMF119ML_CF_BadSpool 4 Binary Value from the BadSpoolDisp statement:

0-ML_CF_BADSPOOLDISP_HOLD

1-ML_CF_BADSPOOLDISP_DELETE

12(X'C') SMF119ML_CF_ChkPtSz 4 Binary Check Point Size Limit (statement
CkpPointSizeLimit)

16(X'10') SMF119ML_CF_ExtWrt 8 EBCDIC External Writer name (statement
ExtWrtName)

24(X'18') SMF119ML_CF_Tcpip 8 EBCDIC TCPIP name parameter

32(X'20') SMF119ML_CF_JesJobSz 4 Binary JESJobSize

36(X'24') SMF119ML_CF_JesMsgSz 4 Binary JESMsgSize

40(X'28') SMF119ML_CF_LogLevel 4 Binary LogLevel

Appendix E. Type 119 SMF records 913

|||||

|||||

|||||

|||||

Table 287. CSSMTP started or from MODIFY REFRESH command (continued)

Offset Name(Dim) Length Type Description

44(X'2C') SMF119ML_CF_Report 4 Binary Report statement settings:

0-ML_CF_REPORT_SYSOUT

1-ML_CF_REPORT_NONE

2-ML_REPORT_ADMIN

48(X'30') SMF119ML_CF_RtyCount 4 Binary Retry count value from the RetryLimit
statement

52(X'34') SMF119ML_CF_RtyIntvl 4 Binary Retry interval value from the RetryLimit
statement

56(X'38') SMF119ML_CF_AnyCmd 4 Binary Timeout AnyCmd

60(X'3C') SMF119ML_CF_ConnRty 4 Binary Timeout ConnectRetry

64(X'40') SMF119ML_CF_DataBlk 4 Binary Timeout DataBlock

68(X'44') SMF119ML_CF_DataCmd 4 Binary Timeout DATACmd

72(X'48') SMF119ML_CF_DataEOM 4 Binary Timeout DataTerm

76(X'4C') SMF119ML_CF_InitMsg 4 Binary Timeout InitalMsg

80(X'50') SMF119ML_CF_MailCmd 4 Binary Timeout MAILCmd

84(X'54') SMF119ML_CF_RCPTCmd 4 Binary Timeout RCPTCmd

88(X'58') SMF119ML_CF_ChkPnt 4 Binary Checkpoint options:

0-ML_CF_CHK_WARMSTART

1-ML_CF_CHK_COLDSTART

2-ML_CF_CHK_NOTAVAILABLE

92(X'5C') SMF119ML_CF_CfgCP 20 EBCDIC Configuration file code page from the
CSSMTP_CODEPAGE_CONFIG environment
variable

112(X'70') SMF119ML_CF_CodePage 20 EBCDIC TRANSLATE

132(X'84') SMF119ML_CF_RtnTo 4 Binary Undeliverable ReturnToMailFrom

0-No

1-Yes

136(X'88') SMF119ML_CF_DeadAct 4 Binary Undeliverable DeadLetterAction

0-ML_CF_DEADLETTERACTION_STORE

1-ML_CF_DEADLETTERACTION_DELETE

140(X'8C') SMF119ML_CF_UserExit 4 Binary Userexit version:

0-ML_CF_USEREXIT_NONE - SMTP user
exit not configured or not active.

2-ML_CF_USEREXIT_VERSION2

3-ML_CF_USEREXIT_VERSION3

144(X'90') SMF119ML_CF_ErtAge 4 Binary Extended retry age (in days)

148(X'94') SMF119ML_CF_ErtIntvl 4 Binary Extended retry interval (in minutes)

914 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 287. CSSMTP started or from MODIFY REFRESH command (continued)

Offset Name(Dim) Length Type Description

152(X'98') SMF119ML_CF_JESSynMax 4 Binary Maximum number of syntax errors that are
acceptable in a JES spool file

156(X'9C') SMF119ML_CF_ConnIdle 4 Binary Timeout ConnectIdle

Table 288 shows the target servers that are configured. There is one entry for each
target server. This data section appears as section 3.

Table 288. CSSMTP target servers

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_TS 36 STRUCTURE Target Servers

0(X'0') SMF119ML_TS_IPaddr 16 EBCDIC IPv6 address (Type=TargetIP)

0(X'0') SMF119ML_TS_IPPfx 12 EBCDIC 000000000000000000000FFFF -
IPv4-mapped address

12(X'C') SMF119ML_TS_IPaddr4 4 Binary IpV4 address

16(X'10') SMF119ML_TS_Port 2 Binary Connecting target server port number

18(X'12') SMF119ML_TS_Type 2 Binary Type of target server

0=TargetIP

1=TargetName, IP address value is
always zero

2=TargetMX, IP address value is
always zero

20(X'14') SMF119ML_TS_MsgSize 4 Binary Maximum message size

24(X'18') SMF119ML_TS_Secure 4 Binary Value from the SECURE statement:

0-No

1-Yes

28(X'1C') SMF119ML_CF_MaxMsg 4 Binary Maximum number of messages sent
per connection

32(X'20') SMF119ML_TS_ConnLim 4 Binary Number of concurrent connections
limit

Table 289 describes the variable length data elements in the configuration. This
data section appears as section 4.

Table 289. CSSMTP configuration data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CD 4 STRUCTURE Configuration Data

0(X'0') SMF119ML_CD_Len 2 Binary Configuration data length (including
the length of this header)

2(X'2') SMF119ML_CD_Key 2 Binary Configuration data key (See Table 290
on page 916)

4(X'4') SMF119ML_CD_Data 0 EBCDIC Configuration data string

Appendix E. Type 119 SMF records 915

|||||

Table 290 describes the value and meaning for the various configuration data
strings.

Table 290. CSSMTP configuration data keys

Data type (SMF119ML_CD_Key) Data length
(SMF119ML_CD_Len)

Format Description (SMF119ML_CD_Data)

SMF119ML_CD_CfgFile (32) 1-1024 EBCDIC Configuration file name

SMF119ML_CD_CkpFile (33) 1-44 EBCDIC Checkpoint data set name

SMF119ML_CD_DeadDir (34) 1-512 EBCDIC Dead letter directory

SMF119ML_CD_LogFile (35) 1-1024 EBCDIC Log file name

SMF119ML_CD_Madmin1 (36) 1-320 EBCDIC Mail administrator 1 mailbox

SMF119ML_CD_Madmin2 (37) 1-320 EBCDIC Mail administrator 2 mailbox

SMF119ML_CD_Madmin3 (38) 1-320 EBCDIC Mail administrator 3 mailbox

SMF119ML_CD_Madmin4 (39) 1-320 EBCDIC Mail administrator 4 mailbox

SMF119ML_CD_DomName (40) 1-256 EBCDIC Domain name

SMF119ML_CD_HostName (41) 1-64 EBCDIC Host name

SMF119ML_CD_TargSrv1 (42) 1-256 EBCDIC Target server 1 statement value

SMF119ML_CD_TargSrv2 (43) 1-256 EBCDIC Target server 2 statement value

SMF119ML_CD_TargSrv3 (44) 1-256 EBCDIC Target server 3 statement value

SMF119ML_CD_TargSrv4 (45) 1-256 EBCDIC Target server 4 statement value

SMF119ML_CD_MailDir (46) 1-512 EBCDIC Extended retry mail directory

Table 291 describes the identity of the command that started CSSMTP or modified
the configuration. This data section appears as section 5.

Table 291. CSSMTP configuration command

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CM 88 STRUCTURE Command data

0(X'0') SMF119ML_CM_CnsName 8 EBCDIC Name of the console that issued the
command

8(X'8') SMF119ML_CM_UToken 80 Binary ICHRUTKN User token

CSSMTP connection record (CONNECT subtype 49)
This record is written at the end of each client connection with a target server. It
contains the statistics about the amount of traffic and mail messages that are
carried on the connection.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the CSSMTP connection record, the TCP/IP stack identification section
indicates CSSMTP as the subcomponent and X'08' (event record) as the record
reason. The field SMF119TI_Stack contains the name of the TCP/IP stack for the
connection. If the value in the SMF119ML_CS_TrmCd field indicates that the
connection is not established, then fields such as SMF119TI_Stack,
SMF119AP_TIConnID and other fields that are associated with the connection are
not set. This is a connection oriented SMF record.

Table 292 on page 917 shows the CSSMTP connection record self-defining section.

916 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 292. CSSMTP connection record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
48(X'30')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (4)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section...see table

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to CSSMTP common
information section...see table

40(X'28') SMF119S1Len 2 Binary Length of CSSMTP common
information section

42(X'2A') SMF119S1Num 2 Binary Number of CSSMTP common
information sections

44(X'2C') SMF119S2Off 4 Binary Offset to CSSMTP connection
identification section see table

48(X'30') SMF119S2Len 2 Binary Length of CSSMTP connection
identification section

50(X'32') SMF119S2Num 2 Binary Number of CSSMTP connection
identification sections

52(X'34') SMF119S3Off 4 Binary Offset to CSSMTP connection
statistics section see table

56(X'38') SMF119S3Len 2 Binary Length of CSSMTP connection
statistics section

58(X'36') SMF119S3Num 2 Binary Number of CSSMTP connection
statistics sections

Table 286 on page 912 in “CSSMTP configuration record (CONFIG subtype 48)” on
page 911 shows the CSSMTP common information section. This section identifies
the CSSMTP JOB that created this SMF record. It is found in subtypes 48, 49, 50, 51
and 52.

Table 293 shows the CSSMTP connection identification data.

Table 293. CSSMTP connection identification data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CN 72 STRUCTURE Connection Identification

0(X'0') SMF119ML_CN_LIP 16 Binary Local IP address

0(X'0') SMF119ML_CN_LIPPfx 12 Binary 000000000000000000000FFFF

12(X'C') SMF119ML_CN_LIP4 4 Binary IPv4 Address

16(X'10') SMF119ML_CN_RIP 16 Binary Remote IP address

16(X'10') SMF119ML_CN_RIPPfx 12 Binary 000000000000000000000FFFF

28(X'1C') SMF119ML_CN_RIP4 4 Binary IPv4 Address

Appendix E. Type 119 SMF records 917

Table 293. CSSMTP connection identification data (continued)

Offset Name(Dim) Length Type Description

32(X'20') SMF119ML_CN_LPort 2 Binary Local port address

34(X'22') SMF119ML_CN_RPort 2 Binary Remote port address

36(X'24') SMF119ML_CN_ConnId 4 Binary TCP/IP connection ID

40(X'28') SMF119ML_CN_STIME 4 Binary Time the connection started
(hundredths of seconds since
midnight)

44(X'2C') SMF119ML_CN_SDATE 4 Packed Date the connection started
0CYYDDDF

48(X'30') SMF119ML_CN_ETIME 4 Binary Time the connection ended
(hundredths of seconds since
midnight)

52(X'34') SMF119ML_CN_EDATE 4 Packed Date the connection ended
0CYYDDDF

56(X'38') SMF119ML_CN_DUR 4 Binary Duration of connection (hundredths
of seconds since midnight)

60(X'3C') SMF119ML_CN_MsgSize 4 Binary Maximum message size

64(X'40') SMF119ML_CN_TLSSSP 2 Binary AT-TLS SSL protocol:

v X'0200': SSL Version 2

v X'0300': SSL Version 3

v X'0301': AT-TLS Version 1

v X'0302': AT-TLS Version 1.1

v X'0303': AT-TLS Version 1.2

66(X'42') SMF119ML_CN_TTLSSNC 2 EBCDIC AT-TLS negotiated cipher. If the value
is 4X, the negotiated cipher must be
obtained from the
SMF119ML_CN_TTLSSNC4 field.

68(X'44') SMF119ML_CN_TTLSFP 1 Binary AT-TLS FIPS 140 status:

v X'00': FIPS 140 off

v X'01': FIPS 140 on

69(X'45') SMF119ML_CN_Flags 3 Binary Flags

69(X'45') SMF119ML_CN_FLAG1 1 Binary Flags

X'80': If this flag is on, the protocol is
ESMTP. Otherwise, the protocol is
SMTP.

70(X'46') SMF119ML_CN_Rsvd2x 1 Binary Reserved

71(X'47') SMF119ML_CN_Rsvd3x 1 Binary Reserved

72(X'48') SMF119ML_CN_TTLSSNC4 4 EBCDIC AT-TLS four byte negotiated cipher

Table 294 describes the CSSMTP connection statistics data.

Table 294. CSSMTP connection statistics data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_CS 96 STRUCTURE Connection Statistics

0(X'0') SMF119ML_CS_SendByt 8 Binary Number of bytes outbound

8(X'8') SMF119ML_CS_RcvdByt 8 Binary Number of bytes inbound

918 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 294. CSSMTP connection statistics data (continued)

Offset Name(Dim) Length Type Description

16(X'10') SMF119ML_CS_MsgSent 8 Binary Number of sent mail messages

20(X'14') SMF119ML_CS_GRcpts 4 Binary Number of recipients accepted

24(X'18') SMF119ML_CS_FRcpts 4 Binary Number of recipients not accepted

28(X'1C') SMF119ML_CS_TrmCd 4 Binary Connection ending status:

v SMF119ML_CS_TRM_OK 00 -
Connect normal close

v SMF119ML_CS_TRM_SOCKET 01 -
Socket function error

v SMF119ML_CS_TRM_RESET 02 -
Server reset connection

v SMF119ML_CS_TRM_OVERRUN
03 - Buffer overrun error

v SMF119ML_CS_TRM_4XX 04 - 4xx
Reply

v SMF119ML_CS_TRM_5XX 05 - 5xx
Reply

v SMF119ML_CS_TRM_XXX 06 -
unknown reply

v SMF119ML_CS_TRM_CONVERT 07
- ICONV error

v SMF119ML_CS_TRM_CONNERR
08 - Connect failed

v SMF119ML_CS_TRM_SECURE 09 -
StartTLS command failed

v SMF119ML_CS_TRM_MAXMSG 10
- Maximum number of messages

v SMF119ML_CS_TRM_CONNECT
11 - Connection wait timeout

v SMF119ML_CS_TRM_INITMSG12 -
Initial message time out

v SMF119ML_CS_TRM_13 13 -
Reserved

v SMF119ML_CS_TRM_MAILCMD
14 - Mail command time out

v SMF119ML_CS_TRM_RCPTCMD
15 - RCPT command time out

v SMF119ML_CS_TRM_DATACMD
16 - DATA command time out

v SMF119ML_CS_TRM_DATABUF 17
- Data buffer time out

v SMF119ML_CS_TRM_DATATRM
18 - End of message time out

v SMF119ML_CS_TRM_ANYCMD 19
- Any command timeout

32(X'20') SMF119ML_CS_ErrTxt 64 EBCDIC Last error text on SMTP command
that caused the connection to be
closed

Appendix E. Type 119 SMF records 919

CSSMTP mail record (MAIL subtype 50)
This record is written when each mail message completes processing. It contains
the statistics and information about each mail message. It also indicates the success
or failure to send the mail message.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the CSSMTP mail record, the TCP/IP stack identification section
indicates CSSMTP as the subcomponent and X'08' (event record) as the record
reason. The field SMF119TI_Stack name is blank unless the -p parameter is used to
start the CSSMTP application. If this record is written to NMI, the field
SMF119TI_Stack in the NMI record contains the stack name that the record was
written to. This is a non-connection oriented SMF record.

Table 295 shows the CSSMTP mail record self-defining section.

Table 295. CSSMTP mail record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
48(X'30')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (5)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section...see table

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to CSSMTP common
information section...see table

40(X'28') SMF119S1Len 2 Binary Length of CSSMTP common
information section

42(X'2A') SMF119S1Num 2 Binary Number of CSSMTP common
information sections

44(X'2C') SMF119S2Off 4 Binary Offset to spool identification section
see table

48(X'30') SMF119S2Len 2 Binary Length of spool identification section

50(X'32') SMF119S2Num 2 Binary Number of spool identification
sections

52(X'34') SMF119S3Off 4 Binary Offset to mail data section see table

56(X'38') SMF119S3Len 2 Binary Length of mail data section

58(X'36') SMF119S3Num 2 Binary Number of mail data sections

60(X'3C') SMF119S4Off 4 Binary Offset to mail header section see
table

64(X'40') SMF119S4Len 2 Binary Length of mail header section

66(X'42') SMF119S4Num 2 Binary Number of mail header sections

920 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 286 on page 912 in “CSSMTP configuration record (CONFIG subtype 48)” on
page 911 shows the CSSMTP common information section. This section identifies
the CSSMTP JOB that created this SMF record. It is found in subtypes 48, 49, 50, 51
and 52.

Table 296 shows the CSSMTP common spool information section. This section
identifies the spool job that created the sysout file. It is found in subtypes 50 and
51.

Table 296. CSSMTP spool identification

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_SI 72 STRUCTURE Spool Identification

0(X'0') SMF119ML_SI_JMR 24 EBCDIC Job Management Record. See
Standard SMF Record Header in
z/OS MVS System Management
Facilities (SMF) for detailed
information about Job Management
Record format.

0(X'0') SMF119ML_SI_Job 8 EBCDIC Jobname

8(X'8') SMF119ML_SI_Entry 4 Binary JES reader entry time - time since
midnight, in hundredths of a second,
that the reader recognized the JOB
card (for this job).

12(X'C') SMF119ML_SI_EDate 4 Packed JES reader entry date 0CYYDDDF -
date when the reader recognized the
JOB card (for this job), in the form
0cyydddF.

16(X'10') SMF119ML_SI_USEID 8 EBCDIC User-defined identification field
(taken from common exit parameter
area, not from USER=parameter on
job statement).

24(X'18') SMF119ML_SI_JobId 8 EBCDIC Job Id of selected job

32(X'20') SMF119ML_SI_SYS 8 EBCDIC System name of the MVS image
where the job output was created

40(X'28') SMF119ML_SI_XEQ 8 EBCDIC NJE node where job executed

48(X'30') SMF119ML_SI_CRER 8 EBCDIC Owning user id of data set

56(X'38') SMF119ML_SI_TKID 4 Binary JES task ID

60(X'3C') SMF119ML_SI_Jnum 4 Binary JES job number in binary

64(X'40') SMF119ML_SI_Dsky 4 Binary JES dataset key

68(X'44') SMF119ML_SI_Dsnm 4 Binary JES dataset number

Table 297 describes the CSSMTP mail data section.

Table 297. CSSMTP mail data section

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_MI 60 STRUCTURE Mail Identification

0(X'0') SMF119ML_MI_STime 4 Binary Time mail was read from JES -
Hundredths of seconds

4(X'4') SMF119ML_MI_SDate 4 Packed Date mail was read from JES - in
0CYYDDDF format

Appendix E. Type 119 SMF records 921

Table 297. CSSMTP mail data section (continued)

Offset Name(Dim) Length Type Description

8(X'8') SMF119ML_MI_ETime 4 Binary Time mail was completed -
Hundredths of seconds

12(X'C') SMF119ML_MI_EDate 4 Packed Date mail was completed, in
0CYYDDDF format

16(X'10') SMF119ML_MI_Dur 4 Binary Time mail was in progress, in
hundredths of seconds

20(X'14') SMF119ML_MI_ID 4 Binary Mail message number in spool file

24(X'18') SMF119ML_MI_Type 4 Binary Type of mail message - type values:

v SMF119ML_MI_TYPE_RegNote = 1
mail message is regular type
created by customer

v SMF119ML_MI_TYPE_UndelNote
= 2 mail message is error note
created by customer

v SMF119ML_MI_TYPE_Report = 3
mail message is a CSSMTP error
report

v SMF119ML_MI_TYPE_UMNOTIF =
4 mail message is a undeliverable
mail notification

28(X'1C') SMF119ML_MI_Rsvd1 4 Binary Reserved

32(X'20') SMF119ML_MI_BYCT 8 Binary Body byte count

40(X'28') SMF119ML_MI_RLoc 4 Binary Record location of MAIL command in
spool file

44(X'2C') SMF119ML_MI_Rcpts 4 Binary Number of total recipients

48(X'30') SMF119ML_MI_FRcpts 4 Binary Number of failed recipients

52(X'34') SMF119ML_MI_Retry 4 Binary Number of retry attempts

56(X'38') SMF119ML_MI_Flags 4 BIT(32) Flags

SMF119ML_MI_ESMTP 1... EHLO(RFC 2821) command

SMF119ML_MI_TLS .1.. STARTTLS command

SMF119ML_MI_Finis ..1. Mail was completed without errors

SMF119ML_MI_Error ...1 Mail was completed with errors

SMF119ML_MI_ERetry 1... Mail was saved for extended retry

SMF119ML_MI_Rsv04 1... Reserved

SMF119ML_MI_Rsv051.. Reserved

SMF119ML_MI_Rsv061. Reserved

SMF119ML_MI_MHFul1 The SMF record is full. Data in the
mail header section was truncated.

57(X'39') SMF119ML_MI_From 1... Mail contains a From header
specified in the spool file

SMF119ML_MI_To .1.. Mail contains a To header specified in
the spool file

SMF119ML_MI_Date ..1. Mail contains a Date header specified
in the spool file

SMF119ML_MI_MsgID ...1 Mail contains a msg-ID specified in
the spool file

922 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 297. CSSMTP mail data section (continued)

Offset Name(Dim) Length Type Description

SMF119ML_MI_Subj 1... Mail contains a subject specified in
the spool file

SMF119ML_MI_Rsv151.. Reserved

SMF119ML_MI_Rsv161. Reserved

SMF119ML_MI_Rsv171 Reserved

58(X'3A') SMF119ML_MI_Rsv2x 1 BIT(8) Reserved

59(X'3B') SMF119ML_MI_Rsv3x 1 BIT(8) Reserved

Table 298 describes the values of the various mail headers in the mail. They are
encoded as variable length strings.

Table 298. CSSMTP mail header sections

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_MH * STRUCTURE Mail header

0(X'0') SMF119ML_MH_Len 2 Binary Mail header length

2(X'2') SMF119ML_MH_Key 2 Binary Mail header type value

4(X'4') SMF119ML_MH_Data * EBCDIC Mail header data string

Table 299 describes the values of the various mail commands and header keys.

Table 299. CSSMTP mail commands and header keys

Data type (SMF119ML_MH_Key) Data length
(SMF119ML_MH_Len)

Format Description (SMF119ML_MH_Data)

SMF119ML_MH_FROM (1) 1-256 EBCDIC Mail box address of MAIL FROM:
command

SMF119ML_MH_RCPT (2) 1-256 EBCDIC Mail box address of RCPT TO: command

SMF119ML_MH_RCPTRPY (3) 1-512 EBCDIC Error reply text to previous RCPT TO:
command (See Note)

SMF119ML_MH_SUBJ (4) 1-233 EBCDIC Subject: subject text

SMF119ML_MH_DATE (5) 1-47 EBCDIC Date: date value

SMF119ML_MH_MSGID (7) 1-143 EBCDIC Message-id: value

SMF119ML_MH_CMDTXT (8) 1-512 EBCDIC Text of SMTP command in error

SMF119ML_MH_RPYTXT (9) 1-512 EBCDIC Server reply to the SMTP command in
error

SMF119ML_MH_ERRTXT (10) 1-512 EBCDIC Text of error message not associated
with SMTP command processing

Note: If this field contains a single F, the recipient did not receive the mail as the result of the reason in the general
error field (SMF119ML_MH_ERRTXT) or command error field (SMF119ML_MH_CMDTXT/
SMF119ML_MH_RPYTXT).

Appendix E. Type 119 SMF records 923

CSSMTP spool file record (SPOOL subtype 51)
This record is written when all the mail messages have been processed. It contains
information about the spool file and statistics about the mail messages that are
processed.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the CSSMTP spool file record, the TCP/IP stack identification section
indicates the stack name with blanks, CSSMTP as the subcomponent, and X'08'
(event record) as the record reason. The name of field SMF119TI_Stack will be
blank unless the -p parameter is used to start the CSSMTP application. If the
record is written to NMI, the field SMF119TI_Stack in the NMI record contains the
stack name that the record was written to. This is a non-connection oriented SMF
record.

Table 300 shows the CSSMTP spool file record self-defining section.

Table 300. CSSMTP spool file record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
51(X'33')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section...see table

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to CSSMTP common
information section...see table

40(X'28') SMF119S1Len 2 Binary Length of CSSMTP common
information section

42(X'2A') SMF119S1Num 2 Binary Number of CSSMTP common
information sections

44(X'2C') SMF119S2Off 4 Binary Offset to spool identification section
see table

48(X'30') SMF119S2Len 2 Binary Length of spool identification section

50(X'32') SMF119S2Num 2 Binary Number of spool identification
sections

52(X'34') SMF119S3Off 4 Binary Offset to spool job section see table

56(X'38') SMF119S3Len 2 Binary Length of spool job section

58(X'36') SMF119S3Num 2 Binary Number of spool job sections

60(X'3C') SMF119S4Off 4 Binary Offset to spool statistics section see
table

64(X'40') SMF119S4Len 2 Binary Length of spool statistics section

66(X'42') SMF119S4Num 2 Binary Number of spool statistics section

68(X'44') SMF119S5Off 4 Binary Offset to spool accounting section see
table

924 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 300. CSSMTP spool file record self-defining section (continued)

Offset Name Length Format Description

72(X'48') SMF119S5Len 2 Binary Length of spool accounting section

74(X'4A') SMF119S5Num 2 Binary Number of spool accounting sections

Table 286 on page 912 in “CSSMTP configuration record (CONFIG subtype 48)” on
page 911 shows the CSSMTP common information section. This section identifies
the CSSMTP JOB that created this SMF record. It is found in subtypes 48, 49, 50, 51
and 52.

See Table 296 on page 921 in “CSSMTP mail record (MAIL subtype 50)” on page
920 for the contents of the common Spool Identification section. This section
identifies the spool job that created the sysout file. It is found in subtypes 50 and
51.

Table 301 describes the JES SSI information for the spool file job.

Table 301. CSSMTP spool job

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_SJ 140 STRUCTURE Spool Job data

0(X'0') SMF119ML_SJ_BYCT 8 Binary Byte count

8(X'8') SMF119ML_SJ_LNCT 4 Binary Line count

12(X'C') SMF119ML_SJ_PRCD 8 EBCDIC Data set procname

20(X'14') SMF119ML_SJ_STPD 8 EBCDIC Data set stepname

28(X'1C') SMF119ML_SJ_DDND 8 EBCDIC Data set DD name

36(X'24') SMF119ML_SJ_PNAM 20 EBCDIC Programmer name from job

56(X'38') SMF119ML_SJ_NOTN 8 EBCDIC Job notify node

64(X'40') SMF119ML_SJ_NOTU 8 EBCDIC Job notify user ID

72(X'48') SMF119ML_SJ_CLAR 1 EBCDIC Sysout class of data set

73(X'49') SMF119ML_SJ_LSAB 3 Binary Last abend code for the job that created
the spool file (JES 2 only)

76(X'4C') SMF119ML_SJ_DSN 44 EBCDIC Data set name of the spool file

120(X'78') SMF119ML_SJ_NACT 8 EBCDIC Network accounting number

128(X'80)' SMF119ML_SJ_UserExit 4 Binary User exit version

0-SMF119ML_SJ_USEREXIT_NONE

2-SMF119ML_SJ_USEREXIT_VERSION2

3-SMF119ML_SJ_USEREXIT_VERSION3

132(X'84') SMF119ML_SJ_QTime 4 Binary Time spool file queued to JES -
Hundredths of second

136(X'88') SMF119ML_SJ_QDate 4 Packed Date spool file queued to JES -
0CYYDDDF

Table 302 on page 926 describes the spool job statistics.

Appendix E. Type 119 SMF records 925

Table 302. CSSMTP spool job statistics

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_SS 100 STRUCTURE Spool Job statistics

0(X'0') SMF119ML_SS_STime 4 Binary Time when CSSMTP started to read
the spool data set - Hundredths of
seconds since midnight

4(X'4') SMF119ML_SS_SDate 4 Packed Date when CSSMTP started to read
the spool data set - 0CYYDDDF

8(X'8') SMF119ML_SS_RTime 4 Binary Time when CSSMTP completed
reading the spool data set.
Hundredths of seconds since
midnight

12(X'C') SMF119ML_SS_RDate 4 Packed Date when CSSMTP completed
reading the spool data set -
0CYYDDDF

16(X'10') SMF119ML_SS_RcdCnt 4 Binary Number of spool file records
CSSMTP read

20(X'14') SMF119ML_SS_ETime 4 Binary Time all mail is processed for this
spool data set. Hundredths of
seconds since midnight

24(X'18') SMF119ML_SS_EDate 4 Packed Date all mail is processed for this
spool data set 0CYYDDDF

28(X'1C') SMF119ML_SS_MAIL 4 Binary Total number of mail messages found
in the spool data set.

32(X'20') SMF119ML_SS_Good 4 Binary Number of mail messages
successfully sent

36(X'24') SMF119ML_SS_Udv 4 Binary Number of undeliverable mails
resulting from spool data set
processing

40(X'28') SMF119ML_SS_Dead 4 Binary Number of Deadletter mail resulting
from spool data set processing

44(X'2C') SMF119ML_SS_Rcpt 4 Binary Total number of recipients (RCPTs) in
the spool data set

48(X'30') SMF119ML_SS_CRcpt 4 Binary Total number of recipients (RCPTs)
sent successfully in the spool data set

52(X'34') SMF119ML_SS_URcpt 4 Binary Total number of recipients (RCPTs)
that are undeliverable

56(X'38') SMF119ML_SS_Skip 4 Binary Number of mail skipped due to user
exit or restart (checkpointing)

60(X'3C') SMF119ML_SS_Err 4 Binary Number of mails with syntax errors
in jes spool data set

64(X'40') SMF119ML_SS_Bsize 8 Binary Total size in bytes of all mail headers
and bodies processed by CSSMTP for
the JES spool data set

926 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 302. CSSMTP spool job statistics (continued)

Offset Name(Dim) Length Type Description

72(X'48') SMF119ML_SS_RtnCd 4 Binary Processing return codes:

SMF119ML_SS_Alloc 07 JES sysout
allocation failed

SMF119ML_SS_OPEN 08 Open failed
for sysout file

SMF119ML_SS_REQERR 10
IEFSSREQ failed

SMF119ML_SS_APIERR 11 IEFSSREQ
SSS2 API failed

SMF119ML_SS_ICONV 13
Conversion table open error

SMF119ML_SS_EMPTY 14 Empty
data set

SMF119ML_SS_JESSIZE 15 size
exceeds JesJobSize

SMF119ML_SS_SAF 16 Access is not
authorized

SMF119ML_SS_TRANSLATE 18
Translation error

SMF119ML_SS_NOEBCDIC 19
Unknown translation table

SMF119ML_SS_USEREXIT 21 The
return code from the CSSMTP user
exit indicates that the processing of
the spool file should stop

SMF119ML_SS_NOMAIL 22 The
spool file does not contain any mail
transactions

SMF119ML_SS_JESCLOSE 23 The JES
spool file was not properly closed by
JES and the file data might be
incomplete

SMF119ML_SS_IOERROR 24 An I/O
error occurred during reading the
spool file

SMF119ML_SS_MAXERROR 25
Maximum number of syntax errors in
spool file was reached

76(X'4C') SMF119ML_SS_Flags 4 BIT(32) Flags

SMF119ML_SS_TLS 1... JES spool data set contained
STARTTLS command

SMF119ML_SS_Finis .1.. CSSMTP completed processing the
spool data set

Appendix E. Type 119 SMF records 927

Table 302. CSSMTP spool job statistics (continued)

Offset Name(Dim) Length Type Description

SMF119ML_SS_ErrRpt ..1. Spool data set was generated by
CSSMTP for error report

SMF119ML_SS_Hold ...1 Final disposition of data set 1 -
HOLD 0 - DELETE

SMF119ML_SS_Error 1... One or more syntax errors were
found when the spool file was
processed

SMF119ML_SS_Rsv051.. Reserved

SMF119ML_SS_Rsv061. Reserved

SMF119ML_SS_Rsv071 Reserved

77(X'4D') SMF119ML_SS_Xmit 1... Spool data set is in NetData format

SMF119ML_SS_RStrt .1.. Spool data set was restarted due to
checkpointing

SMF119ML_SS_Rsv12 ..1. Reserved

SMF119ML_SS_Rsv13 ...1 Reserved

SMF119ML_SS_Rsv14 1... Reserved

SMF119ML_SS_Rsv151.. Reserved

SMF119ML_SS_Rsv161. Reserved

SMF119ML_SS_Rsv171 Reserved

78(X'4E') SMF119ML_SS_RStc 1... Data set created by started task

SMF119ML_SS_RTsc .1.. Data set created by time sharing user

SMF119ML_SS_RJob ..1. Data set created by batch job

SMF119ML_SS_Rsv23 ...1 Reserved

SMF119ML_SS_Rsv24 1... Reserved

SMF119ML_SS_Rsv251.. Reserved

SMF119ML_SS_Rsv261. Reserved

SMF119ML_SS_Rsv271 Reserved

79(X'4F') SMF119ML_SS_Flag4 1 BIT(8) Reserved

80(X'50') SMF119ML_SS_EMail 4 Binary Number of mail messages saved for
extended retry

84(X'54') SMF119ML_SS_ERcpt 4 Binary Number of recipients to be retried in
mail messages saved for extended
retry

Table 303 on page 929 describes the CSSMTP SMF job accounting information
section. It contains information about the source spool file. If there is no accounting
information (the number of entries is zero), then this section is not present.

Accounting information is in SMF format as it is in type 5 and type 30 SMF
records. For more information about the accounting field, see z/OS MVS System
Management Facilities (SMF).
AL1(number-of-pairs-that-follow) followed by 1 or more fields
AL1(length),CLlength’string’ A length of 0 indicates
an omitted field

928 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

An example of accounting information given the following of (X3600,42,,ANDY):.
DC AL1(4) Nr of fields
DC AL1(5),CL5’X3600’ field 1
DC AL1(2),CL2’42’ field 2
DC AL1(0) field 3 (null)
DC AL1(4),CL4’ANDY’ field 4

Table 303. CSSMTP spool job accounting

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_SA 144 STRUCTURE Spool Job Accounting

0(X'0') SMF119ML_SA_Cnt 1 Binary Number of accounting sections

1(X'1') SMF119ML_SA_Txt 143 EBCDIC Encoded accounting information

CSSMTP statistical record (STATS subtype 52)
This record is written at the end of each MVS SMF interval and at the termination
of CSSMTP application. See z/OS MVS System Management Facilities (SMF) for
information about setting the SMF interval. It contains global statistics about spool
and mail processing, information about the health of the CSSMTP program, and
the activity of each of the target server connections during the interval.

Note: Any change in the SMF recording interval is not acted upon until the
previous interval expires.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the CSSMTP statistical record, the TCP/IP stack identification section
indicates CSSMTP as the subcomponent and X'08' (event record) as the record
reason. The field SMF119TI_Stack name is blank unless the -p parameter is used to
start the CSSMTP application. If this record is written to NMI, the field
SMF119TI_Stack in the NMI record contains the stack name that the record was
written to. This is a non-connection oriented SMF record.

Table 304 shows the CSSMTP statistical record self-defining section.

Table 304. CSSMTP statistical record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
48(X'30')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to CSSMTP common
information section

40(X'28') SMF119S1Len 2 Binary Length of CSSMTP common
information section

Appendix E. Type 119 SMF records 929

Table 304. CSSMTP statistical record self-defining section (continued)

Offset Name Length Format Description

42(X'2A') SMF119S1Num 2 Binary Number of CSSMTP common
information sections

44(X'2C') SMF119S2Off 4 Binary Offset to CSSMTP statistical data
section see table

48(X'30') SMF119S2Len 2 Binary Length of CSSMTP statistical data
section

50(X'32') SMF119S2Num 2 Binary Number of CSSMTP statistical data
sections

52(X'34') SMF119S3Off 4 Binary Offset to CSSMTP JES statistical
section see table

56(X'38') SMF119S3Len 2 Binary Length of CSSMTP JES statistical
section

58(X'36') SMF119S3Num 2 Binary Number of CSSMTP JES statistical
sections

60(X'3C') SMF119S4Off 4 Binary Offset to CSSMTP health checker
statistical section see table

64(X'40') SMF119S4Len 2 Binary Length of CSSMTP health checker
statistical section

66(X'42') SMF119S4Num 2 Binary Number of CSSMPT health checker
statistical sections

68(X'44') SMF119S5Off 4 Binary Offset to CSSMTP target server
statistical section see table

72(X'48') SMF119S5Len 2 Binary Length of CSSMTP target server
statistical section

74(X'4A') SMF119S5Num 2 Binary Number of CSSMTP target server
statistical sections

Table 286 on page 912 in “CSSMTP configuration record (CONFIG subtype 48)” on
page 911 shows the CSSMTP common information section. This section identifies
the CSSMTP JOB that created this SMF record. It is found in subtypes 48, 49, 50, 51
and 52.

Table 305 shows the CSSMTP statistical data section. These values reflect the mail
processing that is accumulated over the interval. SMF119ML_ST_LRTQCount is the
number of messages on the retry queue at the end of the interval.

Table 305. CSSMTP statistical data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_ST 64 STRUCTURE CSSMTP Statistics

0(X'0') SMF119ML_ST_STime 4 Binary Time interval started, in hundredths
of seconds

4(X'4') SMF119ML_ST_SDate 4 Packed Date interval started, in 0CYYDDDF
format

8(X'8') SMF119ML_ST_ETime 4 Binary Time interval ended, in hundredths
of seconds

12(X'C') SMF119ML_ST_EDate 4 Packed Date interval ended, in 0CYYDDDF
format

930 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 305. CSSMTP statistical data (continued)

Offset Name(Dim) Length Type Description

16(X'10') SMF119ML_ST_Dur 4 Binary Duration of the interval, in
hundredths of seconds

20(X'14') SMF119ML_ST_Flags 4 BIT (32) Application state flags at the end of
the interval

SMF119ML_ST_NoStck 1... No stack available

SMF119ML_ST_STargt .1.. Suspend - no targets available

SMF119ML_ST_SImmed ..1. Suspend immediate

SMF119ML_ST_SDelay ...1 Suspend delay

SMF119ML_ST_Rsv04 1... Reserved

SMF119ML_ST_StgUse1.. Storage usage high at 95%

SMF119ML_ST_Rsv061. Reserved

SMF119ML_ST_Rsv071 Reserved

21(X'15') SMF119ML_ST_Rsv1x 1 Binary Reserved

22(X'16') SMF119ML_ST_Rsv2x 1 Binary Reserved

23(X'17') SMF119ML_ST_Rsv3x 1 Binary Reserved

24(X'18') SMF119ML_ST_MailCount 8 Binary Number of new mail messages
processed

32(X'20') SMF119ML_ST_LRTCount 8 Binary Number of mail messages entered
long retry

40(X'28') SMF119ML_ST_LRTDeadLtrCount 8 Binary Number of mail messages that have
become dead letters

48(X'30') SMF119ML_ST_LRTQCount 8 Binary Current number of mail messages on
long retry queue

56(X'38') SMF119ML_ST_UDVCount 8 Binary Number of mail messages that are
undeliverable

64(X'40') SMF119ML_ST_ErtCount 4 Binary Current number of mail messages
for extended retry

68(X'44') SMF119ML_ST_ErtQCount 4 Binary Cumulative total number of mail
messages for extended retry

72(X'48') SMF119ML_ST_ErtUndvl 4 Binary Number of mail messages made
undeliverable by extended retry

76(X'4C') SMF119ML_ST_ErtError 4 Binary Number of mail messages dropped
by extended retry due to file system
errors

Table 306 describes the CSSMTP JES statistical data. This data reflects the values
from the JES spool files that completed during the interval.

Table 306. CSSMTP JES statistical data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_JS 64 STRUCTURE CSSMTP JES statistics

0(X'0') SMF119ML_JS_JesFiles 4 Binary Number of JES spool files completed

4(X'4') SMF119ML_JS_JesRcdCnt 4 Binary Number of JES records read from the
JES spool files

Appendix E. Type 119 SMF records 931

Table 306. CSSMTP JES statistical data (continued)

Offset Name(Dim) Length Type Description

8(X'8') SMF119ML_JS_JesTime 4 Binary Sum of completed JES spool files
processing times (hundreds of
seconds)

12(X'C') SMF119ML_JS_JesScan 4 Binary Sum of JES scanning time

16(X'10') SMF119ML_JS_MAIL 4 Binary Number of mail message found in
the spool data sets

20(X'14') SMF119ML_JS_Good 4 Binary Number of mail messages in the
spool dataset that were successfully
sent

24(X'18') SMF119ML_JS_Udv 4 Binary Number of mail messages in the
spool dataset that were not sent

28(X'1C') SMF119ML_JS_Dead 4 Binary Number of dead letter mail resulting
from spool dataset processing

32(X'20') SMF119ML_JS_Rcpt 4 Binary Number of recipients in the spool
datasets

36(X'24') SMF119ML_JS_CRcpt 4 Binary Total recipients sent successfully

40(X'28') SMF119ML_JS_URcpt 4 Binary Total recipients that are undeliverable

44(X'2C') SMF119ML_JS_Skip 4 Binary Number of mail skipped due to user
exit or restart

48(X'30') SMF119ML_JS_Bsize 8 Binary Total size in bytes of all mail headers
and body sections processed by
CSSMTP for the JES spool data set

56(X'38') SMF119ML_JS_SError 4 Binary Number of mail with syntax error
found in the JES spool data sets

60(X'3C') SMF119ML_JS_RtnCd 4 Binary Number of JES spool jobs fail with
nonzero processing return code

64(X'40') SMF119ML_JS_EMail 4 Binary Number of mail messages saved for
extended retry

68(X'44') SMF119ML_JS_ERcpt 4 Binary Number of recipients to be retried in
mail messages saved for extended
retry

Table 307 describes the CSSMTP health checker statistics These are the values at the
end of the interval.

Table 307. CSSMTP Health checker statistics

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_HC 60 STRUCTURE Health Check statistics

0(X'0') SMF119ML_HC_Time 4 Binary Time of last health check -
hundredths of seconds since midnight

4(X'4') SMF119ML_HC_Date 4 Packed Date of last health check, in
0CYYDDDF format

8(X'8') SMF119ML_HC_StgTotal 4 Binary Total storage region size for CSSMTP

12(X'C') SMF119ML_HC_StgIFree 4 Binary Storage available after CSSMTP
initialization is completed

16(X'10') SMF119ML_HC_StgFree 4 Binary Storage currently not in use

20(X'14') SMF119ML_HC_StgAlloc 4 Binary Storage currently in use

932 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 307. CSSMTP Health checker statistics (continued)

Offset Name(Dim) Length Type Description

24(X'18') SMF119ML_HC_StgPUsed 4 Binary Storage percent in use

28(X'1C') SMF119ML_HC_StgFail 4 Binary Number of storage failures

32(X'20') SMF119ML_HC_Rsvd1 4 Binary Reserved

36(X'24') SMF119ML_HC_DLRPFree 4 Binary Percentage of file system space that is
free system-wide and that can be
used to store dead letters

40(X'28') SMF119ML_HC_DLRPUsed 4 Binary Percentage of file system space that is
used system-wide

44(X'2C') SMF119ML_HC_JESDUsed 4 Binary Number of JES DEST tasks busy

48(X'30') SMF119ML_HC_JESDPerC 4 Binary Percent of JES DEST Tasks busy

52(X'34') SMF119ML_HC_JESWUsed 4 Binary Number of JES writer tasks busy

56(X'38') SMF119ML_HC_JESWPerC 4 Binary Percent of JES writer tasks busy

60(X'3C') SMF119ML_HC_MDirPFree 4 Binary Percentage of file system space that is
free system-wide and that can be
used to store extended retry mail
messages

64(X'40') SMF119ML_HC_MDirPUsed 4 Binary Percentage of file system space that is
used system-wide

Table 308 describes the target server statistical data. There is one entry for each
defined target server IP address. This is the list that is defined at the interval.

Table 308. Target server statistical data

Offset Name(Dim) Length Type Description

0(X'0') SMF119ML_IP 68 STRUCTURE Target Server statistics

0(X'0') SMF119ML_IP_IP 16 Binary Target server IP address

0(X'0') SMF119ML_IP_IPPfx 12 Binary 000000000000000000000FFFF

12(X'C') SMF119ML_IP_IP4 4 Binary IPv4 Address

16(X'10') SMF119ML_IP_Port 2 Binary Target server port number

18(X'12') SMF119ML_IP_Rsvd1 2 Binary Reserved

20(X'14') SMF119ML_IP_ConnState 4 Binary Connection state:

v SMF119ML_IP_New - Target server
is new so its capabilities are
unknown but it is in the
configured address list.

v SMF119ML_IP_Active - The target
server is available.

v SMF119ML_IP_Monitoring - The
target server is being monitored for
a successful connection open and
reply from the server.

v SMF119ML_IP_NonActive - The
target server is not available.

24(X'18') SMF119ML_IP_MsgSize 4 Binary Maximum message size

28(X'1C') SMF119ML_IP_RecvdCount 4 Binary Total mail messages received

Appendix E. Type 119 SMF records 933

|

Table 308. Target server statistical data (continued)

Offset Name(Dim) Length Type Description

32(X'20') SMF119ML_IP_SentCount 4 Binary Total mail messages sent

36(X'24') SMF119ML_IP_ConCount 4 Binary Connection count

40(X'28') SMF119ML_IP_ConFailCount 4 Binary Connection failure count

44(X'2C') SMF119ML_IP_Rsvd2 4 Binary Reserved

48(X'30') SMF119ML_IP_RcvdBytes 8 Binary Total number of received bytes

56(X'38') SMF119ML_IP_SentBytes 8 Binary Total number of sent bytes

64(X'40') SMF119ML_IP_Flags 4 BIT(32) Flags

SMF119ML_IP_ESMTP 1... ESMTP supported

SMF119ML_IP_Rsv0x .111 1111 Reserved

65(X'41') SMF119ML_IP_Rsv1x 1 BIT(8) Reserved

66(X'42') SMF119ML_IP_Rsv2x 1 BIT(8) Reserved

67(X'43') SMF119ML_IP_Rsv3x 1 BIT(8) Reserved

FTP server transfer completion record (subtype 70)
The FTP server transfer completion record is collected when the z/OS FTP server
completes processing of one of the following FTP file transfer operations: file
appending, file deletion, file storage (includes both store and store unique
operations), file retrieval, or file renaming. A common format for the record is used
for each FTP file transfer operation, so the record contains an indication of which
operation was performed. The record also contains optional sections provided
when gethostbyaddr() processing was performed during the file transfer
operation, as well as when the file names involved in the transfer operation were
MVS or z/OS UNIX filenames.

The Type 119 FTP server transfer completion record is collected at the same point
in file transfer processing as the equivalent Type 118 FTP server SMF records. The
Type 118 records used different record subtypes, as opposed to a field within the
SMF record information, to represent the different file transfer operations being
recorded.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the FTP server transfer completion record, the TCP/IP stack
identification section indicates FTPS as the subcomponent and X'08' (event record)
as the record reason.

Table 309 shows the FTP server transfer completion record self-defining section:

Table 309. FTP server transfer completion record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
70(X'46')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6)

26(X'1A') 2 Binary Reserved

934 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 309. FTP server transfer completion record self-defining section (continued)

Offset Name Length Format Description

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to FTP server transfer
completion section

40(X'28') SMF119S1Len 2 Binary Length of FTP server transfer
completion section

42(X'2A') SMF119S1Num 2 Binary Number of FTP server transfer
completion sections

44(X'2C') SMF119S2Off 4 Binary Offset to FTP server host name
section

48(X'30') SMF119S2Len 2 Binary Length of FTP server host name
section

50(X'32') SMF119S2Num 2 Binary Number of FTP server host name
sections

52(X'34') SMF119S3Off 4 Binary Offset to FTP server first associated
data set name section

56(X'38') SMF119S3Len 2 Binary Length of FTP server first associated
data set name section

58(X'3A') SMF119S3Num 2 Binary Number of FTP server first associated
data set name sections

60(X'3C') SMF119S4Off 4 Binary Offset to FTP server second
associated data set name section

64(X'40') SMF119S4Len 2 Binary Length of FTP server second
associated data set name section

66(X'42') SMF119S4Num 2 Binary Number of FTP server second
associated data set name sections

68 (X'44') SMF119S5Off 4 Binary Offset to FTP server Security section

72 (X'48') SMF119S5Len 2 Binary Length of FTP server Security section

74 (X'4A') SMF119S5Num 2 Binary Number of FTP server Security
sections

Table 310 on page 936 shows the FTP server transfer completion specific section of
this SMF record.

Appendix E. Type 119 SMF records 935

Table 310. FTP server transfer completion record section

Offset Name Length Format Description

0(X'0') SMF119FT_FSOper 1 Binary FTP Operation according to SMF77
subtype classification:

v X'01': Append

v X'02': Delete

v X'03': Rename

v X'04': Retrieve

v X'05': Store

v X'06': Store Unique

1(X'1') 3 Binary Reserved

4(X'4') SMF119FT_FSCmd 4 EBCDIC FTP command (according to RFC
959+)

8(X'8') SMF119FT_FSFType 4 EBCDIC File type (SEQ, JES, or SQL)

12(X'C') SMF119FT_FSDRIP 16 Binary Remote IP address (data connection).
This field is 0 for Delete or Rename
operation.

28(X'1C') SMF119FT_FSDLIP 16 Binary Local IP address (data connection).
This field is 0 for Delete or Rename
operation.

44(X'2C') SMF119FT_FSDRPort 2 Binary Remote port number (data connection
- client). This field is 0 for Delete or
Rename operation.

46(X'2E') SMF119FT_FSDLPort 2 Binary Local port number (data connection -
server). This field is 0 for Delete or
Rename operation.

48 (X'30') SMF119FT_FSCRIP 16 Binary Remote IP address (control
connection)

64(X'40') SMF119FT_FSCLIP 16 Binary Local IP address (control connection)

80 (X'50') SMF119FT_FSCRPort 2 Binary Remote port number (control
connection - client)

82 (X'52') SMF119FT_FSCLPort 2 Binary Local port number (control
connection - server)

84(X'54') SMF119FT_FSSUser 8 EBCDIC Client User ID on server

92(X'5C') SMF119FT_FSType 1 EBCDIC Data type:

v A: ASCII

v E: EBCDIC

v I: Image

v B: Double-byte

v U: UCS-2

93(X'5D') SMF119FT_FSMode 1 EBCDIC Transmission mode:

v B: Block

v C: Compressed

v S: Stream

94(X'5E') SMF119FT_FSStruct 1 EBCDIC Data structure:

v F: File

v R: Record

936 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 310. FTP server transfer completion record section (continued)

Offset Name Length Format Description

95(X'5F') SMF119FT_FSDsType 1 EBCDIC Data set type:

v S: SEQ

v P: PDS

v H: z/OS UNIX

96(X'60') SMF119FT_FSSTime 4 Binary Transmission start time of day

100(X'64') SMF119FT_FSSDate 4 Packed Transmission start date

104(X'68') SMF119FT_FSETime 4 Binary Transmission end time of day

108(X'6C') SMF119FT_FSEDate 4 Packed Transmission end date

112(X'70') SMF119FT_FSDur 4 Binary File transmission duration in units of
1/100 seconds

116(X'74') SMF119FT_FSBytes 8 Binary Transmission byte count; 64-bit
integer

124(X'7C') SMF119FT_FSLReply 4 EBCDIC Last reply to client (3-digit RFC 959
code, right-aligned)

128(X'80') SMF119FT_FSM1 8 EBCDIC PDS Member name

136(X'88') SMF119FT_FSRS 8 EBCDIC Reserved for abnormal end
information

144(X'90') SMF119FT_FSM2 8 EBCDIC Second PDS member name (if rename
operation)

152(X'98') SMF119FT_FSBytesFloat 8 Floating point
hex

z/OS floating point format for
transmission byte count

160 (X'A0') SMF119FT_FSCConnID 4 Binary TCP connection ID of FTP control
connection

164 (X'A4') SMF119FT_FSDConnID 4 Binary TCP connection ID of FTP data
connection, or 0. This field is 0 for
Delete or Rename operation.

168 (X'A8') SMF119FT_FSSessionID 15 EBCDIC FTP activity logging session ID. The
activity logging session ID uniquely
identifies the FTP session between a
client and a server. The identifier is
created by combining the job name of
the FTP daemon with a 5-digit
number in the range 00000 - 99999.

183 (X'B7') 1 Binary Reserved

Table 311 shows the FTP server transfer completion host name section. This section
is optional and is present if gethostbyaddr operation was performed for the local
IP address.

Table 311. FTP server transfer completion record section: Host name

Offset Name Length Format Description

0(X'0') SMF119FT_FSHostname n EBCDIC Host Name

Table 312 on page 938 shows the name section of the first associated data set in the
FTP server transfer completion record. This section represents the server MVS or
z/OS UNIX data set name that is associated with a rename or file transfer. Use the

Appendix E. Type 119 SMF records 937

|
|
|

Data Set Type field information in the FTP server transfer completion section to
determine the type of file name that this section represents.

Table 312. FTP server transfer completion record section: First associated data set name

Offset Name Length Format Description

0(X'0') SMF119FT_FSFileName1 n EBCDIC Server MVS or z/OS UNIX file name
associated with the file transfer or
rename operation. When the
operation is a rename, this is the file
or data set original name.

Table 313 shows the name section of the second associated data set in the FTP
server transfer completion record. This section represents an MVS or z/OS UNIX
data set name that is associated with the rename operation. Use the Data Set Type
field information in the FTP server transfer completion section to determine the
type of file name that this section represents.

Table 313. FTP server transfer completion record section: Second associated data set name

Offset Name Length Format Description

0(X'0') SMF119FT_FSFileName2 n EBCDIC Second MVS or z/OS UNIX file name
associated with a rename. This is the
new file or data set name.

Table 314 shows the FTP server security section:

Table 314. FTP server security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FSMechanism 1 EBCDIC Protection Mechanism:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FSCProtect 1 EBCDIC Control connection protection level:

v N: None

v C: Clear

v S: Safe

v P: Private

2 (X'2') SMF119FT_FSDProtect 1 EBCDIC Data connection Protection Level:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FSLoginMech 1 EBCDIC Login Method:

v P: Password

v C: Certificate

v T: Kerberos ticket

938 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|

|
|
|

|

Table 314. FTP server security section (continued)

Offset Name Length Format Description

4 (X'4') SMF119FT_FSProtoLevel 8 EBCDIC
(Control connection.)

Protocol level (present only if
Protocol Mechanism is TLS or
AT-TLS).

Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

12 (X'C') SMF119FT_FSCipherSpec 20 EBCDIC
(Control connection.)

Cipher Specification (present only if
Protocol Mechanism is TLS or
AT-TLS).

Possible values when Protocol Level
is SSLV2:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-Bit

v Triple DES US

Possible values when Protocol Level
is SSLV3, TLSV1, TLSV1.1, or
TLSV1.2:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

If this field is blank, the value of
SMF119FT_FSCipher for the cipher is
used for the connection.

32 (X'20') SMF119FT_FSProtoBufSize 4 Binary Negotiated protection buffer size

Appendix E. Type 119 SMF records 939

Table 314. FTP server security section (continued)

Offset Name Length Format Description

36(X'24') SMF119FT_FSCipher 2 EBCDIC
(Control connection.)

Hexadecimal value of cipher
specification (present only when
Protocol Mechanism is TLS or
AT-TLS). If the value is 4X, the cipher
specification must be obtained from
the SMF119FT_FSCipher4 field.

38(X'26') SMF119FT_FSFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39(X'27') SMF119FT_FSCipher4 4 EBCDIC
(Control connection.)

Four byte hexadecimal value of
Cipher Specification (present only if
Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FSSessReuse 1 EBCDIC SSL session reuse:

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FSCSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
control connection

46(X'2E') SMF119FT_FSCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FSDSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
data connection

80(X'50') SMF119FT_FSDSSLSessID 32 Binary SSL session ID of FTP data
connection

FTP daemon configuration record (subtype 71)
The FTP daemon configuration data SMF record is collected when the z/OS FTP
daemon listens successfully on the listening port for the first time. FTP daemon
configuration data is collected from START parameters, the FTP.DATA data set, the
TCPIP.DATA data set, and UNIX environment variables.

The configuration data is provided in the following sections:
v FTP daemon identification section

This section provides information, such as job name and ASID, that identifies
which FTP daemon this record is collected for.

v FTP daemon general configuration section
This section provides configuration information for the statements whose value
has a fixed length.

v FTP daemon configuration data section
This section provides configuration information for the statements whose value
has a variable length. This section is a set of variable-length entries for each
statement. Each entry contains the following fields:
– Total length of the entry

940 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||

|

|

|||||
|

|||||
|

|||||
|

|||||
|

– Key of the entry to identify the statement that the entry represents
– Value that is specified for the statement

In this section, entries are provided only for statements that are explicitly
specified or have default values. Use the key of each entry to determine which
statements are specified.

Rule: All fields that contain EBCDIC values are padded with EBCDIC blanks
(X'40') and are set to EBCDIC blanks if the field does not contain a value.

Table 315 shows FTP daemon configuration record self-defining section.

Table 315. FTP daemon configuration record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF
Header

24 Standard SMF header; subtype is
71 (X'47')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record
(4)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to FTP daemon identification
section

40(X'28') SMF119S1Len 2 Binary Length of FTP daemon
identification section

42(X'2A') SMF119S1Num 2 Binary Number of FTP daemon
identification sections

44(X'2C') SMF119S2Off 4 Binary Offset to FTP daemon general
configuration section

48(X'30') SMF119S2Len 2 Binary Length of FTP daemon general
configuration section

50(X'32') SMF119S2Num 2 Binary Number of FTP daemon general
configuration sections

52(X'34') SMF119S3Off 4 Binary Offset to FTP daemon
configuration data section

56(X'38') SMF119S3Len 2 Binary Length of FTP daemon
configuration data section

58(X'3A') SMF119S3Num 2 Binary Number of FTP daemon
configuration data section

For more information about the TCP/IP stack identification section, see Table 168
on page 749 in the “Common TCP/IP identification section” on page 749. To the
FTP daemon configuration record, the TCP/IP stack identification section indicates
FTPD as the sub component and X'08' (event record) as the record reason.

Appendix E. Type 119 SMF records 941

Table 316 shows FTP Daemon Identification Section:

Table 316. FTP daemon identification section

Offset Name Length Format Description

0(X'0') SMF119FT_FDIdent 4 EBCDIC FDID eyecatcher

4(X'4') SMF119FT_FDJobName 8 EBCDIC Job name of the FTP daemon

12(X'C') SMF119FT_FDASID 2 Binary ASID of the FTP daemon
address space

14(X'0E') SMF119FT_FDrsvd1 2 Binary Unused, available

16(X'10') SMF119FT_FDStartTime 4 Binary Time the FTP daemon started
(UTC)

20(X'14') SMF119FT_FDStartDate 4 Binary Date the FTP daemon started

24(X'18') SMF119FT_FDUserID 8 EBCDIC User ID that started this FTP
daemon

32(X'20') SMF119FT_FDUToken 80 Binary User token of the user that
started the FTP daemon

Table 317 shows FTP Daemon General Configuration Section.

Table 317. FTP daemon general configuration section

Offset Name Length Format Description

0(X'0') SMF119FT_FDCFIdent 4 EBCDIC FDCF eyecatcher

942 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

4(X'4') SMF119FT_FDCF_Flags 8 BIT(64) Configuration flags

SMF119FT_FDCFAccErrMsg 1... ACCESSERRORMSGS statement

0 FALSE

1 TRUE

SMF119FT_FDCFAnonSurr .1.. ANONYMOUS statement

1 Indicates
user_id/SURROGATE is
configured.

SMF119FT_FDCFAnonSysHFS ..1. ANONYMOUSFILEACCESS
statement

1 Allows anonymous users
access to z/OS UNIX
System Service files.

SMF119FT_FDCFAnonSysMVS ...1 ANONYMOUSFILEACCESS
statement

1 Allows anonymous users
access to MVS data sets.

SMF119FT_FDCFAnonFTJES 1... ANONYMOUSFILETYPEJES
statement

0 FALSE

1 TRUE

SMF119FT_FDCFAnonFTSEQ1.. ANONYMOUSFILETYPESEQ
statement

0 FALSE

1 TRUE

SMF119FT_FDCFAnonFTSQL1. ANONYMOUSFILETYPESQL
statement

0 FALSE

1 TRUE

SMF119FT_FDCFAnonFTPLog1 ANONYMOUSFTPLOGGING
statement

0 FALSE

1 TRUE

Appendix E. Type 119 SMF records 943

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

5(X'5') SMF119FT_FDCFAsatrans 1... ASATRANS statement

0 FALSE

1 TRUE

SMF119FT_FDCFAutoMount .1.. AUTOMOUNT statement

0 FALSE

1 TRUE

SMF119FT_FDCFAuRecall ..1. AUTORECALL statement

0 FALSE

1 TRUE

SMF119FT_FDCFAuTapeMount ...1 AUTOTAPEMOUNT statement

0 FALSE

1 TRUE

SMF119FT_FDCFChkConfidence 1... CHKCONFIDENCE statement

0 FALSE

1 TRUE

SMF119FT_FDCFDBSub1.. DBSUB statement

0 FALSE

1 TRUE

SMF119FT_FDCFDebugOnSite1. DEBUGONSITE statement

0 FALSE

1 TRUE

SMF119FT_FDCFDirMode1 DIRECTORYMODE statement

0 FALSE

1 TRUE

944 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

6(X'6') SMF119FT_FDCFDumpOnSite 1... DUMPONSITE statement

SMF119FT_FDCFFTPLogging .1.. FTPLOGGING statement

v TRUE

– SMF119FT_FDCFTPLogging -
1

– SMF119FT_FDCdsnlookup - 1

v FALAE

– SMF119FT_FDCFTPLogging -
0

– SMF119FT_FDCdsnlookup - 0

v TRUENODNS

– SMF119FT_FDCFTPLogging -
1

– SMF119FT_FDCdsnlookup - 0

SMF119FT_FDCFdsnlookup ..1.

SMF119FT_FDCFISPFStats ...1 ISPFSTATS statement

0 FALSE

1 TRUE

SMF119FT_FDCFJESGetByDsn 1... JESGETBYDSN statement

0 FALSE

1 TRUE

SMF119FT_FDCFListSubDir1.. LISTSUBDIR statement

0 FALSE

1 TRUE

SMF119FT_FDCFMBReLastEOL1. MBREQUIRELASTEOL statement

0 FALSE

1 TRUE

SMF119FT_FDCFNonSwapd1 NONSWAPD statement

0 FALSE

1 TRUE

Appendix E. Type 119 SMF records 945

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

7(X'7') SMF119FT_FDCFPassPhrase 1... PASSPHRASE statement

0 FALSE

1 TRUE

SMF119FT_FDCFPortEntry4 .1.. PORTOFENTRY4 statement

0 FALSE

1 TRUE

SMF119FT_FDCFQuoteOver ..1. QUOTESOVERRIDE statement

0 FALSE

1 TRUE

SMF119FT_FDCFRDW ...1 RDW statement

0 FALSE

1 TRUE

SMF119FT_FDCFRemoveinbEOF 1... REMOVEINBEOF statement

0 FALSE

1 TRUE

SMF119FT_FDCFReply2261.. REPLY226 statement

0 FALSE

1 TRUE

SMF119FT_FDCFRestput1. RESTPUT statement

0 FALSE

1 TRUE

SMF119FT_FDCFSBSUB1 SBSUB statement

0 FALSE

1 TRUE

946 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

8(X'8') SMF119FT_FDCFSBisSpace 1... SBSUBCHAR statement

1 The substitution character
to be SPACE

SMF119FT_FDCFSecImpZos .1.. SECUREIMPLICITZOS statement

0 FALSE

1 TRUE

SMF119FT_FDCFSpread ..1. SPREAD statement

0 FALSE

1 TRUE

SMF119FT_FDCFSMFSTD ...1 SMF statement

1 Indicates that all FTP
server SMF records of
type118 are issued with the
standard subtypes

SMF119FT_FDCFSMFType119 1... SMF statement

1 Indicates that all FTP
server SMF records of
type119 are issued

SMF119FT_FDCFSMFexit1.. SMFEXIT statement

1 Indicates that user exit
FTPSMFEX is called before
writing the Type118 SMF
record to SMF data sets

SMF119FT_FDCFSMFJes1. SMFJES statement

1 To record SMF type 118
records for STOR when
FILETYPE=JES

SMF119FT_FDCFSMFJes1191 SMFJES statement

1 To record SMF type 119
records for STOR when
FILETYPE=JES

Appendix E. Type 119 SMF records 947

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

9(X'9') SMF119FT_FDCFSMFSql 1... SMFSQL statement

1 To record SMF type 118
records for RETR when
FILETYPE=SQL

SMF119FT_FDCFSMFSql119 .1.. SMFSQL statement

1 To record SMF type 119
records for RETR when
FILETYPE=SQL

SMF119FT_FDCFSuppIgWar ..1. SUPPRESSIGNOREWARNINGS
statement

0 FALSE

1 TRUE

SMF119FT_FDCFTapReadStram ...1 TAPEREADSTREAM statement

0 FALSE

1 TRUE

SMF119FT_FDCFTraBlanks 1... TRAILINGBLANKS statement

0 FALSE

1 TRUE

SMF119FT_FDCFTruncate1.. TRUNCATE statement

0 FALSE

1 TRUE

SMF119FT_FDCFUcsSub1. UCSSUB statement

0 FALSE

1 TRUE

SMF119FT_FDCFUcsTrunc1 UCSTRUNC statement

0 FALSE

1 TRUE

948 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

A(X'A') SMF119FT_FDCFVerifyUser 1... VERIFYUSER statement

0 FALSE

1 TRUE

SMF119FT_FDCFWapRec .1.. WRAPRECORD statement

0 FALSE

1 TRUE

SMF119FT_FDCFTapefastIO ..1. WRTAPEFASTIO statement

0 FALSE

1 TRUE

SMF119FT_FDCFFTchkip ...1 FTCHKIP_FLAG statement

1 Server user exit FTCHKIP
found

SMF119FT_FDCFTlscertcheck 1... TLSCERTCROSSCHECK statement

0 FALSE

1 TRUE

SMF119FT_FDCFSslv31.. SSLV3 statement

0 FALSE

1 TRUE

SMF119FT_FDCFFTRsvd111 Reserved

B(X'B') SMF119FT_FDCFFTRsvd2 1 BIT(8) Reserved

C(X'C') SMF119FT_FDCFAnonUser 8 EBCDIC ANONYMOUS statement
Guidelines:

v If ANONYMOUS is not set, the
value defaults to blanks.

v If ANONYMOUS is set without
user_id, the value is ANONYMO.

20(X'14') SMF119FT_FDCFAnonPass 8 EBCDIC ANONYMOUS statement
Guidelines:

v If the password is set, the value
is set and the password is not
displayed explicitly.

v If the password is not set, the
value defaults to blanks.

28(X'1C') SMF119FT_FDCFAnonHFSDirM 4 Binary ANONYMOUSHFSDIRMODE
statement. The three octal digits
describe the mode bits, which are
used for directories that anonymous
users create.

32(X'20') SMF119FT_FDCFAnonHFSFileM 4 Binary ANONYMOUSHFSFILEMODE
statement. The three octal digits
describe that the mode bits used for
storing files are created by
anonymous users

36(X'24') SMF119FT_FDCFAnonLevel 4 Binary ANONYMOUSLEVEL statement

40(X'28') SMF119FT_FDCFBlksize 4 Binary BLKSIZE statement

Appendix E. Type 119 SMF records 949

||||

||

||

||||

||

||

|

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

44(X'2C') SMF119FT_FDCFBufno 4 Binary BUFNO statement

48(X'30') SMF119FT_FDCFCcxlateInit 8 EBCDIC CCXLATE statement
Guideline: The value defaults to
blanks if the statement is not set.

56(X'38') SMF119FT_FDCFChkptint 4 Binary CHKPTINT statement

60(X'3C') SMF119FT_FDCFCondDisp 1 EBCDIC CONDDISP statement

C CATLG

D DELETE

61(X'3D') SMF119FT_FDCFemailAddrChk 7 EBCDIC EMAILADDRCHECK statement

68(X'44') SMF119FT_FDCFDataClass 8 EBCDIC DATACLASS statement
Guideline: The value defaults to
blanks if the statement is not set.

76(X'4C') SMF119FT_FDCFDataKeepAlive 4 Binary DATAKEEPALIVE statement

80(X'50') SMF119FT_FDCFDataTimeOut 4 Binary DATATIMEOUT statement

84(X'54') SMF119FT_FDCFDB2Name 4 EBCDIC DB2® statement

88(X'58') SMF119FT_FDCFDB2plan 8 EBCDIC DB2PLAN statement

96(X'60') SMF119FT_FDCFDConnTime 4 Binary DCONNTIME statement

100(X'64') SMF119FT_FDCFDebug 4 Binary DEBUG statement
Guideline: The value defaults to 0
if the statement is not set.
X'80000000' : FLO
X'40000000' : CMD
X'20000000' : ERR
X'10000000' : PAR
X'08000000' : INT
X'04000000' : ACC
X'02000000' : UTL
X'01000000' : SEC
X'00800000' : FS1
X'00400000' : FS2
X'00200000' : FS3
X'00100000' : FS4
X'00080000' : FS5
X'00040000' : FS6
X'00020000' : FS7
X'00010000' : FS8
X'00008000' : SOC1
X'00004000' : SOC2
X'00002000' : SOC3
X'00001000' : SOC4
X'00000800' : SOC5
X'00000400' : SOC6
X'00000200' : SOC7
X'00000100' : SOC8
X'00000080' : JES
X'00000040' : SQL
X'00000020' : UTA
X'00000010' : UTB
X'00000008' : UTC
X'00000004' : UTD
X'00000002' : UTE

950 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

104(X'68') SMF119FT_FDCFdestnode 8 EBCDIC DEST statement
Guideline: The destnode value
defaults to blanks if the statement
is not set.

112(X'70') SMF119FT_FDCFdestuser 8 EBCDIC DEST statement
Guideline: The destuser value
defaults to blanks if the statement
is not set.

120(X'78') SMF119FT_FDCFDirctory 4 Binary DIRECTORY statement

124(X'7C') SMF119FT_FDCFDSNType 4 Binary DSNTYPE statement

0 SYSTEM

1 LARGE

2 BASIC

128(X'80') SMF119FT_FDCFDSWaitTime 4 Binary DSWAITTIME statement

132(X'84') SMF119FT_FDCFDSWaitTimeRep 4 Binary DSWAITTIMEREPLY statement

136(X'88') SMF119FT_FDCFEATTR 4 Binary EATTR statement

0 NO

1 OPT

140(X'8C') SMF119FT_FDCFEncoding 1 EBCDIC ENCODING statement

M MBCS

S SBCS

141(X'8D') SMF119FT_FDCFMigrateVol 6 EBCDIC MIGRATEVOL statement

147(X'93') SMF119FT_FDCFPasvDataConn 1 EBCDIC PASSIVEDATACONN statement

U UNRESTRICTED

N NOREDIREC

Appendix E. Type 119 SMF records 951

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

148(X'94') SMF119FT_FDCFExtensions 4 Binary EXTENSIONS statement
Guideline: The value defaults to 0
if the statement is not set.

X'0001' Enables the FTP Server to
respond to the SIZE
command.

X'0002' Enables the FTP Server to
respond to the MDTM
command.

X'0004' Enables the FTP server to
respond to the LANG
command, and to use
UTF-8 encoding of
pathnames on the control
connection.

X'0008' Enables the FTP server to
restart stream mode file
transfers.

X'0010' Specifies that GSSAPI
authentication is
supported.

X'0020' Specifies that TLS
authentication is
supported.

152(X'98') SMF119FT_FDCFFIFOTime 4 Binary FIFOIOTIME statement

156(X'9C') SMF119FT_FDCFFIFOpenTime 4 Binary FIFOOPENTIME statement

160(X'A0') SMF119FT_FDCFFileType 4 Binary FILETYPE statement

1 SEQ

2 JES

3 SQL

164(X'A4') SMF119FT_FDCFTPKeepAlive 4 Binary FTPKEEPALIVE statement

168(X'A8') SMF119FT_FDCFInActive 4 Binary INACTIVE statement

172(X'AC') SMF119FT_FDCFJESLimit 4 Binary JESENTRYLIMIT statement

176(X'B0') SMF119FT_FDCFJESIntLevel 4 Binary JESINTERFACELEVEL statement

180(X'B4') SMF119FT_FDCFJESLrecl 4 Binary JESLRECL statement

184(X'B8') SMF119FT_FDCFJESPGTO 4 Binary JESPUTGETTO statement

188(X'BC') SMF119FT_FDCFJESrefcm 4 Binary JESRECFM statement

128 F

64 V

-1 *

192(X'C0') SMF119FT_FDCFListLevel 4 Binary LISTLEVEL statement

196(X'C4') SMF119FT_FDCFlrecl 4 Binary LRECL statement

952 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

200(X'C8') SMF119FT_FDCFMBSendEOL 4 Binary MBSENDEOL statement

0 CRLF

1 CR

2 LF

3 NONE

204(X'CC') SMF119FT_FDCFMgmtClass 8 EBCDIC MGMTCLASS statement
Guideline: The value defaults to
blanks if the statement is not set.

212(X'D4') SMF119FT_FDCFLowPasvDataPort 4 Binary PASSIVEDATAPORTS statement
Guideline: The lowPassiveDataPort
value defaults to 0 if the statement
is not set.

216(X'D8') SMF119FT_FDCFHighPasvDataPort 4 Binary PASSIVEDATAPORTS statement
Guideline: The
highPassiveDataPort value defaults
to blanks if the statement is not set.

220(X'DC') SMF119FT_FDCFPDSType 1 EBCDIC PDSTYPE statement

P PDSE

E PDSE

U UNDEFINE

221(X'DD') SMF119FT_FDCFPortcmd 1 EBCDIC PORTCOMMAND statement

A ACCEPT

R REJECT

222(X'DE') SMF119FT_FDCFPortcmdIPAddr 1 EBCDIC PORTCOMMANDIPADDR
statement

N NOREDIRECT

U UNRESTRICTED

223(X'DF') SMF119FT_FDCFPortcmdPort 1 EBCDIC PORTCOMMANDPORT statement

N NOLOWPORTS

U UNRESTRICTED

224(X'E0') SMF119FT_FDCFRecfm 4 EBCDIC RECFM statement

228(X'E4') SMF119FT_FDCFPrimary 4 Binary PRIMARY statement

232(X'E8') SMF119FT_FDCFRlySecLevel 4 Binary REPLYSECURITYLEVEL statement

236(X'EC') SMF119FT_FDCFRetpt 4 Binary RETPD statement
Guideline: The value defaults to -1
if the statement is not set.

240(X'F0') SMF119FT_FDCFSBSendEOL 4 Binary SBSENDEOL statement

0 CRLF

1 CR

2 LF

3 NONE

244(X'F4') SMF119FT_FDCFSecondary 4 Binary SECONDARY statement

Appendix E. Type 119 SMF records 953

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

248(X'F8') SMF119FT_FDCFSBSubChar 1 EBCDIC SBSUBCHAR statement

249(X'F9') SMF119FT_FDCFSecCtrConn 1 EBCDIC SECURE_CTRLCONN statement

C CLEAR

S SAFE

P PRIVATE

250(X'FA') SMF119FT_FDCFSecDataConn 1 EBCDIC SECURE_DATACONN statement

C CLEAR

S SAFE

P PRIVATE

N NEVER

251(X'FB') SMF119FT_FDCFSecFTP 1 EBCDIC SECURE_FTP statement

R REQUIRED

A ALLOWED

252(X'FC') SMF119FT_FDCFSecLogin 1 EBCDIC SECURE_LOGIN statement

N NO_CLIENT_AUTH

R REQUIRED

V VERIFY_USER

253(X'FD') SMF119FT_FDCFSecPSW 1 EBCDIC SECURE_PASSWORD statement

O OPTIONAL

R REQUIRED

254(X'FE') SMF119FT_FDCFSecPSWKerb 1 EBCDIC SECURE_PASSWORD_KERBEROS
statement

O OPTIONAL

R REQUIRED

255(X'FF') SMF119FT_FDCFSqlcol 1 EBCDIC SQLCOL statement

N NAMES

L LABELS

A ANY

256(X'100') SMF119FT_FDCFSecPBSZ 4 Binary SECURE_PBSZ statement

260(X'104') SMF119FT_FDCFSMFSubType 4 Binary SMF statement
Guideline: The value defaults to 0
if the statement is not set.

264(X'108') SMF119FT_FDCFSMFAppe 4 Binary SMFAPPE statement
Guideline: The value defaults to 0
if the statement is not set.

268(X'10C') SMF119FT_FDCFSMFAppe119 4 Binary SMFAPPE statement
Guideline: The value defaults to 0
if the statement is not set.

272(X'110') SMF119FT_FDCFSMFDcfg119 4 Binary SMFDCFG statement
Guideline: The value defaults to 0
if the statement is not set.

954 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

276(X'114') SMF119FT_FDCFSMFDele 4 Binary SMFDELE statement
Guideline: The value defaults to 0
if the statement is not set.

280(X'118') SMF119FT_FDCFSMFDele119 4 Binary SMFDELE statement
Guideline: The value defaults to 0
if the statement is not set.

284(X'11C') SMF119FT_FDCFSMFLogon 4 Binary SMFLOGN statement
Guideline: The value defaults to 0
if the statement is not set.

288(X'120') SMF119FT_FDCFSMFLogon119 4 Binary SMFLOGN statement
Guideline: The value defaults to 0
if the statement is not set.

292(X'124') SMF119FT_FDCFSMFRen 4 Binary SMFREN statement
Guideline: The value defaults to 0
if the statement is not set.

296(X'128') SMF119FT_FDCFSMFRen119 4 Binary SMFREN statement
Guideline: The value defaults to 0
if the statement is not set. TYPE119
SMF subtype for rename

300(X'12C') SMF119FT_FDCFSMFRetr 4 Binary SMFRETR statement
Guideline: The value defaults to 0
if the statement is not set .

304(X'130') SMF119FT_FDCFSMFRetr119 4 Binary SMFRETR statement
Guideline: The value defaults to 0
if the statement is not set.

308(X'134') SMF119FT_FDCFSMFStor 4 Binary SMFSTOR statement
Guideline: The value defaults to 0
if the statement is not set.

312(X'138') SMF119FT_FDCFSMFStor119 4 Binary SMFSTOR statement
Guideline: The value defaults to 0
if the statement is not set.

316(X'13C') SMF119FT_FDCFSpaceType 4 Binary SPACETYPE statement

1 BLOCK

2 CYLINDER

3 TRACK

320(X'140') SMF119FT_FDCFStartDir 4 Binary STARTDIRECTORY statement

0 z/OS UNIX file system

1 MVS

324(X'144') SMF119FT_FDCFStorClass 8 EBCDIC STORCLASS statement
Guideline: The value defaults to
blanks if the statement is not set.

332(X'14C') SMF119FT_FDCFTLSMec 4 Binary TLSMECHANISM statement

0 ATTLS

1 FTP

336(X'150') SMF119FT_FDCFTLSPort 4 Binary TLSPORT statement

Appendix E. Type 119 SMF records 955

Table 317. FTP daemon general configuration section (continued)

Offset Name Length Format Description

340(X'154') SMF119FT_FDCFTLSRfcLevel 4 Binary TLSRFCLEVEL statement

0 DRAFT

1 RFC4217

2 CCCNONOTIFY

344(X'15C') SMF119FT_FDCFTLSTimeOut 4 Binary TLSTIMEOUT statement

348(X'15C') SMF119FT_FDCFUcount 4 Binary UCOUNT statement

60 P
Guideline: The value defaults to 0
if the statement is not set.

352(X'160') SMF119FT_FDCFUcsHostCS 8 EBCDIC UCSHOSTCS statement

360(X'168') SMF119FT_FDCFUnFileSysBOM 4 Binary UNICODEFILESYSTEMBOM
statement

0 ASIS

1 ALWAYS

2 NEVER

364(X'16C') SMF119FT_FDCFUnitName 8 EBCDIC UNITNAME statement
Guideline: The value defaults to
blanks if the statement is not set.

372(X'174') SMF119FT_FDCFUnixFileType 4 Binary UNIXFILETYPE statement

0 FILE

1 FIFO

376(X'178') SMF119FT_FDCFVcount 4 Binary UCSHOSTCS statement

380(X'17C') SMF119FT_FDCFXlateInit 8 EBCDIC XLATE statement
Guideline: The value defaults to
blanks if the statement is not set.

388(X'184') SMF119FT_FDCFPort 2 Binary PORT start parameter

390(X'186') SMF119FT_FDCFUmaskstr 3 EBCDIC UMASK statement

393(X'189') SMF119FT_FDCFSecSessReuse 1 EBCDIC SECURE_SESSION_REUSE
statement

A ALLOWED

R REQUIRED

394(X'18A') SMF119FT_FDCFFTRsvd3 2 EBCDIC Reserved

396(X'18C') SMF119FT_FDCFApplName 8 EBCDIC FTP server application name

Table 318 shows FTP Daemon Configuration Data Section.

Table 318. FTP daemon configuration data section

Offset Name Length Format Description

0(X'0') SMF119FT_FDCDIdent 4 Binary FDCD eyecatcher

956 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

|||||
|

||

||

|||||

|||||

Table 318. FTP daemon configuration data section (continued)

Offset Name Length Format Description

4(X'4') SMF119FT_FDCDItems n (see note) EBCDIC Configuration data items.
This field consists of a
variable number of entries
mapped by the
SMF119FT_FDCD_ITEM
structure (see Table 319).

Note: The length of this field is variable.

Table 319 shows the SMF119FT_FDCD_ITEM structure of the
SMF119FT_FDCDItems field of the FTP Daemon Configuration Data Section.

Table 319. FTP daemon configuration data section: SMF119FT_FDCD_ITEM structure

Offset Name Length Format Description

0(X'0') SMF119FT_FDCD_Len 2 Binary Configuration data length
(including the length of this
field itself and also the length
of the SMF119FT_FDCD_Key
field)

2(X'2') SMF119FT_FDCD_Key 2 Binary Configuration data key (See
Table 263)

4(X'4') SMF119FT_FDCD_Data 0 EBCDIC Configuration data string

Table 320 correlates the SMF119FT_FDCD_Key field values to their associated
configuration statements. Entries in the FTP Daemon Configuration Data Section
are only provided for statements that are explicitly specified or have default
values.

Table 320. FTP configuration data keys

Data type (SMF119FT_FDCD_Key)
Data
Length Format

Description
(SMF119FT_FDCD_Data)

SMF119FT_FDCD_ADMAILADDR 1-256 EBCDIC ADMINEMAILADDRESS statement

SMF119FT_FDCD_ANONHFSINFO 1-256 EBCDIC ANONYMOUSHFSINFO statement

SMF119FT_FDCD_ANONLOGMSG 1-1024 EBCDIC ANONYMOUSLOGINMSG
statement

SMF119FT_FDCD_ANONMVSINFO 1-17 EBCDIC ANONYMOUSMVSINFO statement

SMF119FT_FDCD_BANNER 1-1024 EBCDIC BANNER statement

Appendix E. Type 119 SMF records 957

Table 320. FTP configuration data keys (continued)

Data type (SMF119FT_FDCD_Key)
Data
Length Format

Description
(SMF119FT_FDCD_Data)

SMF119FT_FDCD_CIPHERSUITE 1-41 EBCDIC CIPHERSUITE statement. The
values are separated by blanks.
Cipher specification only presents if
protocol mechanism is TLS or
AT-TLS.

Possible values when protocol level
is SSLV2:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-Bit

v Triple DES US

Possible values when protocol level
is SSLV3, TLSV1, or TLSV1.1:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

SMF119FT_FDCD_CTRLCONN 1-21 EBCDIC CTRLCONN statement

SMF119FT_FDCD_DCBDSN 1-45 EBCDIC DCBDSN statement

SMF119FT_FDCD_DUMP 1-101 EBCDIC DUMP statement. This array of
dump IDs is a binary value instead
of character. If dump nn is set, the
nn of the array is set to 0x11.
Otherwise. the nn of the array is set
to 0xFF.

DUMP_LOW 1
DUMP_HIGH 99
DUMPID_ON 0x11
DUMPID_OFF 0xFF

SMF119FT_FDCD_HFSINFO 1-256 EBCDIC HFSINFO statement

SMF119FT_FDCD_KEYRING 1-1024 EBCDIC KEYRING statement

SMF119FT_FDCD_LOGINMSG 1-1024 EBCDIC LOGINMSG statement

SMF119FT_FDCD_MBDATACONN_NNAME 1-21 EBCDIC MBDATACONN statement
network_transfer_codepage

SMF119FT_FDCD_MBDATACONN_FNAME 1-21 EBCDIC MBDATACONN statement
file_system_codepage

SMF119FT_FDCD_MVSINFO 1-17 EBCDIC MVSINFO statement

958 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 320. FTP configuration data keys (continued)

Data type (SMF119FT_FDCD_Key)
Data
Length Format

Description
(SMF119FT_FDCD_Data)

SMF119FT_FDCD_MVSURLKEY 1-73 EBCDIC MVSURLKEY statement

SMF119FT_FDCD_SBDATACONN_NNAME 1-21 EBCDIC SBDATACONN statement
network_transfer_codepage

SMF119FT_FDCD_SBDATACONN_FNAME 1-21 EBCDIC SBDATACONN statement
file_system_codepage

SMF119FT_FDCD_VOLUME 1-256 EBCDIC VOLUME statement

SMF119FT_FDCD_BPX_JOBNAME 1-8 EBCDIC _BPX_JOBNAME environment
variable

SMF119FT_FDCD_BPXK_AUTOCVT 1-5 EBCDIC _BPXK_AUTOCVT environment
variable

SMF119FT_FDCD_BPXK_SETIBMOPT_TRANSPORT 1-8 EBCDIC _BPXK_SETIBMOPT_TRANSPORT
environment variable

SMF119FT_FDCD_EDC_ADD_ERRNO2 1-8 EBCDIC _EDC_ADD_ERRNO2 environment
variable

SMF119FT_FDCD_FTPXLATE_NAME 1-8 EBCDIC _FTPXLATE_NAME environment
variable

SMF119FT_FDCD_KRB5_SERVER_KEYTAB 1-8 EBCDIC KRB5_SERVER_KEYTAB
environment variable

SMF119FT_FDCD_LANG 1-256 EBCDIC LANG environment variable

SMF119FT_FDCD_NLSPATH 1-1024 EBCDIC NLSPATH environment variable

SMF119FT_FDCD_RESOLVER_CONFIG 1-60 EBCDIC RESOLVER_CONFIG environment
variable

SMF119FT_FDCD_SHELL 1-8 EBCDIC SHELL environment variable

SMF119FT_FDCD_TZ 1-8 EBCDIC TZ environment variable

SMF119FT_FDCD_FTPDATA 1-60 EBCDIC FTP.DATA data set name
Guideline: If multiple FTP.DATA
configuration files are used because
of concatenation, the FTP daemon
configuration data section contains
multiple entries of the FTP.DATA
data set.

SMF119FT_FDCD_TCPIPDATA 1-60 EBCDIC TCPIP.DATA data set name

SMF119FT_FDCD_DEBUGUSERID 1-32 EBCDIC Filter the trace for user IDs

SMF119FT_FDCD_DEBUGIPADDR 1-46 EBCDIC Filter the trace for IP addresses

SMF119FT_FDCD_DEBUGIPMASK 1-46 EBCDIC Network prefix for IP addresses

SMF119FT_FDCD_DUMPUSERID 1-32 EBCDIC Filter the extended trace for user
IDs

SMF119FT_FDCD_DUMPIPADDR 1-46 EBCDIC Filter the extended trace for IP
addresses

SMF119FT_FDCD_DUMPIPMASK 1-46 EBCDIC Network prefix for IP addresses

Appendix E. Type 119 SMF records 959

FTP server logon failure record (subtype 72)
The FTP server login failure record is collected when an attempt to log in to the
z/OS FTP server completes unsuccessfully. A return code within the SMF record
provides information as to the cause of the login failure.

The Type 119 FTP server login failure record is collected at the same point in FTP
login processing as the equivalent Type 118 FTP server (subtype X'72') SMF record.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the FTP server logon failure record, the TCP/IP stack identification
section indicates FTPS as the subcomponent and X'08' (event record) as the record
reason.

Table 321 shows the FTP server logon failure record self-defining section:

Table 321. FTP server logon failure record self-defining section

Offset Name Length Format Description

0(X'0') Standard SMF Header 24 Standard SMF header; subtype is
72(X'48')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to FTP server logon failure
section

40(X'28') SMF119S1Len 2 Binary Length of FTP server logon failure
section

42(X'2A') SMF119S1Num 2 Binary Number of FTP server logon failure
sections

44 (X'2C') SMF119S2Off 4 Binary Offset to FTP server logon failure
Security section

48 (X'30') SMF119S2Len 2 Binary Length of FTP server logon failure
Security section

50 (X'32') SMF119S2Num 2 Binary Number of FTP server logon failure
Security sections

Table 322 shows the FTP server logon failure specific section of this SMF record.

Table 322. FTP server logon failure record: logon failure section

Offset Name Length Format Description

0(X'0') SMF119FT_FFRIP 16 Binary Remote IP address

16(X'10') SMF119FT_FFLIP 16 Binary Local IP address

960 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 322. FTP server logon failure record: logon failure section (continued)

Offset Name Length Format Description

32(X'20') SMF119FT_FFRPort 2 Binary Remote port number (Client)

34(X'22') SMF119FT_FFLPort 2 Binary Local port number (Server)

36(X'24') SMF119FT_FFUserID 8 EBCDIC Client User ID received by server

44(X'2C') SMF119FT_FFReason 1 Binary Login failure reason:

v X'00': FTP session terminated after
USERID was processed, but before
PASSWORD was entered.

v X'01': Password is not valid.

v X'02': Password has expired.

v X'03': User ID has been revoked.

v X'04': User does not have server
access.

v X'05': FTCHKPWD User exit reject
login.

v X'06': Excessive bad passwords.

v X'07': Group ID process failed.

v X'08': User ID is unknown.

v X'09': Certificate is not valid

v X'0A': Client name associated with
certificate or ticket does not match
user name.

45(X'2D') 3 Binary Reserved

48 (X'30') SMF119FT_FFCConnID 4 Binary TCP connection ID of FTP control
connection

52 (X'34') SMF119FT_FFSessionID 15 EBCDIC FTP activity logging session ID. The
activity logging session ID uniquely
identifies the FTP session between a
client and a server. The identifier is
created by combining the job name of
the FTP daemon with a 5-digit
number in the range 00000 - 99999.

67 (X'49') 1 Binary Reserved

Table 323 shows the FTP server login failure security section:

Table 323. FTP server login failure security section

Offset Name Length Format Description

0 (X'0') SMF119FT_FFMechanism 1 EBCDIC Protection Mechanism:

v N: None

v T: TLS

v G: GSSAPI

v A: AT-TLS

1 (X'1') SMF119FT_FFCProtect 1 EBCDIC Control Connection Protection Level:

v N: None

v C: Clear

v S: Safe

v P: Private

Appendix E. Type 119 SMF records 961

Table 323. FTP server login failure security section (continued)

Offset Name Length Format Description

2 (X'2') SMF119FT_FFDProtect 1 EBCDIC Data connection protection level:

v N: None

v C: Clear

v S: Safe

v P: Private

3 (X'3') SMF119FT_FFLoginMech 1 EBCDIC Login Method:

v P: Password

v C: Certificate

v ' ': Login failure occurred before
login method was determined.

v T: Kerberos ticket

4 (X'4') SMF119FT_FFProtoLevel 8 EBCDIC Protocol level (present only if
Protocol Mechanism is TLS or
AT-TLS)

Possible values are:

v SSLV2

v SSLV3

v TLSV1

v TLSV1.1

v TLSV1.2

12 (X'C') SMF119FT_FFCipherSpec 20 EBCDIC Cipher specification (present only if
protocol mechanism is TLS or
AT-TLS)

Possible values when protocol level is
SSLV2:

v RC4 US

v RC4 Export

v RC2 US

v RC2 Export

v DES 56-Bit

v Triple DES US

Possible values when protocol level is
SSLV3, TLSV1, TLSV1.1, or TLSV1.2:

v SSL_NULL_MD5

v SSL_NULL_SHA

v SSL_RC4_MD5_EX

v SSL_RC4_MD5

v SSL_RC4_SHA

v SSL_RC2_MD5_EX

v SSL_DES_SHA

v SSL_3DES_SHA

v SSL_AES_128_SHA

v SSL_AES_256_SHA

32 (X'20') SMF119FT_FFProtBuffSize 4 Binary Negotiated protection buffer size

962 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 323. FTP server login failure security section (continued)

Offset Name Length Format Description

36(X'24') SMF119FT_FFCipher 2 EBCDIC Hexadecimal value of cipher
specification (present only if protocol
mechanism is TLS or AT-TLS). If the
value is 4X, the Cipher Specification
must be obtained from the
SMF119FT_FFCipher4 field.

38(X'26') SMF119FT_FFFips140 1 Binary FIPS 140 status

v X'00': FIPS 140 off

v X'01': FIPS 140 on

39(X'27') SMF119FT_FFCipher4 4 EBCDIC Four byte hexadecimal value of
Cipher Specification (present only if
Protocol Mechanism is TLS or
AT-TLS).

43(X'2B') SMF119FT_FFSessReuse 1 EBCDIC SSL session reuse:

v A: Allowed

v R: Required

44(X'2C') SMF119FT_FFCSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
control connection

46(X'2E') SMF119FT_FFCSSLSessID 32 Binary SSL session ID of FTP control
connection

78(X'4E') SMF119FT_FFDSSLSessIDLen 2 Binary Length of the SSL session ID of FTP
data connection

80(X'50') SMF119FT_FFDSSLSessID 32 Binary SSL session ID of FTP data
connection

IPSec IKE tunnel activation and refresh record (subtype 73)
The IPSec IKE tunnel activation and refresh record is collected whenever the IKE
daemon successfully negotiates an IKE tunnel. This record contains information
about the characteristics of the IKE tunnel. If you are using the IPSec Network
Management Interface (NMI), the common IKE tunnel section of this SMF record is
analogous to the NMsecIKETunnel structure.

Table 324 shows the IPSec IKE tunnel activation/refresh record self-defining
section.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. In the interface IKE tunnel activation and refresh record, the TCP/IP stack
identification section specifies IKE as the subcomponent and X'08' (event record) as
the record reason.

Table 324. IPSec IKE tunnel activation/refresh record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 Standard SMF Header; subtype is
73(X'49')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (4)

26(X'1A') 2 Binary Reserved

Appendix E. Type 119 SMF records 963

|||||

|

|

|||||
|

|||||
|

|||||
|

|||||
|

Table 324. IPSec IKE tunnel activation/refresh record self-defining section (continued)

Offset Name Length Format Description

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification
section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification
section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification
sections

36(X'24') SMF119S1Off 4 Binary Offset to common IKE tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IKE tunnel
section

42(X'2A') SMF119S1Num 2 Binary Number of common IKE tunnel
sections

44 (X'2C') SMF119S2Off 4 Binary Offset to local ID section

48 (X'30') SMF119S2Len 2 Binary Length of local ID section

50 (X'32') SMF119S2Num 2 Binary Number of local ID sections

52(X'34') SMF119S3Off 4 Binary Offset to remote ID section

56(X'38') SMF119S3Len 2 Binary Length of remote ID section

58(X'3A') SMF119S3Num 2 Binary Number of remote ID sections

Table 325 on page 965 shows the IPSec common IKE tunnel specific section.

964 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 325. IPSec common IKE tunnel specific section

Offset Name Length Format Description

0 (X'0') 4 Binary Common IKE tunnel flags

The following list identifies the bits, their names, and
meaning.

v X'80000000', SMF119IS_IKETunIPv6: The IPv6
indicator. If this bit is set, all IKE tunnel security
endpoints are IPv6 addresses. If this bit is not set, the
endpoints are IPv4 addresses.

v X'40000000', SMF119IS_IKETunNATAllowed: NAT
traversal indicator. The NAT traversal function is
enabled for this IKE tunnel.

v X'20000000', SMF119IS_IKETunLclNAT: Local NAT
indicator. A NAT has been detected in front of the
local security endpoint.

v X'10000000', SMF119IS_IKETunRmtNAT: Remote
NAT indicator. A NAT has been detected in front of
the remote security endpoint.

v X'08000000', SMF119IS_IKETunRmtNAPT: Remote
NAPT indicator. An NAPT has been detected in front
of the remote security endpoint.

Result: Some NAPTs might be undetected. In that
case, the SMF119IS_IKETunRmtNAT bit is set, but
this bit is not set.

v X'04000000', SMF119IS_IKETunCanInitP1: IKE tunnel
(P1) initiation indicator. The local security endpoint
can initiate IKE tunnel negotiations with the remote
security endpoint. If this bit is not set, the remote
security endpoint must initiate IKE tunnel
negotiations. Either side can initiate refreshes.

v X'02000000', SMF119IS_IKETunFIPS140: FIPS 140
mode indicator. If this field is set, cryptographic
operations for this IKE tunnel are performed using
cryptographic algorithms and modules that are
designed to meet the FIPS 140 requirements;
otherwise, cryptographic algorithms and modules
that do not meet the FIPS 140 requirements might be
used.

v Remaining bits: Reserved

4(X'4') SMF119IS_IKETunID 48 EBCDIC Tunnel ID for this IKE tunnel.

52(X'34') SMF119IS_IKETunKeyExchRule 48 EBCDIC Key exchange rule name for this IKE tunnel.

100(X'64') SMF119IS_IKETunKeyExchAction 48 EBCDIC Key exchange action name for this IKE tunnel.

148(X'94') SMF119IS_IKETunLclEndpt4 4 Binary One of the following values:

v If SMF119IS_IKETunIPv6 is set, this field is the
16–byte IPv6 local security endpoint for this IKE
tunnel.

v If SMF119IS_IKETunIPv6 is clear, this field is the
4–byte IPv4 local security endpoint for this IKE
tunnel.

148(X'94') SMF119IS_IKETunLclEndpt6 16 Binary One of the following values:

v If SMF119IS_IKETunIPv6 is set, this field is the
16–byte IPv6 local security endpoint for this IKE
tunnel.

v If SMF119IS_IKETunIPv6 is clear, this field is the
4–byte IPv4 local security endpoint for this IKE
tunnel.

Appendix E. Type 119 SMF records 965

Table 325. IPSec common IKE tunnel specific section (continued)

Offset Name Length Format Description

164(X'A4') SMF119IS_IKETunRmtEndpt4 4 Binary One of the following values:

v If SMF119IS_IKETunIPv6 is set, this field is the
16–byte IPv6 remote security endpoint for this IKE
tunnel.

v If SMF119IS_IKETunIPv6 is clear, this field is the
4–byte IPv4 remote security endpoint for this IKE
tunnel.

164(X'A4') SMF119IS_IKETunRmtEndpt6 16 Binary One of the following values:

v If SMF119IS_IKETunIPv6 is set, this field is the
16–byte IPv6 remote security endpoint for this IKE
tunnel.

v If SMF119IS_IKETunIPv6 is clear, this field is the
4–byte IPv4 remote security endpoint for this IKE
tunnel.

180(X'B4') SMF119IS_IKETunICookie 8 Binary The icookie for this IKE tunnel

188(X'BC') SMF119IS_IKETunRCookie 8 Binary The rcookie for this IKE tunnel

196(X'C4') SMF119IS_IKETunExchangeMode 1 Binary Tunnel exchange mode. For IKEv1 SAs, possible values
are:

v SMF119IS_IKETUN_EXCHMAIN (2)

v SMF119IS_IKETUN_EXCHAGGRESSIVE (4)

For IKEv2 SAs, this field is not applicable and is 0.

197(X'C5') SMF119IS_IKETunState 1 Binary Tunnel state. Possible values are:

v SMF119IS_SASTATE_DEACT(1): Dynamic tunnel is
deactivated. This value is valid only for record
subtype 74.

v SMF119IS_SASTATE_ACTIVE (2): Tunnel is active.
This value is valid only for record subtype 73.

v SMF119IS_SASTATE_EXPIRED (3): Dynamic tunnel
is expired. This value is valid only for record
subtype 74.

966 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 325. IPSec common IKE tunnel specific section (continued)

Offset Name Length Format Description

198(X'C6') SMF119IS_IKETunAuthAlg 1 Binary Tunnel authentication algorithm. Possible values are:

v SMF119IS_AUTH_HMAC_MD5 (38)

The tunnel uses HMAC-MD5 authentication with the
full 128-bit Integrity Check Value (ICV). This value is
applicable only to IKEv1 tunnels.

v SMF119IS_AUTH_HMAC_SHA1 (39)

The tunnel uses HMAC-SHA1 authentication with
the full 160-bit ICV. This value is applicable only to
IKEv1 tunnels.

v SMF119IS_AUTH_HMAC_MD5_96 (40)

The tunnel uses HMAC-MD5 authentication with
ICV truncation to 96 bits. This value is applicable
only to IKEv2 tunnels.

v SMF119IS_AUTH_HMAC_SHA1_96 (41)

The tunnel uses HMAC-SHA1 authentication with
ICV truncation to 96 bits. This value is applicable
only to IKEv2 tunnels.

v SMF119IS_AUTH_HMAC_SHA2_256_128 (7)

The tunnel uses HMAC-SHA2-256 authentication
with ICV truncation to 128 bits.

v SMF119IS_AUTH_HMAC_SHA2_384_192 (13)

The tunnel uses HMAC-SHA2-384 authentication
with ICV truncation to 192 bits.

v SMF119IS_AUTH_HMAC_SHA2_512_256 (14)

The tunnel uses HMAC-SHA2-512 authentication
with ICV truncation to 256 bits.

v SMF119IS_AUTH_AES128_XCBC_96 (9)

The tunnel uses AES128-XCBC authentication with
ICV truncation to 96 bits.

199(X'C7') SMF119IS_IKETunEncryptAlg 1 Binary Tunnel encryption algorithm. Possible values are:

v SMF119IS_ENCR_DES(18)

v SMF119IS_ENCR_3DES(3)

v SMF119IS_ENCR_AES_CBC(12)

AES encryption algorithm in Cipher Block Chaining
(CBC) mode. See
SMF119IS_IKETunEncryptKeyLength; it identifies the
key length in use.

200(X'C8') SMF119IS_IKETunDHGroup 4 Binary Diffie-Hellman group used to generate keying material
for this IKE tunnel.

204('xCC') SMF119IS_IKETunPeerAuthMethod 1 Binary Tunnel peer authentication method. Possible values are:

v SMF119IS_IKETUN_PRESHAREDKEY (3)

v SMF119IS_IKETUN_RSASIGNATURE (2)

v SMF119IS_IKETUN_ECDSA_256 (4)

v SMF119IS_IKETUN_ECDSA_384 (5)

v SMF119IS_IKETUN_ECDSA_521 (6)

205(X'CD') SMF119IS_IKETunRole 1 Binary Tunnel role. Possible values are:

v SMF119IS_IKETUN_INITIATOR (1)

v SMF119IS_IKETUN_RESPONDER (2)

Appendix E. Type 119 SMF records 967

Table 325. IPSec common IKE tunnel specific section (continued)

Offset Name Length Format Description

206(X'CE') SMF119IS_IKETunNATTLevel 1 Binary NAT traversal support level. Possible values are:

v SMF119IS_IKETUN_NATTNONE (0): No NAT
traversal support; support is either not configured or
not negotiated.

v SMF119IS_IKETUN_NATTRFCD2 (1): RFC 3947 draft
2 support.

v SMF119IS_IKETUN_NATTRFCD3 (3): RFC 3947 draft
3 support.

v SMF119IS_IKETUN_NATTRFC (4): RFC 3947 support
with non-z/OS peer.

v SMF119IS_IKETUN_NATTZOS (5): RFC 3947 support
with z/OS peer.

v SMF119IS_IKETUN_NATTV2 (6): IKEv2 NAT
traversal support.

v SMF119IS_IKETUN_NATTV2ZOS (7): IKEv2 NAT
traversal support with z/OS peer.

207(X'CF') SMF119IS_IKETunExtState 1 Binary Extended tunnel state information. Possible values are:

v SMF119IS_EXTSASTATE_ACTIVATE (1): This value
is a new Phase 1 activation. This value is valid only
for record subtype 73.

v SMF119IS_EXTSASTATE_REFRESH (2): This value is
a Phase 1 refresh. This value is valid only for record
subtype 73.

The following values are valid only for record subtype
74:

v SMF119IS_EXTSASTATE_DEACT (3): This tunnel is
deactivated (not as a result of error or negotiation
failure).

v SMF119IS_EXTSASTATE_PROPOSAL (4): Negotiation
failure; no proposal matched the current policy.

v SMF119IS_EXTSASTATE_RETRANS (5): Negotiation
failure; a retransmit limit was encountered while
negotiating this tunnel.

v SMF119IS_EXTSASTATE_POLICY (6): Negotiation
failure; a policy mismatch other than a proposal
mismatch occurred. For example, no valid
KeyExchangeRule value was set.

v SMF119IS_EXTSASTATE_OTHER (7): Negotiation
failure; the data in an ISAKMP packet was not valid,
or an internal error occurred.

208(X'D0') SMF119IS_IKETunLifesize 8 Binary Tunnel lifesize.

If this value is not 0, this value indicates the lifesize
limit for the tunnel, in bytes.

216(X'D8') SMF119IS_IKETunLifetime 4 Binary Tunnel lifetime.

This value indicates the total number of seconds the
tunnel remains active.

220(X'DC') SMF119IS_IKETunLifetimeRefresh 4 Binary Tunnel lifetime refresh.

This value indicates the time at which the tunnel is
refreshed (in UNIX format).

224(X'E0') SMF119IS_IKETunLifetimeExpire 4 Binary Tunnel lifetime expiration.

This value indicates the time at which the tunnel
expires (in UNIX format).

228(X'E4') SMF119IS_IKETunRmtUDPPort 2 Binary Remote UDP port used for IKE negotiations.

968 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 325. IPSec common IKE tunnel specific section (continued)

Offset Name Length Format Description

230(X'E6') SMF119IS_IKETunLIDType 1 Binary ISAKMP identity type for the local security endpoint
identity, as defined in RFC 2407.

ISAKMP peers exchange and verify identities as part of
the IKE tunnel (phase 1) negotiation.

231(X'E7') SMF119IS_IKETunRIDType 1 Binary ISAKMP identity type for the remote security endpoint
identity, as defined in RFC 2407.

ISAKMP peers exchange and verify identities as part of
the IKE tunnel (phase 1) negotiation.

232(X'E8') SMF119IS_IKETunStartTime 4 Binary Tunnel start time.

Indicates the time at which the tunnel was activated or
refreshed (in UNIX format).

236(X'EC') SMF119IS_IKETunMajorVer 1 Binary Major version of the IKE protocol in use. Only the
low-order 4 bits are used.

237(X'ED') SMF119IS_IKETunMinorVer 1 Binary Minor version of the IKE protocol in use. Only the
low-order 4 bits are used.

238(X'EE') SMF119IS_IKETunPseudoRandomFunc 1 Binary Pseudo-random function used for seeding keying
material. One of the following values:

v SMF119IS_AUTH_HMAC_MD5 (38)

v SMF119IS_AUTH_HMAC_SHA1 (39)

v SMF119IS_AUTH_HMAC_SHA2_256 (15)

v SMF119IS_AUTH_HMAC_SHA2_384 (16)

v SMF119IS_AUTH_HMAC_SHA2_512 (17)

v SMF119IS_AUTH_AES128_XCBC (18)

239(X'EF') SMF119IS_IKETunLocalAuthMethod 1 Binary The authentication method for the local endpoint. One
of the following values:

v SMF119IS_IKETUN_PRESHAREDKEY (3)

v SMF119IS_IKETUN_RSASIGNATURE (2)

v SMF119IS_IKETUN_ECDSA_256 (4)

v SMF119IS_IKETUN_ECDSA_384 (5)

v SMF119IS_IKETUN_ECDSA_521 (6)

v SMF119IS_IKETUN_DS (7)

240(X'F0') SMF119IS_IKETunReauthInterval 4 Binary Reauthentication interval. Indicates the number of
seconds between reauthentication operations.

244(X'F4') SMF119IS_IKETunReauthTime 4 Binary Tunnel reauthentication time. Indicates the time at
which the tunnel is reauthenticated (in UNIX format).

248(X'F8') SMF119IS_IKETunGeneration 4 Binary Tunnel generation number. The first IKE tunnel with a
particular tunnel ID has generation 1. Subsequent
refreshes of this IKE tunnel have the same tunnel ID,
but with higher generation numbers.

252(X'FC') SMF119IS_IKETunEncryptKeyLength 4 Binary Encryption key length for variable-length algorithms, in
bits. This value is 0 for encryption algorithms that have
a fixed key length (such as DES and 3DES) and
nonzero for encryption algorithms that have a variable
key length (such as AES-CBC).
Result: Example values are 128 and 256.

Table 326 on page 970 shows the IPSec local ID specific section.

Appendix E. Type 119 SMF records 969

Table 326. IPSec local ID specific section

Offset Name Length Format Description

0(X'0') SMF119IS_LocalID n EBCDIC Contents of the local
identity used to
negotiate the IKE
tunnel. Regardless of
the identity type, the
value is expressed as
an EBCDIC string (an
IP address is returned
in printable form).

Table 327 shows the IPSec remote ID specific section:

Table 327. IPSec remote ID specific section

Offset Name Length Format Description

0(X'0') SMF119IS_RemoteID n EBCDIC Contents of the
remote identity used
to negotiate the IKE
tunnel. Regardless of
the identity type, the
value is expressed as
an EBCDIC string (an
IP address is returned
in printable form).

IPSec IKE tunnel deactivation and expire record (subtype 74)
The IPSec IKE tunnel deactivation record is collected whenever the IKE daemon
deactivates an IKE tunnel. This record contains information about the
characteristics of the IKE tunnel that is being deleted. If a tunnel is being
deactivated as a result of a failure, the values might be unknown. Field values
might be unknown because the negotiation has not progressed far enough to
determine a value; therefore, those fields are set to the value 0. If you are using the
IPSec NMI, the common IKE tunnel section of this SMF record is analogous to the
NMsecIKETunnel structure and the IKE counter section is analogous to the
NMsecIKETunStats structure.

Result: When an IKE tunnel expires, it is not deleted until all dynamic tunnels
that are associated with that tunnel are deleted. Typically, there is one subtype 74
record for the expiration of the IKE tunnel, and there is a second subtype 74 record
at a later time for the deletion of the IKE tunnel.

When a TCP/IP stack is stopped, IKE tunnels are not deleted immediately. If an
IKE tunnel expires while the stack is stopped, a subtype 74 record is generated for
the expiration of that tunnel. However, if the stack restarts before the IKE tunnel
expires, the IKE tunnel remains valid and continues to be used until it expires.

Table 328 on page 971 shows the contents of the IPSec IKE tunnel deactivation and
expire record self-defining section.

970 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the interface IKE tunnel deactivation and expire record, the TCP/IP
stack identification section indicates IKE as the subcomponent and X'08' (event
record) as the record reason.

See Table 325 on page 965 for the contents of the common IKE tunnel section.

Table 328. IPSec IKE tunnel deactivation and expire record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF Header; subtype is
74(X'4A')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (5)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification sections

36(X'24') SMF119S1Off 4 Binary Offset to common IKE tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IKE tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IKE tunnel sections

44(X'2C') SMF119S2Off 4 Binary Offset to IKE counter section

48(X'30') SMF119S2Len 2 Binary Length of IKE counter section

50(X'32') SMF119S2Num 2 Binary Number of IKE counter sections

52(X'34') SMF119S3Off 4 Binary Offset to the local ID section

56(X'38') SMF119S3Len 2 Binary Length of local ID section

58(X'3A') SMF119S3Num 2 Binary Number of local ID sections

60(X'3C') SMF119S4Off 4 Binary Offset to remote ID section

64(X'40') SMF119S4Len 2 Binary Length of remote ID sections

66(X'42') SMF119S4Num 2 Binary Number of remote ID sections

Table 329 lists the IPSec IKE counter specific section.

Table 329. IPSec IKE counter specific section

Offset Name Length Format Description

0(X'0') SMF119IS_IKETunP2Current 4 Binary Current count of
active dynamic
tunnels
associated with
this IKE tunnel

4(X'4') SMF119IS_IKETunP2InProgress 4 Binary Current count of
pending or in
progress dynamic
tunnels
associated with
this IKE tunnel

Appendix E. Type 119 SMF records 971

Table 329. IPSec IKE counter specific section (continued)

Offset Name Length Format Description

8(X'8') SMF119IS_IKETunP2LclActSuccess 4 Binary Cumulative
count of locally
initiated dynamic
tunnels that were
successfully
activated for this
IKE tunnel

12(X'C') SMF119IS_IKETunP2RmtActSuccess 4 Binary Cumulative
count of remotely
initiated dynamic
tunnel activations
that were
successfully
activated for this
IKE tunnel

16(X'10') SMF119IS_IKETunP2LclActFailure 4 Binary Cumulative
count of failed
dynamic tunnel
activations that
were initiated
locally for this
IKE tunnel

20(X'14') SMF119IS_IKETunP2RmtActFailure 4 Binary Cumulative
count of failed
dynamic tunnel
activations that
were initiated for
this IKE tunnel

24(X'18') SMF119IS_IKETunBytes 8 Binary Cumulative
number of bytes
protected by this
IKE tunnel

32(X'20') SMF119IS_IKETunP1Rexmit 8 Binary Cumulative
number of
retransmitted key
exchange (phase
1) messages sent
for this tunnel
over the life of
the IKE daemon.
This data is
cumulative even
across TCP/IP
restarts.

972 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 329. IPSec IKE counter specific section (continued)

Offset Name Length Format Description

40(X'28') SMF119IS_IKETunP1Replay 8 Binary Cumulative
number of
replayed key
exchange (phase
1) messages
received for this
stack over the life
of the IKE
daemon. This
data is
cumulative even
a cross TCP/IP
restarts.

48(X'30') SMF119IS_IKETunP2Rexmit 8 Binary Cumulative
number of
retransmitted key
exchange (phase
2) messages sent
for this tunnel
over the life of
the IKE daemon.
This data is
cumulative even
a cross TCP/IP
restarts.

56(X'38') SMF119IS_IKETunP2Replay 8 Binary Cumulative
number of
replayed key
exchange (phase
2) messages
received for this
stack over the life
of the IKE
daemon. This
data is
cumulative even
a cross TCP/IP
restarts.

See Table 326 on page 970 for the contents of the local ID section.

See Table 327 on page 970 for the contents of the remote ID section.

IPSec dynamic tunnel activation and refresh record (subtype 75)
The IPSec dynamic tunnel activation record is collected whenever the IKE daemon
successfully negotiates a dynamic tunnel and installs it in the TCP/IP stack. This
record contains information about the characteristics of the dynamic tunnel that is
to be negotiated. If you are using the IPSec NMI, the common IP tunnel section of
this SMF record is analogous to the NMsecIPTunnel structure, the dynamic tunnel
section is analogous to the NMsecIPDynTunnel structure, and the IKE dynamic
tunnel section is analogous to the NMsecIPDynamicIKE structure.

Appendix E. Type 119 SMF records 973

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the IPSec dynamic tunnel activation record, the TCP/IP Stack
identification section indicates IKE as the subcomponent and X'08' (event record) as
the record reason.

Table 330 lists the contents of the IPSec dynamic tunnel activation record
self-defining section.

Table 330. IPSec dynamic tunnel activation record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF
Header; subtype is
75(X'4B').

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in
this record (6).

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP
identification section.

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP
identification section.

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP
identification sections.

36(X'24') SMF119S1Off 4 Binary Offset to common IP
tunnel section.

40(X'28') SMF119S1Len 2 Binary Length of common IP
tunnel section.

42(X'2A') SMF119S1Num 2 Binary Number of common
IP tunnel sections.

44(X'2C') SMF119S2Off 4 Binary Offset to dynamic
tunnel section.

48(X'30') SMF119S2Len 2 Binary Length of dynamic
tunnel section.

50(X'32') SMF119S2Num 2 Binary Number of tunnel
sections.

52(X'34') SMF119S3Off 4 Binary Offset to IKE
dynamic tunnel
sections.

56(X'38') SMF119S3Len 2 Binary Length of IKE
dynamic tunnel
section.

58(X'3A') SMF119S3Num 2 Binary Number of IKE
dynamic tunnel
sections.

60(X'3C') SMF119S4Off 4 Binary Offset to local client
ID section.

64(X'40') SMF119S4Len 2 Binary Length of local client
ID section.

66(X'42') SMF119S4Num 2 Binary Number of local
client ID sections.

974 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 330. IPSec dynamic tunnel activation record self-defining section (continued)

Offset Name Length Format Description

68(X'44') SMF119S5Off 4 Binary Offset to remote
client ID sections.

72(X'48') SMF119S5Len 2 Binary Length of remote
client ID section.

74(X'5A') SMF119S5Num 2 Binary Number of remote
client ID sections.

Table 331 lists the IPSec common IP tunnel specific section.

Table 331. IPSec common IP tunnel specific section

Offset Name Ln. Format Description

0(X'0') SMF119IS_IPTunID 48 EBCDIC Tunnel ID

48x'30') SMF119IS_IPTunVPNAction 48 EBCDIC Tunnel VPN action name

96(X'60') 4 Binary IP tunnel flags.

The following list identifies the bits, their names,
and meaning.

v X'80000000', SMF119IS_IPTunFlagIPv6: IPv6
indicator. If set, security endpoint addresses and
data endpoint addresses are IPv6; otherwise,
they are IPv4.

v X'40000000', SMF119IS_IPTunFIPS140: FIPS 140
mode indicator. If this field is set, cryptographic
operations for this tunnel are performed using
cryptographic algorithms and modules that are
designed to meet the FIPS 140 requirements;
otherwise, cryptographic algorithms and
modules that do not meet the FIPS 140
requirements might be used.

v All remaining bits: Reserved

100(X'64') SMF119IS_IPTunType 1 Binary Tunnel type. One of the following values:

v SMF119IS_IPTUN_MANUAL (1)

Manual IP tunnel

v SMF119IS_IPTUN_STACK (2)

Dynamic IP tunnel, as seen by TCP/IP stack

v SMF119IS_IPTUN_IKE (3)

Dynamic IP tunnel, as seen by IKE

101(X'65') SMF119IS_IPTunState 1 Binary One of the following tunnel states:

v SMF119IS_SASTATE_DEACT(1) Dynamic tunnel
is deactivated. This value is valid only on record
subtypes 76 and 78.

v SMF119IS_SASTATE_ACTIVE (2) Manual or
dynamic tunnel is active. This value is valid only
on record subtype 75.

v SMF119IS_SASTATE_EXPIRED (3) Dynamic
tunnel is expired. This value is valid only on
record subtype 78.

102(X'66') SMF119IS_IPTunRsvd2 2 Binary Reserved

104(X'68') SMF119IS_IPTunLclEndpt4 4 Binary One of the following values:

v If SMF119IS_IPTunFlagIPv6 is set, this field is the
16–byte IPv6 local security endpoint address.

v If SMF119IS_IPTunFlagIPv6 is clear, this field is
the 4–byte IPv4 local security endpoint address.

Appendix E. Type 119 SMF records 975

Table 331. IPSec common IP tunnel specific section (continued)

Offset Name Ln. Format Description

104(X'68') SMF119IS_IPTunLclEndpt6 16 Binary One of the following values:

v If SMF119IS_IPTunFlagIPv6 is set, this field is the
16–byte IPv6 local security endpoint address.

v If SMF119IS_IPTunFlagIPv6 is clear, this field is
the 4–byte IPv4 local security endpoint address.

120(X'78') SMF119IS_IPTunRmtEndpt4 4 Binary One of the following values:

v If SMF119IS_IPTunFlagIPv6 is set, this field is the
16–byte IPv6 remote security endpoint address.

v If SMF119IS_IPTunFlagIPv6 is clear this field is
the 4 byte IPv4 remote security endpoint
address.

120(X'78') SMF119IS_IPTunRmtEndpt6 16 Binary One of the following values:

v If SMF119IS_IPTunFlagIPv6 is set, this field is the
16–byte IPv6 remote security endpoint address.

v If SMF119IS_IPTunFlagIPv6 is clear this field is
the 4 byte IPv4 remote security endpoint
address.

136(X'88') SMF119IS_IPTunEncapMode 1 Binary One of the following tunnel encapsulation modes:

v SMF119IS_IPTUN_TUNNELMODE (1)

v SMF119IS_IPTUN_TRANSPORTMODE (2)

137(X'89') SMF119IS_IPTunAuthProto 1 Binary One of the following tunnel authentication
protocols:

v IPPROTO_AH (51)

v IPPROTO_ESP (50)

976 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 331. IPSec common IP tunnel specific section (continued)

Offset Name Ln. Format Description

138(X'8A') SMF119IS_IPTunAuthAlg 1 Binary One of the following tunnel authentication
alogorithms:

v SMF119IS_AUTH_NULL (0)

The tunnel uses NULL authentication, or obtains
authentication using a combined-mode
encryption algorithm (see
SMF119IS_IPTunEncryptAlg).

v SMF119IS_AUTH_HMAC_MD5(38)

The tunnel uses HMAC-MD5 authentication
with Integrity Check Value (ICV) truncation to
96 bits.

v SMF119IS_AUTH_HMAC_SHA1(39)

The tunnel uses HMAC-SHA1 authentication
with ICV truncation to 96 bits.

v SMF119IS_AUTH_HMAC_SHA2_256_128 (7)

The tunnel uses HMAC-SHA2-256 authentication
with ICV truncation to 128 bits.

v SMF119IS_AUTH_HMAC_SHA2_384_192 (13)

The tunnel uses HMAC-SHA2-384 authentication
with ICV truncation to 192 bits.

v SMF119IS_AUTH_HMAC_SHA2_512_256 (14)

The tunnel uses HMAC-SHA2-512 authentication
with ICV truncation to 256 bits.

v SMF119IS_AUTH_AES128_XCBC_96 (9)

The tunnel uses AES128-XCBC authentication
with ICV truncation to 96 bits.

v SMF119IS_AUTH_AES_GMAC_128 (4)

The tunnel uses AES-GMAC authentication with
a key length of 128 bits.

v SMF119IS_AUTH_AES_GMAC_256 (6)

The tunnel uses AES-GMAC authentication with
a key length of 256 bits.

139(X'8B') SMF119IS_IPTunEncryptAlg 1 Binary One of the following tunnel encryption algorithms:

v SMF119IS_ENCR_NONE (0)

v SMF119IS_ENCR_NULL (11)

v SMF119IS_ENCR_DES (18)

v SMF119IS_ENCR_3DES (3)

v SMF119IS_ENCR_AES_CBC (12)

AES encryption algorithm in Cipher Block
Chaining (CBC) mode. See also
SMF119IS_IPTunEncryptKeyLength which
identifies the key length in use.

v SMF119IS_ENCR_AES_GCM_16 (20)

AES encryption algorithm in Galois/Counter
Mode (GCM) using a 16-octet IV. See
SMF119IS_IPTunEncryptKeyLength; it identifies
the key length in use.

140(X'8C') SMF119IS_IPTunInbAuthSPI 4 Binary Tunnel inbound authentication SPI.

144(X'90') SMF119IS_IPTunOutbAuthSPI 4 Binary Tunnel outbound authentication SPI.

148(X'94') SMF119IS_IPTunInbEncryptSPI 4 Binary Tunnel inbound encryption SPI.

152(X'98') SMF119IS_IPTunOutbEncryptSPI 4 Binary Tunnel outbound encryption SPI.

156(X'9C') SMF119IS_IPTunStartTime 4 Binary Indicates the tunnel start time at which the tunnel
was activated or refreshed, in UNIX format.

Appendix E. Type 119 SMF records 977

Table 331. IPSec common IP tunnel specific section (continued)

Offset Name Ln. Format Description

160(X'A0') SMF119IS_IPTunEncryptKeyLength 4 Binary Encryption key length for variable-length
algorithms, in bits. Zero for encryption algorithms
that have a fixed key length (such as DES and
3DES) and nonzero for encryption algorithms that
have a variable key length (such as AES-CBC and
AES-GCM).
Result: Example values are 128 and 256.

Table 332 lists the IPSec dynamic tunnel specific section.

Table 332. IPSec dynamic tunnel specific section

Offset Name Length Format Description

0(X'0') 4 Binary
The following list identifies the bits, their
names, and meaning.

v X'80000000',
SMF119IS_IPDynUDPEncap: UDP
encapsulation indicator. The tunnel uses
UDP encapsulation mode.

v X'40000000', SMF119IS_IPDynLclNAT:
Local NAT indicator. A NAT has been
detected in front of the local security
endpoint.

v X'20000000', SMF119IS_IPDynRmtNAT:
Remote NAT indicator. A NAT has been
detected in front of the remote security
endpoint.

v X'10000000', SMF119IS_IPDynRmtNAPT:
Remote NAPT indicator. An NAPT has
been detected in front of the remote
security endpoint.

Result: Some NAPTs might be
undetected. In that case, the
SMF119IS_IKETunRmtNAT bit is set,
but this bit is not set.

v X'08000000', SMF119IS_IPDynRmtGW:
Remote NAT traversal gateway
indicator. The tunnel uses UDP
encapsulation and the remote security
endpoint is acting as an IPSec gateway.

978 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

0(X'0')
Cont.

Cont. Cont. One of the following values:

v X'04000000', SMF119IS_IPDynRmtZOS:
Remote z/OS indicator. The remote
peer has been detected to be z/OS. The
remote peer might be running z/OS but
it might not be detected as such, if NAT
traversal is not enabled.

v X'02000000', SMF119IS_IPDynCanInitP2:
Dynamic tunnel (P2) initiation indicator.
If set, the local security endpoint can
initiate dynamic tunnel negotiations
with the remote security endpoint;
otherwise, the remote security endpoint
must initiate dynamic tunnel
negotiations. Either side can initiate
refreshes.

v X'01000000',
SMF119IS_IPDynSrcIsSingle: Single
source address indicator. Traffic source
address is indicated by the
SMF119IS_IPDynSrcAddr4 or
SMF119IS_IPDynSrcAddr6 fields.

v X'00800000',
SMF119IS_IPDynSrcIsPrefix: Prefixed
source address indicator. Traffic source
address is indicated by the
SMF119IS_IPDynSrcAddr4 or
SMF119IS_IPDynSrcAddr6, fields and
the source address prefix is indicated by
the SMF119IS_IPDynSrcAddrPrefix
field.

v X'00400000',
SMF119IS_IPDynSrcIsRange: Ranged
source address indicator. Traffic source
address range is indicated by the
SMF119IS_IPDynSrcAddr4 and
SMF119IS_IPDynSrcAddrRange4 fields,
or by the SMF119IS_IPDynSrcAddr6
and SMF119IS_IPDynSrcAddrRange6
fields.

v X'00200000',
SMF119IS_IPDynDstIsSingle: Single
destination address indicator. Traffic
destination address is indicated by the
SMF119IS_IPDynDstAddr4 or
SMF119IS_IPDynDstAddr6 fields.

Appendix E. Type 119 SMF records 979

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

0(X'0')
Cont

Cont. Cont. One of the following values:

v X'000100000',
SMF119IS_IPDynDstIsPrefix:Prefixed
destination address indicator. Traffic
destination address is indicated by the
SMF119IS_IPDynDstAddr4 or
SMF119IS_IPDynDstAddr6 fields, and
destination address prefix is indicated
by the SMF119IS_IPDynDstAddrPrefix
field.

v X'00080000',
SMF119IS_IPDynDstIsRange: Ranged
destination address indicator. Traffic
destination address range is indicated
by the SMF119IS_IPDynDstAddr4 and
SMF119IS_IPDynDstAddrRange4 fields,
or by the SMF119IS_IPDynDstAddr6
and SMF119IS_IPDynDstAddrRange6
field.

v X'00040000',
SMF119IS_IPDynTransportOpaque:
Opaque transport selector indicator. If
set, the dynamic tunnel is protecting
data traffic where the upper layer
selectors, source and destination ports,
ICMP or ICMPv6 type and code or IPv6
Mobility header type are not available
as a result of fragmentation.

v All remaining bits: Reserved

4(X'4') SMF119IS_IPDynVPNRule 48 EBCDIC Dynamic VPN rule name for this tunnel.
This field is blank if there is no local
dynamic VPN rule.

52(X'34') SMF119IS_IPDynP1TunnelID 48 EBCDIC Tunnel ID for this tunnel's parent IKE
(phase 1) tunnel. As a result of refreshes,
this tunnel ID might represent multiple
related IKE tunnels.

100(X'64') SMF119IS_IPDynLifesize 8 Binary Tunnel lifesize. Nonzero values indicate
the lifesize value limit for the tunnel, in
bytes.

108(X'6C') SMF119IS_IPDynLifesizeRefresh 8 Binary Tunnel lifesize refresh. Nonzero values
indicate the lifesize value at which the
tunnel is refreshed, in bytes.

116(X'74') SMF119IS_IPDynLifetimeExpire 4 Binary Tunnel lifetime. Indicates the time at
which the tunnel expires, in UNIX format.

120(X'78') SMF119IS_IPDynLifetimeRefresh 4 Binary Tunnel lifetime refresh. Indicates the time
at which the tunnel is refreshed, in UNIX
format.

980 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

124(X'7C') SMF119IS_IPDynVPNLifeExpire 4 Binary Tunnel VPN lifetime expire. Nonzero
values indicate the time at which the
tunnel family ceases to be refreshed, in
UNIX format.

This field retains its original value for a
refreshed tunnel.

128(X'80') SMF119IS_IPDynActMethod 1 Binary One of the following tunnel activation
methods:

v SMF119IS_DYNTUN_USER (1): User
activation (from the command line).

v SMF119IS_DYNTUN_REMOTE (2):
Remote activation from IPSec peer.

v SMF119IS_DYNTUN_ONDEMAND (3):
On-demand activation caused by IP
traffic.

v SMF119IS_DYNTUN_TAKEOVER (5):
SWSA activation as a result of a DVIPA
takeover.

v SMF119IS_DYNTUN_AUTOACT (6):
Auto-activation

This field retains its original value for a
refreshed tunnel.

129(X'81') SMF119IS_IPDynRsvd2 3 Binary Reserved bits

132(X'84') SMF119IS_IPDynRmtUDPPort 2 Binary If the tunnel uses UDP encapsulation
mode, this value is the IKE UDP port of
the remote security endpoint; otherwise,
the value is 0.

134(X'86') SMF119IS_IPDynRsvd3 2 Binary Reserved bits

136(X'88') SMF119IS_IPDynSrcNATOA 4 Binary Source NAT original IP address. NAT
original IP addresses are exchanged only
for certain UDP-encapsulated tunnels.
During NAT traversal negotiations, the
IKE peer sends the source IP address that
it is aware of.

If NAT traversal negotiation did not occur
or if an IKEv1 peer did not send a source
NAT-OA payload, the value of this field is
0.
Restriction: An IKEv1 peer at a
pre-RFC3947 NAT traversal support level
cannot send a source NAT-OA payload.

Appendix E. Type 119 SMF records 981

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

140(X'8C') SMF119IS_IPDynDstNATOA 4 Binary Destination NAT original IP address. NAT
original IP addresses are exchanged only
for certain UDP-encapsulated tunnels.
During NAT traversal negotiations, the
IKE peer sends the destination IP address
that it is aware of.

If NAT traversal negotiation did not occur
or if an IKEv1 peer did not send a source
NAT-OA payload, the value of this field is
0.
Restriction: An IKEv1 peer at a
pre-RFC3947 NAT traversal support level
cannot send a source NAT-OA payload.

144(X'90') SMF119IS_IPDynProtocol 1 Binary Protocol for tunnel data. If the value is 0,
the tunnel includes all protocols.

145(X'91') SMF119IS_IPDynRsvd4 3 Binary Reserved bits

148(X'94') SMF119IS_IPDynSrcPort 2 Binary Low end of source port range for tunnel
data or 0 if the tunnel is not limited to
TCP or UDP.

150(X'96') SMF119IS_IPDynDstPort 2 Binary Low end of destination port range for
tunnel data, or 0 if the tunnel is not
limited to TCP or UDP.

152(X'98') SMF119IS_IPDynSrcAddr4 4 Binary One of the following values:

v If the SMF119IS_IPDynSrcIsSingle field
is set, this field is the IPv4 or IPv6
source address for tunnel data.

v If the SMF119IS_IPDynSrcIsPrefix field
is set, this field is the IPv4 or IPv6
source address base for tunnel data.

v If the SMF119IS_IPDynSrcIsRange field
is set, this field is the low end of the
IPv4 or IPv6 source address range for
tunnel data.

152(X'98') SMF119IS_IPDynSrcAddr6 16 Binary One of the following values:

v If SMF119IS_IPTunFlagIPv6 is set, this
field is the 16–byte IPv6 local security
endpoint address.

v If SMF119IS_IPTunFlagIPv6 is clear, this
field is the 4–byte IPv4 local security
endpoint address.

168(X'A8') SMF119IS_IPDynSrcAddrRange4 4 Binary If the SMF119IS_IPDynSrcIsRange field is
set, this field is the highest address in the
range of the IPv4 or IPv6 source addresses
tunnel data.

168(X'A8') SMF119IS_IPDynSrcAddrRange6 16 Binary If the SMF119IS_IPDynSrcIsRange field is
set, this field is the highest address in the
range of the IPv4 or IPv6 source addresses
tunnel data.

982 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

184(X'B8') SMF119IS_IPDynDstAddr4 4 Binary One of the following values:

v If the SMF119IS_IPDynDstIsSingle field
is set, this field is the IPv4 or IPv6
destination address for tunnel data.

v If the SMF119IS_IPDynDstIsPrefix field
is set, this field is the IPv4 or IPv6
destination address base for tunnel
data.

v If the SMF119IS_IPDynDstIsRange field
is set, this field is the lowest IPv4 or
IPv6 destination address in the range
for tunnel data.

184(X'B8') SMF119IS_IPDynDstAddr6 16 Binary One of the following values:

v If the SMF119IS_IPDynDstIsSingle field
is set, this field is the IPv4 or IPv6
destination address for tunnel data.

v If the SMF119IS_IPDynDstIsPrefix field
is set, this field is the IPv4 or IPv6
destination address base for tunnel
data.

v If the SMF119IS_IPDynDstIsRange field
is set, this field is the lowest IPv4 or
IPv6 destination address in the range
for tunnel data.

200(X'C8') SMF119IS_IPDynDstAddrRange4 4 Binary If the SMF119IS_IPDynDstIsRange field is
set, this field is the highest IPv4 or IPv6
destination address in the range range for
tunnel data.

200(X'C8') SMF119IS_IPDynDstAddrRange6 16 Binary If the SMF119IS_IPDynDstIsRange field is
set, this field is the highest IPv4 or IPv6
destination address in the range range for
tunnel data.

216(X'D8') SMF119IS_IPDynSrcAddrPrefix 1 Binary If the SMF119IS_IPDynSrcIsPrefix field is
set, this field is the length of the tunnel
data source address prefix in bits.

217(X'D9') SMF119IS_IPDynDstAddrPrefix 1 Binary If the SMF119IS_IPDynDstIsPrefix field is
set, this field is the length of the tunnel
data destination address prefix in bits.

218(X'DA') SMF119IS_IPDynMajorVer 1 Binary Major version of the IKE protocol in use.
Only the low-order 4 bits are used.

219(X'DB') SMF119IS_IPDynMinorVer 1 Binary Minor version of the IKE protocol in use.
Only the low-order 4 bits are used.

220(X'DC') SMF119IS_IPDynType 1 Binary Low end of ICMP, ICMPv6, or MIPv6
type range for tunnel data; otherwise, this
value is 0 if the tunnel is not limited to
ICMP, ICMPv6, or MIPv6.

221(X'DD') SMF119IS_IPDynTypeRange 1 Binary High end of ICMP, ICMPv6, or MIPv6
type range for tunnel data; otherwise this
value is 0 if the tunnel is not limited to
ICMP, ICMPv6, or MIPv6. A tunnel
applying to all type values is indicated as
a value in the range 0- 255.

Appendix E. Type 119 SMF records 983

Table 332. IPSec dynamic tunnel specific section (continued)

Offset Name Length Format Description

222(X'DE') SMF119IS_IPDynCode 1 Binary Low end of ICMP or ICMPv6 code range
for tunnel data; otherwise this value is 0 if
the tunnel is not limited to ICMP or
ICMPv6.

223(X'DF') SMF119IS_IPDynCodeRange 1 Binary High end of ICMP or ICMPv6 code range
for tunnel data; otherwise, this value is 0
if the tunnel is not limited to ICMP or
ICMPv6. A tunnel applying to all code
values is indicated as a value in the range
0 - 255.

224(X'E0') SMF119IS_IPDynSrcPortRange 2 Binary High end of source port range for tunnel
data; otherwise this value is 0 if the
tunnel is not limited to TCP or UDP. A
tunnel applying to all source port values
is indicated as a value in the range 0-
65 535.

226(X'E2') SMF119IS_IPDynDstPortRange 2 Binary High end of destination port range for
tunnel data, or 0 if the tunnel is not
limited to TCP or UDP. A tunnel applying
to all destination port values is indicated
as a value in the range 0 - 65 535.

228(X'E4') SMF119IS_IPDynGeneration 4 Binary Tunnel generation number. The first
dynamic tunnel with a particular tunnel
ID has generation 1. Subsequent refreshes
of this dynamic tunnel have the same
tunnel ID but higher generation numbers.

Table 333 lists the IPSec IKE dynamic tunnel specific section.

Table 333. IPSec IKE dynamic tunnel specific section

Offset Name Length Format Description

0(X'0') SMF119IS_IPDynIKERsvd1 4 Binary Reserved bits.

4(X'4') SMF119IS_IPDynIKEFilter 48 EBCDIC Filter name for the IP filter related to this
dynamic tunnel.

52(X'34') SMF119IS_IPDynIKEDHGroup 4 Binary Diffie-Hellman group used for PFS for
this dynamic tunnel, or 0 if phase 2 PFS
is not configured.

56(X'38') SMF119IS_IPDynIKELclIDType 1 Binary ISAKMP identity type for the local client
ID, as defined in RFC 2407. Client
identities can be exchanged during
negotiation to limit or define the scope of
data protected by the tunnel. If client
identities are not exchanged, then the
scope of data protection is defined to
include the peers' tunnel endpoint
addresses.

If client identities were not exchanged
during negotiation, this field is 0.

984 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 333. IPSec IKE dynamic tunnel specific section (continued)

Offset Name Length Format Description

57(X'39') SMF119IS_IPDynIKERmtIDType 1 Binary ISAKMP identity type for the remote
client ID, as defined in RFC 2407. Client
identities might be exchanged during
negotiation to limit or define the scope of
data protected by the tunnel. If client
identities are not exchanged, then the
scope of data protection is defined to
include the peers' tunnel endpoint
addresses.

If client identities were not exchanged
during negotiation, this field is 0.

58(X'3A') SMF119IS_IPDynIKEExtState 2 Binary One of the following extended tunnel
state information types:

v SMF119IS_EXTSASTATE_ACTIVATE
(1): This is a new Phase 2 activation.
This value is valid only on record
subtype 75.

v SMF119IS_EXTSASTATE_REFRESH (2):
This is a Phase 2 refresh. This value is
valid only on record subtype 75.

v SMF119IS_EXTSASTATE_DEACT (3):
This tunnel is deactivated (not caused
by an error or negotiation failure). This
value is valid only on record subtype
76.

The following values are valid only on
record subtype 76:

v SMF119IS_EXTSASTATE_PROPOSAL
(4): Negotiation failure. No proposal
matched the current policy.

v SMF119IS_EXTSASTATE_RETRANS (5):
Negotiation failure. A retransmit limit
was exceeded while negotiating this
tunnel.

v SMF119IS_EXTSASTATE_POLICY (6):
Negotiation failure. A policy mismatch
other than a proposal mismatch
occured. For example, no valid
IpFilterRule.

v SMF119IS_EXTSASTATE_OTHER (7):
Negotiation failure. The data is not
valid in an ISAKMP packet or internal
error.

v SMF119IS_EXTSASTATE_NOINS (8): A
stack error prevented this phase 2 SA
from being installed.

Table 334 on page 986 lists the IPSec local client ID specific section.

Appendix E. Type 119 SMF records 985

Table 334. IPSec local client ID specific section

Offset Name Length Format Description

0(X'0') SMF119IS_LocalClientID n EBCDIC The local client ID for this tunnel's
phase 2 negotiation. Regardless of
the identity's type, the ID is
expressed as an EBCDIC string (an
IP address is returned in printable
form).

Table 335 lists the IPSec remote client ID specific section.

Table 335. IPSec remote client ID specific section

Offset Name Length Format Description

0(X'0') SMF119IS_RemoteClientID n EBCDIC The remote client ID for
this tunnel's phase 2
negotiation. Regardless of
the identity's type, the ID
is expressed as an
EBCDIC string (an IP
address is returned in
printable form).

IPSec dynamic tunnel deactivation record (subtype 76)
The IPSec dynamic tunnel deactivation record is collected whenever the IKE
daemon deactivates a dynamic tunnel. This record contains information about the
characteristics of the dynamic tunnel about to be deactivated. If a tunnel is being
deactivated as a result of a negotiation failure, some of the fields might be
unknown. Fields might be unknown because the negotiation has not progressed far
enough to determine a value, such fields have the value 0. If you are using the
IPSec NMI, the common IP tunnel section of this SMF record is analogous to the
NMsecIPTunnel structure, the dynamic tunnel section is analogous to the
NMsecIPDynTunnel structure, the IKE dynamic tunnel section is analogous to the
NMsecIPDynamicIKE structure.

Result: When a TCP/IP stack is stopped, dynamic tunnels are not immediately
deleted from the IKED. Instead, the IKED waits for the stack to restart so that the
stack has the opportunity to send a delete message to the IKE peer. At the time the
stack is restarted, you see subtype 76 records for IKED deletion of the dynamic
tunnels.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the IPSec dynamic tunnel activation record, the TCP/IP stack
identification section indicates IKE as the subcomponent and X'08' (event record) as
the record reason.

See Table 331 on page 975 for the contents of the common IP tunnel section.

See Table 332 on page 978 for the contents of the dynamic tunnel section.

See Table 333 on page 984 for the contents of the IKE dynamic tunnel section.

See Table 334 for the contents of the local client ID section.

986 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

See Table 335 on page 986 for the contents of the remote client ID section.

Table 336 lists the IPSec dynamic tunnel deactivation record self-defining section.

Table 336. IPSec dynamic tunnel deactivation record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF Header; subtype is 76(X'4C')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (6).

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification sections

36(X'24') SMF119S1Off 4 Binary Offset to common IP tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IP tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IP tunnel sections

44(X'2C') SMF119S2Off 4 Binary Offset to dynamic tunnel section

48(X'30') SMF119S2Len 2 Binary Length of dynamic tunnel section

50(X'32') SMF119S2Num 2 Binary Number of dynamic tunnel sections

52(X'34') SMF119S3Off 4 Binary Offset to IKE dynamic tunnel section

56(X'38') SMF119S3Len 2 Binary Length of IKE dynamic tunnel sections

58(X'3A') SMF119S3Num 2 Binary Number of IKE dynamic tunnel sections

60(X'3C') SMF119S4Off 4 Binary Offset to local client ID section

64(X'40') SMF119S4Len 2 Binary Length of local client ID section

66(X'42') SMF119S4Num 2 Binary Number of local client ID sections

68(X'44') SMF119S5Off 4 Binary Offset to remote client ID section

72(X'48') SMF119S5Len 2 Binary Length of remote client ID section

74(X'4C') SMF119S5Num 2 Binary Number of remote client ID sections

IPSec dynamic tunnel added record (subtype 77)
The IPSec dynamic tunnel added record is collected whenever the TCP/IP stack
successfully installs a dynamic tunnel. This record contains information about the
characteristics of the dynamic tunnel that was installed. This record uses the
NMsecIPTunnel, NMsecIPDynTunnel, and SMF119IS_IPDynamicStackAdded
structures. If you are using the IPSec NMI, the common IP tunnel section of this
SMF record is analogous to the NMsecIPTunnel structure, the dynamic tunnel
section is analogous to the NMsecIPDynTunnel structure. There is not an NMI
analog to the SMF119IS_IPDynamicStackAdded structure.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the IPSec dynamic tunnel activation record, the TCP/IP stack
identification section indicates STACK as the subcomponent and X'08' (event record)
as the record reason.

See Table 331 on page 975 for the contents of the common IP tunnel section.

Appendix E. Type 119 SMF records 987

See Table 332 on page 978 for the contents of the dynamic tunnel section.

Table 337 lists the IPSec dynamic tunnel added record self-defining section.

Table 337. IPSec dynamic tunnel added record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF header; subtype is 77(X'4D')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (4).

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification sections

36(X'24') SMF119S1Off 4 Binary Offset to common IP tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IP tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IP tunnel sections

44(X'2C') SMF119S2Off 4 Binary Offset to dynamic tunnel section

48(X'30') SMF119S2Len 2 Binary Length of dynamic tunnel section

50(X'32') SMF119S2Num 2 Binary Number of dynamic tunnel sections

52(X'34') SMF119S3Off 4 Binary Offset to stack dynamic tunnel added
section

56(X'38') SMF119S3Len 2 Binary Length of stack dynamic tunnel added
sections

58(X'3A') SMF119S3Num 2 Binary Number of stack dynamic tunnel added
sections

Table 338 lists the IPSec stack dynamic tunnel added specific section.

Table 338. IPSec stack dynamic tunnel added specific section

Offset Name Length Format Description

0(X'0') 4 Binary Stack dynamic tunnel added flags.

The following list identifies the bits, their names, and
meaning:

v X'80000000', SMF119IS_DynStackAddedShadow:
SWSA shadow indicator. The tunnel is an SWSA
shadow tunnel originating from a distributing
stack.

v 1 - 31, SMF119IS_IPDnStackAddedRsvd1: Reserved
bits.

IPSec dynamic tunnel removed record (subtype 78)
The IPSec dynamic tunnel removed record is collected whenever the TCP/IP Stack
removes a dynamic tunnel. This record contains information about the
characteristics of the dynamic tunnel that was removed. This record uses the
NMsecIPTunnel, NMsecIPDynTunnel, and NMsecIPDynamicStack structures. If
you are using the IPSec NMI, the common IP tunnel section of this SMF record is

988 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

analogous to the NMsecIPTunnel structure, the dynamic tunnel section is
analogous to the NMsecIPDynTunnel structure, and the stack dynamic tunnel
section is analogous to the NMsecIPDynamicStack structure.

Result: When a TCP/IP stack is stopped, all dynamic tunnels are removed from
the stack, and subtype 78 records are generated at that time.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the IPSec dynamic tunnel removed record, the TCP/IP stack
identification section indicates STACK as the subcomponent and X'08' (event record)
as the record reason.

See Table 331 on page 975 for the contents of the common IP tunnel section.

See Table 332 on page 978 for the contents of the dynamic tunnel section.

Table 339 lists the contents of the IPSec dynamic tunnel removed record
self-defining section.

Table 339. IPSec dynamic tunnel removed record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF header; subtype is 78(X'4E')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (4).

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification sections

36(X'24') SMF119S1Off 4 Binary Offset to common IP tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IP tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IP tunnel sections

44(X'2C') SMF119S2Off 4 Binary Offset to dynamic tunnel section

48(X'30') SMF119S2Len 2 Binary Length of dynamic tunnel section

50(X'32') SMF119S2Num 2 Binary Number of dynamic tunnel sections

52(X'34') SMF119S3Off 4 Binary Offset to stack dynamic tunnel removed
section

56(X'38') SMF119S3Len 2 Binary Length of stack dynamic tunnel removed
sections

58(X'3A') SMF119S3Num 2 Binary Number of stack dynamic tunnel removed
sections

Table 340 on page 990 lists the contents of the IPSec dynamic tunnel removed
specific section.

Appendix E. Type 119 SMF records 989

Table 340. IPSec dynamic tunnel removed specific section

Offset Name Length Format Description

0(X'0') 4 Binary Dynamic tunnel removed flags.

The following list identifies the
bits, their names, and meaning:

v X'8000000',
SMF119IS_IPDynStackShadow:
SWSA shadow indicator. If set,
the tunnel is an SWSA shadow
tunnel originating from a
distributing stack.

v 1 - 31,
SMF119IS_IPDynStackRsvd1:
Reserved bits.

4(X'4') SMF119IS_IPDynStackLifesizeCur 8 Binary Current lifesize value. If the
tunnel lifesize value is set, this
setting represents the current
value of the lifesize counter.

12(X'C') SMF119IS_IPDynStackOutPkt 8 Binary Outbound packet count for this
tunnel. For SWSA tunnels, this
value represents this tunnel's
outbound packet count only for
this particular TCP/IP stack.

20(X'14') SMF119IS_IPDynStackInPkt 8 Binary Inbound packet count for this
tunnel. For SWSA tunnels, this
value represents this tunnel's
inbound packet count only for
this particular TCP/IP stack.

28(X'1C') SMF119IS_IPDynStackOutBytes 8 Binary Outbound byte count for this
tunnel, representing the number
of outbound data bytes protected
by the tunnel. For SWSA tunnels,
this value represents this tunnel's
outbound byte count only for
this particular TCP/IP stack.

36(X'24') SMF119IS_IPDynStackInBytes 8 Binary Inbound byte count for this
tunnel, representing the number
of inbound data bytes protected
by the tunnel. For SWSA tunnels,
this value represents this tunnel's
inbound byte count only for this
particular TCP/IP stack.

IPSec manual tunnel activation record (subtype 79)
The IPSec manual tunnel activation record is collected whenever the TCP/IP Stack
installs a new manual tunnel. This record contains information about the
characteristics of the manual tunnel. If you are using the IPSec NMI, the common
IP tunnel section of this SMF record is analogous to the NMsecIPTunnel structure.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the manual tunnel activation record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the record
reason.

990 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

See Table 331 on page 975 for the contents of the common IP tunnel section.

Table 341 lists the contents of the IPSec manual tunnel activation record
self-defining section.

Table 341. IPSec manual tunnel activation record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF header; subtype is 79(X'4F')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (2)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section.

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section.

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification section

36(X'24') SMF119S1Off 4 Binary Offset to common IP tunnel section

40(X'28') SMF119S1Len 2 Binary Length of common IP tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IP tunnel sections.

IPSec manual tunnel deactivation record (subtype 80)
The IPSec manual tunnel deactivation record is collected whenever the TCP/IP
stack deletes a manual tunnel. This record contains information about the
characteristics of the manual tunnel and usage statistics. If you are using the IPSec
NMI, the common IP tunnel section of this SMF record is analogous to the
NMsecIPTunnel structure, the dynamic tunnel section is analogous to the
NMsecIPDynTunnel structure, and the manual tunnel section is analogous to the
NMsecIPManualTunnel structure.

See Table 168 on page 749 for the contents of the TCP/IP stack identification
section. For the manual tunnel deactivation record, the TCP/IP stack identification
section indicates STACK as the subcomponent and X'08' (event record) as the record
reason.

See Table 331 on page 975 for the contents of the common IP tunnel section.

Table 342 lists the contents of the IPSec manual tunnel deactivation record
self-defining section.

Table 342. IPSec manual tunnel deactivation record self-defining section

Offset Name Length Format Description

0(X'0') SMF119_HDR 24 EBCDIC Standard SMF Header; subtype is 80(X'50')

Self-defining section

24(X'18') SMF119SD_TRN 2 Binary Number of triplets in this record (3)

26(X'1A') 2 Binary Reserved

28(X'1C') SMF119IDOff 4 Binary Offset to TCP/IP identification section.

32(X'20') SMF119IDLen 2 Binary Length of TCP/IP identification section.

34(X'22') SMF119IDNum 2 Binary Number of TCP/IP identification sections

36(X'24') SMF119S1Off 4 Binary Offset to common IP tunnel section

Appendix E. Type 119 SMF records 991

Table 342. IPSec manual tunnel deactivation record self-defining section (continued)

Offset Name Length Format Description

40(X'28') SMF119S1Len 2 Binary Length of common IP tunnel section

42(X'2A') SMF119S1Num 2 Binary Number of common IP tunnel sections.

44(X'2C') SMF119S2Off 4 Binary Offset to manual tunnel section

48(X'30') SMF119S2Len 2 Binary Length of manual tunnel section

50(X'32') SMF119S2Num 2 Binary Number of manual tunnel sections

Table 343 lists the contents of the IPSec manual tunnel specific section.

Table 343. IPSec manual tunnel specific section

Offset Name Length Format Description

0(X'0') SMF119IS_IPManTunOutPkt 8 Binary Outbound packet
count for this tunnel

8(X'8') SMF119IS_IPManTunInPkt 8 Binary Inbound packet count
for this tunnel

16(X'10') SMF119IS_IPManTunOutBytes 8 Binary Outbound byte count
for this tunnel,
representing the
number of outbound
data bytes protected
by the tunnel

24(X'18') SMF119IS_IPManTunInBytes 8 Binary Inbound byte count
for this tunnel,
representing the
number of inbound
data bytes protected
by the tunnel

992 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix F. EZAENF80 Parameter list for ENF event code 80
listen exits

Common Name: Mapping macro for z/OS Communications Server ENF event code 80

Macro ID: EZAENF80

DSECT Name: EZAENF80

Owning Component: z/OS Communications Server

Eye-Catcher ID: ’ENF80 ’

Storage Attributes: Subpool 241
Key 0
Residency Any

Size: See ENF80_LENGTH

Created by: z/OS Communications Server

Pointed to by: Register 1 on input to ENF listen routine

Serialization: None

Function: Maps the input parameter list for ENF event code 80
listen exits

Table 344. Mapping macro for z/OS Communications Server ENF event code 80 (Part 1)

Offset Dec
Offset
Hex Type Len Name (Dim) Description

0 0 STRUCTURE 0 EZAENF80 ENF80 parameter list

0 0 CHARACTER 6 ENF80_ID Control Block ID “ENF80”

6 6 SIGNED 1 ENF80_VERSION Version of mapping

7 7 SIGNED 1 * Reserved

8 8 SIGNED 2 ENF80_LENGTH Length of parameter list

10 A SIGNED 2 * Reserved

12 C BITSTRING 4 ENF80_QUALIFIER Qualifier code

16 10 X’10’ 0 ENF80_END End of fixed ENF80 control
block

Table 345. Mapping macro for z/OS Communications Server ENF event code 80 (Part 2)

Offset Dec
Offset
Hex Type Len Name (Dim) Description

0 0 STRUCTURE 0 ENF80_RPC RPCBIND Event Data - Based
on ENF80_END

0 0 BITSTRING 0 ENF80_RPC_FLAGS RPCBIND Flags

1... ENF80_RPCINIT RPCBIND has initialized

.1.. ENF80_RPCTERM RPCBIND is ending

..11 1111 * Reserved

1 1 BITSTRING 3 ENF80_RPC_RSVD1 Reserved

4 4 CHARACTER 8 ENF80_RPC_JOBNAME RPCBIND job name

© Copyright IBM Corp. 2000, 2015 993

994 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix G. Application data

Application data is data that is associated with a connection through the use of the
SIOCSAPPLDATA ioctl socket command. The SIOCSAPPLDATA IOCTL enables
applications to associate 40 bytes of application-specific information with TCP
sockets the applications own. This application data can also be used to identify
socket endpoints in interfaces such as Netstat, SMF, or network management
applications. When the SIOCSAPPLDATA IOCTL is issued, the request argument
parameter must contain a SetApplData structure as defined by the EZBYAPPL
macro. For more information about the SIOCSAPPLDATA IOCTL, see the
miscellaneous programming interfaces “Real-time TCP/IP network monitoring
NMI” on page 527 information. In the remainder of this topic, this
application-specific data is referred to as ApplData.

Identifying application data
User-defined application data is comprised of 40 bytes of data that is used to
identify the endpoint with the macro API sockets application. The application data
can be obtained from the following resources:

Netstat reports
The information is displayed conditionally by using the modifier
APPLDATA on the ALLConn/-a and COnn/-c reports, and unconditionally
on the ALL/-A report. For more information about the Netstat ALL/-A
report, Netstat ALLConn/-a report, and the Netstat COnn/-c report, see
z/OS Communications Server: IP System Administrator's Commands

SMF 119 TCP connection termination record
For more information about the application data written on the SMF 119
record, see Appendix E, “Type 119 SMF records,” on page 743.

Network management interfaces
The following network management interfaces (NMIs) support application
data:
v The SYSTCPCN service of the “Real-time TCP/IP network monitoring

NMI” on page 527 provides application data in SMF 119 TCP connection
termination records.

v The GetTCPListeners and GetConnectionDetail requests of the “TCP/IP
callable NMI (EZBNMIFR)” on page 600 provide application data and
enable callers to filter on application data.

Guidelines:

v The application is responsible for documenting the content, format, and meaning
of the ApplData string that associates it with sockets that it owns.

v The application should uniquely identify itself with printable EBCDIC characters
at the beginning of the string. Strings beginning with 3-character IBM product
identifiers, such as TCP/IP EZA or EZB are reserved for IBM use. IBM product
identifiers begin with a letter in the range A - I.

v Use printable EBCDIC characters for the entire string to enable searching with
Netstat filters.

Tip: Separate application data elements with a blank space for easier reading.

© Copyright IBM Corp. 2000, 2015 995

The following z/OS applications support application data registration for their
connections:
v The z/OS IP CICS socket interface and listener
v The z/OS TN3270 server application data

CICS socket interface and listener application data
The IP CICS socket interface and listener support automatic registration of
application data to be associated with the TCP connection. Automatic registration
occurs when the following socket commands are run and the underlying MVS
subtask is not detached:
v After CONNECT, connect()
v Before GIVESOCKET, givesocket()

This function is automatic only for the IBM listener. User-written listeners can
issue the SIOCSAPPLDATA IOCTL command with their own application data.

v Before LISTEN, listen()
v After TAKESOCKET, takesocket()

The IP CICS socket interface resource manager task-related user exit (TRUE)
processes automatic registration when the resource manager makes an additional
SIOCSAPPLDATA IOCTL call. This additional call is made only when the
APPLDAT or LAPPLD configuration options are specified as YES. The APPLDAT
configuration option is global; all socket-enabled transactions are enabled to
automatically register application data against their socket endpoints for the socket
commands in the previous list. Regardless of how the APPLDAT on the listener is
configured, listeners can optionally be enabled or disabled. The IBM listener also
automatically registers application data for accepted connections to be given when
the application data being registered contains data about the child process
expected to take the given socket. The listener's security exit can also enable or
prohibit this action.

Although the application data configuration options can be specified with the
EZACICD macro and the EZAC configuration transaction, use the EZAO operator
transaction to dynamically alter the same options temporarily. In addition, use the
EZAO operator transaction to show the current state of application data
registration.

z/OS IP FTP client application data
The z/OS FTP client updates its application data for the following events:
v When a control connection is established between the z/OS FTP client and an

FTP server
v When a data connection is established between the z/OS FTP client and an FTP

server
v After the user, auth, or ccc subcommand completes successfully

996 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FTP client application data format for the control connection
An FTP control connection is established when an FTP client logs into an FTP
server. Table 346 shows the format of the application data set by the client for its
control connection socket.

Table 346. FTP client application data format for the control connection

Bytes Description

1 - 8 The component ID of FTP, EZAFTP0C

9 Blank

10 The FTP connection:

C Control connection

11 Blank

12 - 20 The user name of the FTP client, padded on the right with blanks.
This field might be blank if the user is not logged in to the FTP server.

21 Blank

22 Security protection for the connection:

C Clear

L Clear, but previously was Private or Safe

P Private

S Safe

23 The security method used for the FTP connection if security protection
is either Private or Safe; blank otherwise.

T TLS managed by AT-TLS

G GSSAPI

F TLS managed by FTP

24, 25 The security level if security method is TLS; blank otherwise (see
Note).

S2 SSLv2

S3 SSLv3

T1 TLSv1

11 TLSv1.1

12 TLSv1.2

26, 27 The security cipher used if the security method is TLS managed by
FTP or AT-TLS; blank otherwise (see Note). If the value is 4X, the
security cipher must be obtained from offset 30.

28 Blank

29 SOCKS server connection:

D Direct connection; not through a SOCKS server.

S Connection through a SOCKS server.

30 - 33 The four byte security cipher that is used if the security method is TLS
that is managed by FTP or AT-TLS; blank otherwise (see Note).

34 - 40 Reserved blank

Appendix G. Application data 997

Table 346. FTP client application data format for the control connection (continued)

Bytes Description

Note: This value is negotiated during the TLS handshake. Another TLS handshake can
occur at any time. The value in this record should be considered a snapshot of the current
value at the time the FTP client set application data.

FTP client application data format for the data connection
An FTP data connection is established just before a file transfer, and is closed after
the file transfer is complete. The FTP data connection is the format of the
application data set by the client for its data connection socket as described in
Table 347.

Table 347. FTP client application data format for the control connection

Bytes Description

1 - 8 The component ID of FTP, EZAFTP0C

9 Blank

10 The FTP connection:

D Data connection

11 Blank

12 - 20 The username of the FTP client, padded on the right with blanks. This
field might be blank if the user is not logged in to the FTP server.

21 Blank

22 Security protection for the connection:

C Clear

P Private

S Safe

23 The security method used for the FTP connection if the security is
either Private or Safe; blank otherwise.

T TLS managed by AT-TLS

G GSSAPI

F TLS managed by FTP

24, 25 The security level if security method is TLS; blank otherwise.

S2 SSLv2

S3 SSLv3

T1 TLSv1

11 TLSv1.1

12 TLSv1.2

26, 27 The security cipher used if the security method is TLS; blank
otherwise (see Note). If the value is 4X, the security cipher must be
obtained from offset 35.

28 Blank

998 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 347. FTP client application data format for the control connection (continued)

Bytes Description

29 Data connection type:

P Active (PORT)

X Passive (EPSV)

F Passive (PASV)

T Active (EPRT)

N Active, no command (no default)

30 Data transfer direction:

S Inbound data transfer to this node.

R Outbound data transfer from this node.

31 File type:

Q SQL query function

S Sequential or partitioned data set

32 File location for FTP client:

P PDS or PDSE data set

S MVS, but not a PDS or PSDE

H z/OS UNIX file

- *DEV.NULL (NULL directory), or client is receiving a directory
listing

33 Blank

34 SOCKS connection:

D Direct connection to FTP server (SOCKS is not in use).

S Connection through a SOCKS server.

35 - 38 The security cipher that is used if the security method is TLS that is
managed by FTP or AT-TLS; blank otherwise (see Note).

39 - 40 Reserved blank

Note: This value is negotiated during the TLS handshake. Another TLS handshake can
occur at any time. The value in this record should be considered a snapshot of the current
value at the time the FTP client set application data.

FTP daemon application data format
The FTP daemon opens a socket to accept connections from FTP clients. Table 348
shows the format of the application data set by the FTP daemon for its listening
socket.

Table 348. FTP daemon application data format

Bytes Description

1 - 8 The component ID of FTP, EZAFTP0D

9 Blank

10 TLSPORT flag:

T FTP listening port is the TLSPORT

Appendix G. Application data 999

FTP server application data format for the control connection
The FTP server control connection is established when the FTP daemon accepts an
incoming connection on its listening socket (the connection is passed from the
daemon to the server). Table 349 shows the format of the application data set by
the FTP server for its control connection socket.

Table 349. FTP server application data format for the control connection

Bytes Description

1 - 8 The component ID of FTP, EZAFTP0S

9 Blank

10 The FTP connection:

C Control connection

11 Blank

12 - 20 The user name used to log into FTP, padded to the right with blanks.
This field might be blank if the user is not logged into the FTP server.

21 Blank

22 Security protection for the connection:

C Clear

L Clear, but previously was Private or Safe

P Private

S Safe

23 The security method used for the FTP connection if security protection
is either Private or Safe; Bank otherwise.

T TLS managed by AT-TLS

G GSSAPI

F TLS managed by FTP

24, 25 The security level if security method is TLS and the handshake has
completed; blank otherwise (see Note).

S2 SSLv2

S3 SSLv3

T1 TLSv1

11 TLSv1.1

12 TLSv1.2

26,27 The security cipher used if the security method is TLS and the
handshake has completed; blank otherwise (see Note). If the value is
4X, the security cipher must be obtained from offset 29.

28 Blank

29 - 32 The security cipher that is used if the security method is TLS that is
managed by FTP or AT-TLS; blank otherwise (see Note).

33 - 40 Reserved blank

Note: This value is negotiated during the TLS handshake. Another TLS handshake can
occur at any time. When the FTP server next updates the APPLDATA, this value might
change.

1000 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

FTP server application data format for the data connection
The FTP server establishes a data connection just before a file transfer occurs. The
connection is closed when the file transfer is complete. Table 350 shows the format
of the application data set by the server for its data connection.

Table 350. FTP server application data for the data connection

Bytes Description

1 - 8 The component ID of FTP, EZAFTP0S

9 Blank

10 The FTP connection:

D Data connection

11 Blank

12 - 20 The user name of the FTP client, padded to the right with blanks. This
field might be blank if the user is not logged into the FTP server.

21 Blank

22 Security protection for the connection:

C Clear

P Private

S Safe

23 The security method used for the FTP connection if security protection
is either Private or Safe; Blank otherwise.

T TLS managed by AT-TLS

G GSSAPI

F TLS managed by FTP

24, 25 The security level if security method is TLS and the handshake has
completed; blank otherwise (see Note):

S2 SSLv2

S3 SSLv3

T1 TLSv1

11 TLSv1.1

12 TLSv1.2

26, 27 The security cipher used if the security method is TLS or AT-TLS and
the handshake has completed; blank otherwise (see Note). If the value
is 4X, the security cipher must be obtained from offset 33.

28 Blank

29 Data connection type:

P Active (PORT)

X Passive (EPSV)

F Passive (PASV)

T Active (EPRT)

N Active, no command (this is the default)

Appendix G. Application data 1001

Table 350. FTP server application data for the data connection (continued)

Bytes Description

30 Data transfer direction:

S Inbound data transfer to this node

R Outbound data transfer from this node

31 File type:

D Directory as the result of a LIST or NLST command

J JES file

Q SQL uery function

S Sequential or partitioned data set

32 File location:

P PDS or PDSE data set

S MVS but not a PDS or PSDE

H UNIX file

- *DEV.NULL (null directory)

33 - 36 The security cipher that is used if the security method is TLS that is
managed by FTP or AT-TLS; blank otherwise (see Note).

37 - 40 Reserved blank

Note: This value is negotiated during the TLS handshake. Another TLS handshake can
occur at any time. When the FTP server next updates the APPLDATA, this value might
change.

Application data format for IP CICS sockets
When application data registration is enabled, the IP CICS socket TRUE and
listener uses the following application data formats.

CONNECT
The application data registered against a connecting socket is comprised of
the elements in Table 351.

Table 351. Registered application data - CONNECT

Bytes Description

1-8 The component ID of the IP CICS socket
interface. For an outbound IP CICS socket
client, this data always comprises the
characters EZACICSO.

9 Blank

10-13 The CICS/TS transaction identifier. This is
the CICS/TS transaction ID that is assigned
to the program that issued the CONNECT
socket command.

14 Blank

15-21 The task number of the transaction identifier
in bytes 10-13.

22 Blank

1002 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 351. Registered application data - CONNECT (continued)

Bytes Description

23-30 The user ID that is assigned to the
transaction identifier in bytes 10-13.

31 Blank

32-35 The CICS system name where the
transaction is running.

36-40 Blank

This data is registered when a client is connected. The following examples show
the application data that is registered for a client's connected socket. The following
example shows the application data registered for a client's connected socket:
Col
1.......10...15......23.......32......40
EZACICSO CLI1 0000059 CICSUSR5 CICP

For application data:
EZACICSO CLI1 0000059 CICSUSR5 CICP

GIVESOCKET
The application data registered against a socket given to another process
by the IBM listener is comprised of elements that are used to identify the
GIVESOCKET endpoint. For the IP CICS sockets listener, the elements in
Table 352 are used.

Table 352. Registered application data - GIVESOCKET

Bytes Description

1-8 The component ID of the IP CICS Socket
listener. For the IP CICS Sockets listener, this
data always comprises the characters
EZACIC02.

9 Blank

10-13 The CICS/TS transaction identifier. This is
the transaction ID that the listener starts that
the listener expects to take the specified
socket.

14 Blank

15-21 This data is the task number of the CICS
task that gives the accepted socket to a child
process.

22 Blank

23-30 The user ID to be assigned to the transaction
identifier in bytes 10-13.

31 Blank

32-35 The CICS system name where the
transaction is to be assigned.

36-40 Blank

Appendix G. Application data 1003

This data is registered for every accepted connection that can be processed by the
listeners optional user exit or security exit. The following example shows the
application data registered for an accepted connection to be given to a child
process:
EZACIC02 SRV1 0000021 CICSUSR2 CIC3

LISTEN
The application data registered against a passive or listener socket is
comprised of the elements shown in Table 353.

Table 353. Registered application data - LISTEN

Bytes Description

1-8 The component ID of the IP CICS socket
interface. For the IP CICS sockets listener,
this data always comprises the characters
EZACICSO.

9 Blank

10-13 The CICS/TS transaction identifier. This is
the CICS/TS transaction ID assigned to the
EZACIC02 program or a user-designed
listener transaction program.

14 Blank

15-21 The task number of the transaction
identifier.

22 Blank

23-30 The user ID that is assigned to the
transaction identifier in bytes 10-13.

31 Blank

32-35 The CICS system name where the
transaction is executing.

36-40 Blank

This data is registered before the listener's listen queues are established so that all
connecting sockets inherit the application data. The following example shows the
application data registered for a listener's passive socket:
EZACICSO CSKL 0000021 CICSUSR1 CICP

For application data:
EZACICSO CSKL 0000021 CICSUSR1 CICP

TAKESOCKET
The application data registered against a socket taken by a child server
transaction is comprised of the elements in Table 354.

Table 354. TAKESOCKET

Bytes Description

1-8 The component ID of the IP CICS Socket
interface. For the IP CICS Sockets interface
and listener, this data always comprises the
characters EZACICSO.

9 Blank

1004 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 354. TAKESOCKET (continued)

Bytes Description

10-13 The CICS/TS transaction identifier. This is
the transaction ID that now owns the socket.

14 Blank

15-21 The task number of the transaction identifier
in bytes 10-13.

22 Blank

23-30 The user ID that is assigned to the
transaction identifier in bytes 10-13.

31 Blank

32-35 The CICS system name where the
transaction is running.

36-40 Blank

This data is registered for every socket successfully taken by a child server CICS
task. The following examples show the application data registered for a socket
taken by a child server. The following example shows the application data
registered for a socket taken by a child server:
EZACICSO SRV1 0000022 CICSUSR2 CIC3

For application data:
EZACICSO SRV1 0000022 CICSUSR2 CIC3

Application data processing
When the IP CICS Socket interface or listener is configured to register
application data, the processing shown in Table 355 on page 1006 occurs.

Appendix G. Application data 1005

Table 355. Application data processing

APPLDAT value
LAPPLD value (See
Note 1)

Security or User exit
input (inherited)

Security or User exit
output (See Note 2) Processing

Yes YES, INHERIT, or
unspecified (YES)
(See Note 3)

1 1 All socket-enabled
transaction programs
including specific
listeners. Specific
accepted connection
to be given are
registered for the IBM
listener.

0 All socket-enabled
transaction programs
including specific
listeners. But, specific
accepted connection
to be given is not
registered for the IBM
listener.

NO (See Note 4) 0 1 All socket-enabled
transaction program
excluding specific
listeners. But, specific
accepted connection
to be given is
registered for the IBM
listener.

0 All socket-enabled
transaction program
excluding specific
listeners. Specific
accepted connection
to be given are not
registered for the IBM
listener.

1006 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 355. Application data processing (continued)

APPLDAT value
LAPPLD value (See
Note 1)

Security or User exit
input (inherited)

Security or User exit
output (See Note 2) Processing

NO or unspecified
(NO)

YES (See Note 4) 1 1 Only the specific
listeners. Specific
accepted connection
to be given are
registered for the IBM
listener.

0 Only the specific
listeners. But specific
accepted connection
to be given are not
registered for the IBM
listener.

NO or INHERIT or
unspecified (NO) (See
Note 3)

0 1 Neither socket
enabled transaction
program nor specific
listeners. But specific
accepted connection
to be given is
registered for the IBM
listener.

0 Neither socket
enabled transaction
program nor specific
listeners. Specific
accepted connection
to be given is not
registered for the IBM
listener.

Notes:

1. LAPPLD inherits the value specified by the APPLDAT setting when the LAPPLD parameter is not specified.

2. Reference is made upon the setting made upon return from the IBM listener's security/user exit.

3. When the LAPPLD value is not specified, its value is inherited from the value specified by the listener's interface
APPLDAT setting.

4. When the LAPPLD value is different from that specified by the APPLDAT value, the LAPPLD value is used.

The LAPPLD setting is not inherited from APPLDAT; the LAPPLD setting
supersedes the APPLDAT value. The security exit byte is inherited from either the
APPLDAT or LAPPLD setting. The security exit is then used to change the action
taken by the listener when registering application data for the accepted connection.

Application data format for CSSMTP
Forty bytes of application data are available for Netstat reports, SMF119 TCP
connection termination reports, or network management interface (NMI)
applications. Table 356 on page 1008 and Table 357 on page 1008 shows the
application data format used by CSSMTP. This data is written at the beginning of
each successful target server connection.

Appendix G. Application data 1007

Table 356. Connections transferring message data

Bytes Description

1-8 The component ID of the CSSMTP
application, EZASMTPC.

9 Blank

10-17 The external writer name used to queue the
JES spool files to CSSMTP

18 Blank

19 The type of server connection, otherwise
blank if undetermined:

S -- SMTP server

E -- ESMTP server

20 The security method used for the TCP/IP
connection, otherwise blank if
undetermined:

B - Basic (no security)

T - TTLS port managed by AT-TLS

21-22 The security level, otherwise blank if
undetermined:

T1 - TLSv1

11 - TLSv1.1

12 - TLSv1.2

S3 - SSLv3

S2 - SSLv2

23-24 The security cipher used, otherwise blank if
undetermined. If the value is 4X, the
security cipher must be obtained from offset
26.

25 Blank

26-29 The four byte security cipher that is used;
blank if undetermined.

30-40 Reserved

The following example shows the application data after a CSSMTP session has
ended.
0000000001111111111222222222233333333334
1234567890123456789012345678901234567890
EZASMTPC XYZ ETT101 0001

Table 357. Connections monitoring target servers

Bytes Description

1-8 The component ID of the CSSMTP
application, EZASMTPM.

9 Blank

1008 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 357. Connections monitoring target servers (continued)

Bytes Description

10-17 The external writer name used to queue the
JES spool files to CSSMTP

18 Blank

19 The type of server connection, otherwise
blank if undetermined:

S -- SMTP server

E -- ESMTP server

20 The security method used for the TCP/IP
connection, otherwise blank if
undetermined:

B - Basic (no security)

T - TTLS port managed by AT-TLS

21-22 The security level, otherwise blank if
undetermined:

T1 - TLSv1

11 - TLSv1.1

12 - TLSv1.2

S3 - SSLv3

S2 - SSLv2

23-24 The security cipher used, otherwise blank if
undetermined. If the value is 4X, the
security cipher must be obtained from offset
26.

25 Blank

26-29 The security cipher used, otherwise blank if
undetermined.

30-40 Reserved

The following example shows the application data after a CSSMTP session has
ended.
0000000001111111111222222222233333333334
1234567890123456789012345678901234567890
EZASMTPM XYZ ETT101 0001

TN3270E Telnet server application data
The TN3270E Telnet server (Telnet) updates the application data to be applied to
the TCP connection when the following events occur:
v When Telnet connection negotiations are complete
v When a SNA session has been established
v When a SNA session has ended

Telnet performs the updates by issuing the SIOCSAPPLDATA IOCTL calls when
these events occur.

Appendix G. Application data 1009

Application data format for Telnet
The 40 bytes of application data is available for Netstat reports, SMF 119 TCP
connection termination reports, or network management interface (NMI)
applications. Table 358 shows the application data format used by Telnet.

Table 358. Application data format used by Telnet

Bytes Description

1-8 The component ID of the TN3270E Telnet
server, EZBTNSRV.

9 Blank

10-17 The LU name used to represent the client.
This can be blank for non-TN3270E
connections that do not have a SNA session.

18 Blank

19-26 The SNA application name. This data is
present when a SNA session has been
established.

27 Blank

28 The Telnet connection mode:

v E - TN3270E

v 3 - TN3270

v L - Linemode

v D - DBCS transform

29 The Client type:

v T- Terminal

v P - Printer

30 Blank

31 The security method used for the TCP/IP
connection:

v B - Basic (no security)

v S - Secureport managed by Telnet

v T - TTLSport managed by AT-TLS

32-33 The security level:

v 12 - TLSv1.2

v 11 - TLSv1.1

v T1 - TLSv1

v S3 - SSLv3

v S2 - SSLv2

34-35 The security cipher used. If the value is 4X,
the security cipher must be obtained from
offset 37.

36 Blank

37-40 The security cipher that is used if the
security method is TTLSport that is
managed by AT-TLS; blank otherwise.

1010 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The following shows an example of the application data after a SNA session is
established.
0000000001111111111222222222233333333334
1234567890123456789012345678901234567890

EZBTNSRV TCPM1001 TSO10005 ET TT105 0005

Appendix G. Application data 1011

1012 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix H. X Window System interface V11R4 and Motif
version 1.1

Support for X Window System Version 11 Release 4 and Motif Version 1.1 is
available as feature HIP614X and is documented here.

The current support, provided as part of the base IP support in z/OS
Communications Server, is documented in Chapter 7, “X Window System interface
in the z/OS Communications Server environment,” on page 183.

The X Window System support provided with TCP/IP includes the following APIs
from the X Window System Version 11 Release 4:
v SEZAX11L (Xlib, Xmu, Xext, and Xau routines)
v SEZAOLDX (X Release 10 compatibility routines)
v SEZAXTLB (Xt Intrinsics)
v SEZAXAWL (Athena widget set)
v Header files needed for compiling X clients
v Standard MIT X clients
v Sample X clients (XSAMP1, XSAMP2, and XSAMP3)
v SEZARNT1 (a combination of the X Window System libraries listed previously

and SEZACMTX)

Note: SEZARNT1 contains the reentrant versions of the libraries.
v SEZARNT2 (Athena widget set for reentrant modules)
v SEZARNT3 (Motif widget set for reentrant modules). The SEZARNT1,

SEZARNT2, and SEZARNT3 library members are:
– Fixed block 80, in object deck format.
– Compiled with the C/370 RENT compile-time option.
– Used as input for X Window System and socket programmers who make

their programs reentrant.
– Passed to the C/370 prelinker. Use the prelink utility to combine all input text

decks into a single text deck.

The X Window System support provided with TCP/IP also includes the following
APIs based on Release 1.1 of the Motif-based widget set:
v SEZAXMLB Motif-based widget set)
v Header files needed for compiling clients using the Motif-based widget set.

Three-dimensional graphics are available as an extension of the X Window System.
For information about using three-dimensional graphics, see PEXlib Specification
and C Language Binding, SR28-5166.

In addition, the X Window System support provided with TCP/IP includes
support for z/OS UNIX System Services. For information about the z/OS UNIX
System Services support provided, see “X Window System routines: z/OS UNIX
System Services support” on page 1066.

© Copyright IBM Corp. 2000, 2015 1013

Software requirements for X Window System interface V11R4 and
Motif version 1.1

Application programs using the X Window System API are written in C and
should be compiled, linked, and run using the z/OS Language Environment z/OS
C/C++ compiler and run-time environment.

To run sample X clients (XSAMP1, XSAMP2, and XSAMP3), you require IBM C for
System/370, Library Licensed Program (5688-188).

How the X Window System interface works in the MVS environment
The X Window System is a network transparent protocol that supports windowing
and graphics. The protocol is communicated between a client or application and an
X server over a reliable bidirectional byte stream. This byte stream is provided by
the TCP/IP communication protocol. In the MVS environment, X Window System
support consists of a set of application calls that create the X protocol, as requested
by the application. This application programming interface allows an application to
be created, which uses the X Window System protocol to be displayed on an
X server.

In an X Window System environment, the X server distributes user input to and
accepts requests from various client programs located either on the same system or
elsewhere on a network. The X client code uses sockets to communicate with the
X server.

Figure 35 on page 1015 shows a high-level abstraction of how the X Window
System works in an MVS environment. As an application writer, you need to be
concerned only with the client API in writing your application.

1014 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The communication path from the MVS X Window System application to the
server involves the client code and TCP/IP. The application program that you
create is the client part of a client-server relationship. The X server provides access
to the resources that are shared among many X applications, such as the screen,
keyboard, mouse, fonts, and graphics contexts. A single X server can control more
than one physical screen.

Each client can interact with multiple servers, and each server can interact with
multiple clients.

If your application is written to the Xlib interface, it calls XOpenDisplay() to start
communication with an X server on a workstation. The Xlib code opens a
communication path called a socket to the X server, and sends the appropriate X
protocol to initiate client-server communication.

The X protocol generated by the Window System client code uses an ISO Latin-1
encoding for character strings, while the MVS encoding for character strings is
EBCDIC. The X Window System client code in the MVS environment
automatically transforms character strings from EBCDIC to ISO Latin-1 or from
ISO Latin-1 to EBCDIC, as needed using internal translate tables.

In the MVS environment, external names must be eight characters or less. Many of
the X Window System application programming interface names exceed this limit.
To support the X API in MVS, all X names longer than eight characters are
remapped to unique names using the C compiler preprocessor. This name
remapping is found in a file called X11GLUE.H, which is automatically included in

MVS
Application

X11.4 Routines

TCP/IP for MVS

X server

iucv iucv

TCPIP

Address

Space

(X client)

(Xlib)

XOpenDisplay()

socket()
INTERNET

Figure 35. MVS X Window System application to server

Appendix H. X Window System interface V11R4 and Motif version 1.1 1015

your program when you include the standard X header file called XLIB.H. When
debugging your application, you can see the X11GLUE.H file to find the remapped
names of the X API routines.

X Window System interface in the MVS environment: Identifying the
target display

The user_id.XWINDOWS.DISPLAY data set is used by the X Window System to
identify the host name of the target display.

The following is the format of the environment variable in the
user_id.XWINDOWS.DISPLAY data set:

�� host_name:target_server
.target_screen

��

The environment variable in the user_id.XWINDOWS.DISPLAY data set contains
the following values:

Value Description

host_name
Specifies the host name or IP address of the host machine on which the
X Window System server is running.

target_server
Specifies the number of the display server on the host machine.

target_screen
Specifies the screen to be used on the same target server.

Notes:

1. You should be aware that the userid.XWINDOWS.DISPLAY data set cannot
contain sequence numbers.

2. For information about identifying the target display in z/OS UNIX System
Services see, “Identifying the target display in z/OS UNIX System Services” on
page 1068.

X Window System interface in the MVS environment: Application
resource file

With the X Window System, you can modify certain characteristics of an
application at run time by means of application resources. Typically, application
resources are set to tailor the appearance and possibly the behavior of an
application. The application resources can specify information about an
application’s window sizes, placement, coloring, font usage, and other functional
details.

On a UNIX system, this information can be found in the user’s home directory in a
file called .Xdefaults. In the MVS environment, this data set is called user_id
.X.DEFAULTS. Each line of this data set represents resource information for an
application.

1016 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Note: For information about the application resource file in z/OS UNIX System
Services, see “X Window System routines: z/OS UNIX System Services support”
on page 1066.

Figure 36 shows an example of a set of resources specified for a typical X Window
System application.

In this example, the xclock application automatically creates a window in the lower
left corner of the screen with a digital display in orange letters on a skyblue
background.

These resources can also be set on the RESOURCE_MANAGER property of the X
server, which allows a single, central place where resources are found, that control
all applications, displayed on an X server. You can use the xrdb program to control
the X server resource database in the resource property.

xrdb is an X client that you can use either to get or to set the contents of the
RESOURCE_MANAGER property on the root window of screen 0. This property is
then used by all applications at startup to control the application resource.

X Window System interface in the MVS environment: Creating an
application

To create an application that uses the X Window System protocol, you should
study the X Window System application programming interface. In addition,
sample programs called XSAMP1, XSAMP2, and XSAMP3 (see “Using sample
X Window System programs” on page 1023) illustrate simple examples of
programs that use the X Window System API. These programs are distributed
with TCP/IP.

You should ensure that the first X header file your program includes is the XLIB.H
header file. This file defines a number of preprocessor symbols, which enable your
program to compile correctly. If your program uses the Xt Intrinsics, you should
ensure that the INTRINSIC.H header file is the first X header file included in your
program. This file contains a number of preprocessor symbols that allow your
program to compile correctly. In addition, these header files include the MVS
header files that remap the external names of the X Window System routines to
the shorter names used by the X Window System that is supported by TCP/IP.

X Window System header files
This topic describes the X Window System, X Intrinsics, Athena widget set, and
Motif-based widget set headers used by X Window System applications.

XClock*geometry: 500x60+5-5
XClock*font: -bitstream-*-bold-r-*-33-240-*
XClock*foreground: orange
XClock*background: skyblue
XClock*borderWidth: 4
XClock*borderColor: blue
XClock*analog: false

Figure 36. Resources specified for a typical X Window System application

Appendix H. X Window System interface V11R4 and Motif version 1.1 1017

X Window System and Xt Intrinsics header files
The following is a list of X Window System and Xt Intrinsics headers:

ap@keysy.h
Atoms.h
Callback.h
CharSet.h
CloseHoo.h
ComposiI.h
ComposiP.h
Composit.h
Constrai.h
ConstraP.h
Converte.h
ConvertI.h
copyrigh.h
Core.h
CoreP.h
cursorfo.h
CurUtil.h
CvtCache.h
DECkeysy.h
DisplayQ.h
Drawing.h
Error.h
EventI.h
extutil.h
fd.h
InitialI.h
Initer.h

IntriniI.h
IntriniP.h
Intrinsi.h
keysym.h
keysymde.h
ks@names.h
Misc.h
MITMisc.h
mitmiscs.h
multibst.h
multibuf.h
Object.h
ObjectP.h
PassivGr.h
poly.h
Quarks.h
RectObj.h
RectObjP.h
region.h
Resource.h
Selectio.h
shape.h
shapestr.h
Shell.h
ShellP.h
StdCmap.h
StdSel.h

StringDe.h
SysUtil.h
Translat.h
VarargsI.h
Vendor.h
VendorP.h
WinUtil.h
X.h
Xatom.h
Xatomtyp.h
Xauth.h
Xct.h
Xext.h
Xkeymap.h
Xlib.h
Xlibint.h
Xlibos.h
Xllglue.h
Xmd.h
Xmu.h
Xos.h
Xproto.h
Xprotost.h
Xresourc.h
Xt@remap.h
Xtos.h
Xutil.h
XWDFile.h
X10.h

Athena widget set header files
The following is a list of the Athena widget set headers:

ACommand.h
ACommanP.h
AForm.h
AFormP.h
ALabel.h
ALabelP.h
AList.h
AListP.h
AScrollb.h
AScrollP.h
AText.h
ATextP.h
ATextSrP.h
AsciiSin.h
AscSinkP.h
AsciiSrc.h
AscSrcP.h
AsciiTex.h
AscTextP.h
Box.h

BoxP.h
Cardinal.h
Clock.h
ClockP.h
CommandI.h
Dialog.h
DialogP.h
Grip.h
GripP.h
Logo.h
LogoP.h
Mailbox.h
MailboxP.h
MenuButP.h
MenuButt.h
Paned.h
PanedP.h
Scroll.h
Simple.h
SimpleMP.h

SimpleMe.h
SimpleP.h
Sme.h
SmeBSB.h
SmeBSBP.h
SmeLine.h
SmeLineP.h
SmeP.h
StripChP.h
StripCha.h
Template.h
TemplatP.h
TextSink.h
TextSinP.h
TextSrc.h
Toggle.h
ToggleP.h
VPaned.h
Viewport.h
ViewporP.h
XawInit.h

1018 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Motif header files
The following is a list of headers for the Motif-based widget set:

ArrowB.h
ArrowBG.h
ArrowBGP.h
ArrowBP.h
bitmaps.h
BulletBP.h
Bulletin.h
CascaBGP.h
CascadBG.h
CascaBGP.h
CascadBP.h
CascadeB.h
Command.h
CommandP.h
CutPaste.h
CutPastP.h
DialogS.h
DialogSP.h
DrawingA.h
DrawinAP.h
DrawnB.h
DrawnBP.h
FileSB.h
FileSBP.h
Form.h

FormP.h
Frame.h
FrameP.h
Label.h
LabelG.h
LabelGP.h
LabelP.h
List.h
ListP.h
MainW.h
MainWP.h
MenuShel.h
MenuShep.h
MessagBP.h
MessageB.h
PanedW.h
PanedWP.h
PushB.h
PushBG.h
PushBGP.h
PushBP.h
RowColum.h
RowColuP.h

SashP.h
Scale.h
ScaleP.h
ScrollBa.h
ScrollBP.h
Scrolled.h
ScrollWP.h
SelectBP.h
SelectiB.h
SeparaGP.h
SeparatG.h
Separato.h
SeparatP.h
StringSr.h
Text.h
TextInP.h
TextOutP.h
TextP.h
TextSrcP.h
TogglBGP.h
ToggleB.h
ToggleBG.h
ToggleBP.h
Xm.h
XmP.h

X Window System interface in the MVS environment: Compiling and
linking

You can use several methods to compile, link-edit, and execute your program in
MVS. This topic contains information about the data sets that you must include to
run your C source program under MVS batch using cataloged procedures supplied
by IBM.

The following list contains partitioned data set names, which are used as examples
in the JCL statements below:

Data Set Name
Contents

user_id.MYPROG.C
Contains user C source programs.

user_id.MYPROG.C(PROGRAM1)
Member PROGRAM1 in user_id.MYPROG.C partitioned data set.

user_id.MYPROG.H
Contains user #include files.

user_id.MYPROG.OBJ
Contains object code for the compiled versions of user C programs in
user_id.MYPROG.C.

user_id.MYPROG.LOAD
Contains link-edited versions of user programs in user_id.MYPROG.OBJ.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1019

X Window System interface in the MVS environment:
Nonreentrant modules

The following lines describe the additions that you must make to the compilation
step of your cataloged procedure to compile a nonreentrant module. Catalogued
procedures are included in the samples supplied by IBM for your MVS system.

Note: Compile all C source using the def(IBMCPP) preprocessor symbol.
v Add the following statement as the first //SYSLIB DD statement:

//SYSLIB DD DSN=SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:
//USERLIB DD DSN=user_id.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the link-edit step
of your cataloged procedure to link-edit a nonreentrant module:
v To link-edit programs that use only X11 library functions, add the following

statements as the first //SYSLIB DD statements:
// DD DSN=SEZAX11L,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

v You must include the following statements when you link-edit your application
code, because not all entry points are defined as external references in
SEZAX11L:

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)

v To link-edit programs that use the Athena Toolkit functions, including Athena
widget sets, add the following after the //SYSLIB DD statement:

// DD DSN=SEZAXAWL,DISP=SHR
// DD DSN=SEZAXTLB,DISP=SHR
// DD DSN=SEZAX11L,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

v You must include the following when you link-edit your application code,
because not all entry points are defined as external references in SEZAX11L,
SEZAXTLB, and SEZAXAWL:

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ASCTEXT)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(ATEXT)

v To link-edit programs that use the Motif Toolkit functions, add the following
after the //SYSLIB DD statement:

// DD DSN=SEZAXMLB,DISP=SHR
// DD DSN=SEZAXTLB,DISP=SHR
// DD DSN=SEZAX11L,DISP=SHR
// DD DSN=SEZACMTX,DISP=SHR

1020 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

v You must include the following when you link-edit your application code,
because not all entry points are defined as external references in SEZAX11L,
SEZAXTLB, and SEZAXMLB.

INCLUDE SYSLIB(XMACROS)
INCLUDE SYSLIB(XLIBINT)
INCLUDE SYSLIB(XRM)
INCLUDE SYSLIB(CALLBACK)
INCLUDE SYSLIB(CONVERT)
INCLUDE SYSLIB(CONVERTE)
INCLUDE SYSLIB(INTRINSI)
INCLUDE SYSLIB(DISPLAY)
INCLUDE SYSLIB(ERROR)
INCLUDE SYSLIB(EVENT)
INCLUDE SYSLIB(NEXTEVEN)
INCLUDE SYSLIB(TMSTATE)
INCLUDE SYSLIB(ATOMS)
INCLUDE SYSLIB(CUTPASTE)
INCLUDE SYSLIB(FILESB)
INCLUDE SYSLIB(GEOUTILS)
INCLUDE SYSLIB(LIST)
INCLUDE SYSLIB(MANAGER)
INCLUDE SYSLIB(PRIMITIV)
INCLUDE SYSLIB(RESIND)
INCLUDE SYSLIB(ROWCOLUM)
INCLUDE SYSLIB(MSELECTI)
INCLUDE SYSLIB(TEXT)
INCLUDE SYSLIB(TEXTF)
INCLUDE SYSLIB(TRAVERSA)
INCLUDE SYSLIB(VISUAL)
INCLUDE SYSLIB(XMSTRING)

Note: If you are using X Release 10 compatibility routines, add the following in
the //SYSLIB DD statement:

// DD DSN=SEZAOLDX,DISP=SHR

The following steps describe how to run your program:
1. Specify the IP address of the X server on which you want to display the

application output by creating or modifying the user_id.XWINDOWS.DISPLAY
data set. The following is an example of a line in this data set.

CHARM.RALEIGH.IBM.COM:0.0 or 9.67.43.79:0.0

2. Allow the host application access to the X server.
3. On the workstation where you want to display the application output, you

must grant permission for the MVS host to access the X server. To do this, enter
the xhost command:
xhost ralmvs1

4. To run your program under TSO, enter the following:
CALL 'user_id.MYPROG.LOAD(PROGRAM1)'

X Window System interface in the MVS environment:
Reentrant modules

The following lines describe the additions that you must make to the compilation
step of your cataloged procedure to compile a reentrant module. Cataloged
procedures are included in the samples supplied by IBM for your MVS system.

Note: Compile all C source using the def(IBMCPP) preprocessor symbol. See
“X Window System interface in the MVS environment: Compiling and linking” on
page 1019 for information about compiling and linking your program in MVS.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1021

v Add the following statement as the first //SYSLIB DD statement:
//SYSLIB DD DSN=SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:
//USERLIB DD DSN=user_id.MYPROG.H,DISP=SHR

The following lines describe the additions that you must make to the prelink-edit
and link-edit steps of your cataloged procedure to create a reentrant module.
v To create reentrant modules that use only the X11 library functions, do the

following:
– Add the following statement as the first //SYSLIB DD statement in the

prelink-edit step:
// DD DSN=SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the
link-edit step:

// DD DSN=SEZACMTX,DISP=SHR

v To create reentrant modules that use only the Athena Toolkit functions,
including Athena widget sets, do the following:
– Add the following statements as the first //SYSLIB DD statements in the

prelink-edit step:
// DD DSN=SEZARNT2,DISP=SHR
// DD DSN=SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the
link-edit step:

// DD DSN=SEZACMTX,DISP=SHR

v To create reentrant modules that use only the Motif Toolkit functions, do the
following:
– Add the following statements as the first //SYSLIB DD statements in the

prelink-edit step:
// DD DSN=SEZARNT3,DISP=SHR
// DD DSN=SEZARNT1,DISP=SHR

– Add the following statement as the first //SYSLIB DD statement in the
link-edit step:

// DD DSN=SEZACMTX,DISP=SHR

Following is a sample cataloged procedure for an X11 library function.
//*---
//* PRELINK-EDIT STEP:
//*---
//PRELNK EXEC PGM=EDCPRLK,REGION=4096K,COND=(4,LT),
// PARM=’MAP,NONCAL’
//STEPLIB DD DSN=C370.LL.V2R1M0.SEDCLINK,DISP=SHR
// DD DSN=C370.LL.V2R1M0.COMMON.SIBMLINK,DISP=SHR
// DD DSN=C370.LL.V2R1M0.SEDCCOMP,DISP=SHR
//SYSLIB DD DSN=B37.SEZARNT1,DISP=SHR
//OBJLIB DD DSN=&OBJLIB;,DISP=SHR;
//SYSMOD DD UNIT=VIO,SPACE=(TRK,(50,10)),DISP=(MOD,PASS),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSMSGS DD DSN=C370.V2R1M0.SEDCMSGS(EDCMSGE),DISP=SHR
//SYSPRINT DD SYSOUT=&SYSOUT;
//SYSOUT DD SYSOUT=&SYSOUT;
//*
//*---
//* LINK-EDIT STEP:
//*---
//LKED EXEC PGM=IEWL,PARM=’&LPARM;’,COND=(4,LT)
//SYSLIB DD DSN=&VSCCHD;&CVER;&CBASE;,DISP=SHR;

1022 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

// DD DSN=C370.LL.V2R1M0.COMMON.SIBMLINK,DISP=SHR
// DD DSN=&COMHD;&COMVER;&COMBASE;,DISP=SHR;
// DD DSN=C370.V2R1M0.SEDCSPC,DISP=SHR
// DD DSN=B37.SEZACMTX,DISP=SHR
//NEWOBJ DD DSN=*.PRELNK.SYSMOD,DISP=(OLD,DELETE)
//OBJLIB DD DSN=&OBJLIB;,DISP=SHR;
//SYSLMOD DD DSN=&XWDLOAD;,DISP=SHR;
//SYSPRINT DD SYSOUT=&SYSOUT;
//SYSUT1 DD DSN=&&SYSUT1;,UNIT=&WORKDA;,DISP=&LKDISP;,SPACE=&WRKSPC;
//*

Note: For more information about installing a reentrant module in the LPA area,
see z/OS XL C/C++ User's Guide.

The following steps describe how to run your program:
1. Specify the IP address of the X server on which you want to display the

application output by creating or modifying the user_id.XWINDOWS.DISPLAY
data set. The following is an example of a line in this data set:
CHARM.RALEIGH.IBM.COM:0.0 or 9.67.43.79:0.0

2. Allow the host application access to the X server.
On the workstation where you want to display the application output, you
must grant permission for the MVS host to access the X server. To do this, enter
the xhost command:
xhost ralmvs1

3. If you have installed your program in the LPA as a reentrant module and you
want to run it under TSO, enter the following:

PROGRAM1

Note: For more information about compiling and linking, see z/OS XL C/C++
User's Guide.

Using sample X Window System programs
This topic contains information about the sample X programs that are provided.
The C source code can be found in the SEZAINST data set.

The following are sample C source programs:

Module Description
XSAMP1 Xlib sample program
XSAMP2 Athena widget sample program
XSAMP3 Motif-based widget sample program

For information about running a sample program, see “X Window System
interface in the MVS environment: Compiling and linking” on page 1019 and
“Compiling and linking with z/OS UNIX System Services” on page 1068.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1023

X Window System Interface V11r4: Environment variables
Table 359 provides a list of environment variables that can be explicitly set by X
Window System Interface V11r4.

Table 359. Environment variables for X Window System Interface V11r4

Environment variable Description

HOME The system initializes this variable at login to the
path name of the user's home directory.

LANG Determines the locale category for the native
language, local customs, and coded character set in
the absence of the LC_ALL and other LC_* (
LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME)
environment variables. See Note.

LOGNAME The system initializes this variable at login to the
user's login name.

RESOURCE_NAME Used by XtOpenDisplay as an alternative
specification of an application name. There is no
default value.

SESSION_MANAGER If defined, this environment variable causes a
Session Shell widget to connect to a session
manager. There is no default value.

USER The name of the user account; this is determined by
the name that was entered at login.

XAPPLRESDIR Specifies the directory to search for files that contain
application defaults.

XAUTHORITY Specifies the name of the authority file on the local
host.

XBLANGPATH Used to locate desktop icons, if
XMICONBMSEARCHPATH or
XMICONSEARCHPATH are not set.

XENVIRONMENT Contains the full path name of the file that contains
resource defaults. There is no default value.

XFILESEARCHPATH Specifies where the X resources file for the current
locale is located.

XLOCALEDIR Specifies the directory to search for locale files. The
default value is /usr/lib/X11/locale.

XMODIFIERS Used by the XSetLocaleModifiers function to specify
additional modifiers. There is no default value.

XPROPFORMATS Specifies the name of a file from which to obtain
additional formats.

XUSERFILEPATH Specifies the search paths for files containing
application defaults. There is no default value.

1024 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 359. Environment variables for X Window System Interface V11r4 (continued)

Environment variable Description

XWTRACE Controls the generation of traces of the socket level
communications between Xlib and the X Window
System server. These traces are as follows:

v XWTRACE undefined or 0: No trace generated

v XWTRACE=1: Error messages

v XWTRACE>=2: API function tracing for TRANS
functions

There is no default value. The output is sent to
stderr.

Note: This can be used by applications to determine the language to use for error
messages, instructions, collating sequences, date formats, and so on.

Standard X client applications
The following standard MIT X clients are also provided with TCP/IP as examples
of how to use the X Window System API:

Application
Description

appres
Lists application resource database

atobm Bit map conversion utilities

bitmap
Bit map editor

bmtoa Bit map conversion utilities

listres Lists resources in widgets

oclock Displays time of day

xauth X authority data set utility

xcalc Scientific calculator for X

xclock Analog/digital clock for X

xdpyinfo
Displays information utility for X

xfd Font displayer for X

xfontsel
Point and click interface for selecting X11 font names

xkill Stops a client by its X resource

xlogo X Window System logo

xlsatoms
Lists interned atoms defined on server

xlsclients
Lists client applications running on a display

xlsfonts
Displays server font list displayer for X

Appendix H. X Window System interface V11R4 and Motif version 1.1 1025

xlswins
Displays server window list displayer for X

xmag Magnify parts of the screen

xprop Property displayer for X

xrdb X server resource database utility

xrefresh
Refreshes all or part of an X screen

xset User preference utility for X

xsetroot
Root window parameter setting utility for X

xwd Dumps an image of an X window

xwininfo
Window information utility for X

xwud Displays image displayer for X

These standard X Window client application programs also contain information
about X Window System programming techniques.

Consult the following members of the SEZAINST data set for documentation about
the MIT X clients:

Member Name
Description

HLPAPPRE
Help for APPRES module

HLPBITMA
Help for BITMAP module

HLPLISTR
Help for LISTRES module

HLPOCLOC
Help for OCLOCK module

HLPXAUTH
Help for XAUTH module

HLPXCALC
Help for XCALC module

HLPXCLOC
Help for XCLOCK module

HLPXDPYI
Help for XDPYINFO module

HLPXFD
Help for XFD module

HLPXFONT
Help for XFONTSEL module

HLPXKILL
Help for XKILL module

1026 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

HLPXLOGO
Help for XLOGO module

HLPXLSAT
Help for XLSATOMS module

HLPXLSCL
Help for XLSCLIEN module

HLPXLSFO
Help for XLSFONTS module

HLPXLSWI
Help for XLSWINS module

HLPXMAG
Help for XMAG module

HLPXPROP
Help for XPROP module

HLPXRDB
Help for XRDB module

HLPXREFR
Help for XREFRESH module

HLPXSET
Help for XSET module

HLPXSETR
Help for XSETROOT module

HLPXWD
Help for XWD module

HLPXWINI
Help for XWININFO module

HLPXWUD
Help for XWUD module

The SEZAINST data set also contains default application resource data sets for
XCALC, XCLOCK, XFD, and XFONTSEL. Copy these data sets from:
v SEZAINST(XXCALC)
v SEZAINST(XXCLOCK)
v SEZAINST(XXFD)
v SEZAINST(XXFONTSE)

to the following data sets for TSO users:
v user_id.XAPDF.XCALC
v user_id.XAPDF.XCLOCK
v user_id.XAPDF.XFD
v user_id.XAPDF.XFONTSEL

Notes:

1. The EZAGETIN job includes JCL to copy the sample members from SEZAINST
to user_id.XAPDF.classname, where classname is the application specified class
name. The high-level qualifier should be tailored to be the user ID using these
data sets.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1027

2. For information on default application resource data sets for z/OS UNIX
System Services users, see “X Window System routines: z/OS UNIX System
Services support” on page 1066.

Building X client modules
The support for X Window System Version 11 Release 4 provides standard MIT X
clients. The C source and header files are found in SEZAINST and SEZACMAC
data sets respectively.

You can build the following X client modules based on X11 functions:

Table 360. Building X client modules based on X11 functions

To build module Do the following

ATOBM 1. Compile the ATOBM C source program.

2. Link-edit the ATOBM object module.

BITMAP 1. Compile the BITMAP C source program.

2. Compile the BMDIALOG C source program.

3. Link-edit the BITMAP and BMDIALOG object modules.

BMTOA 1. Compile the BMTOA C source program.

2. Link-edit the BMTOA object module.

XAUTH 1. Compile the XAUTH C source program.

2. Compile the GTHOSTXA C source program.

3. Compile the PROCESS source program.

4. Compile the PARSEDPY C source program.

5. Link-edit the XAUTH, GTHOSTXA, PROCESS, and
PARSEDPY object modules.

XDPYINFO C 1. Compile the XDPYINFO C source program.

2. Link-edit the XDPYINFO object module.

XKILL 1. Compile the XKILL C source program.

2. Link-edit the XKILL object module.

XLSATOMS 1. Compile the XLSATOMS C source program.

2. Link-edit the XLSATOMS object module.

XLSCLIEN 1. Compile the XLSCLIEN C source program.

2. Link-edit the XLSCLIEN object module.

XLSFONTS 1. Compile the XLSFONTS C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XLSFONTS and DSIMPLE object modules.

XLSWINS 1. Compile the XLSWINS C source program.

2. Link-edit the XLSWINS object module.

XMAG 1. Compile the XMAG C source program.

2. Link-edit the XMAG object module.

XPROP 1. Compile the XPROP C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XPROP and DSIMPLE object modules.

1028 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 360. Building X client modules based on X11 functions (continued)

To build module Do the following

XRDB 1. Compile the XRDB C source program.

2. Link-edit the XRDB object module.

XREFRESH 1. Compile the XREFRESH C source program.

2. Link-edit the XREFRESH object module.

XSET 1. Compile the XSET C source program.

2. Link-edit the XSET object module.

XSETROOT 1. Compile the XSETROOT C source program.

2. Link-edit the XSETROOT object module.

XWD 1. Compile the XWD C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XWD and DSIMPLE object modules.

XWININFO 1. Compile the XWININFO C source program.

2. Compile the DSIMPLE C source program.

3. Link-edit the XWININFO and DSIMPLE object modules.

XWUD 1. Compile the XWUD C source program.

2. Link-edit the XWUD object module.

You can build the following X client modules based on Xt Intrinsics and Athena
Toolkit functions:

Table 361. Building X client modules based on Xt Intrinsics and Athena Toolkit functions

To build module Do the following

APPRES 1. Compile the APPRES C source program.

2. Link-edit the APPRES object module.

OCLOCK 1. Compile the OCLOCK C source program.

2. Compile the NCLOCK C source program.

3. Compile the TRANSFOR C source program.

4. Link-edit the OCLOCK, NCLOCK, and TRANSFOR object
modules.

LISTRES 1. Compile the LISTRES C source program.

2. Compile the UTIL C source program.

3. Compile the WIDGETS C source program.

4. Link-edit the LISTRES, UTIL, and WIDGETS object
modules.

XCALC 1. Compile the XCALC C source program.

2. Compile the ACTIONS C source program.

3. Compile the MATH C source program.

4. Link-edit the XCALC, ACTIONS, and MATH object
modules.

XCLOCK 1. Compile the XCLOCK C source program.

2. Link-edit the XCLOCK object module.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1029

Table 361. Building X client modules based on Xt Intrinsics and Athena Toolkit
functions (continued)

To build module Do the following

XFD 1. Compile the XFD C source program.

2. Compile the FONTGRID C source program.

3. Link-edit the XFD and FONTGRID object modules.

XFONTSEL 1. Compile the XFONTSEL C source program.

2. Link-edit the XFONTSEL object module.

XLOGO 1. Compile the XLOGO C source program.

2. Link-edit the XLOGO object module.

X Window System routines
The following tables list the routines supported by TCP/IP. The routines are
grouped according to the type of function provided.

X Window System routines: Opening and closing a display
Table 362 provides the routines for opening and closing a display.

Table 362. Opening and closing display

Routine Description

XCloseDisplay() Closes a display.

XFree() Frees in-memory data created by Xlib function.

XNoOp() Executes a NoOperation protocol request.

XOpenDisplay() Opens a display.

X Window System routines: Creating and destroying windows
Table 363 provides the routines for creating and destroying windows.

Table 363. Creating and destroying windows

Routine Description

XConfigureWindow() Configures the specified window.

XCreateSimpleWindow() Creates unmapped InputOutput subwindow.

XCreateWindow() Creates unmapped subwindow.

XDestroySubwindows() Destroys all subwindows of specified window.

XDestroyWindow() Unmaps and destroys window and all subwindows.

X Window System routines: Manipulating windows
Table 364 provides the routines for manipulating windows.

Table 364. Manipulating windows

Routine Description

XCirculateSubwindows() Circulates a subwindow up or down.

XCirculateSubwindowsUp() Raises the lowest mapped child of window.

XCirculateSubwindowsDown() Lowers the highest mapped child of window.

1030 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 364. Manipulating windows (continued)

Routine Description

XIconifyWindow() Sends a WM_CHANGE_STATE ClientMessage to the root
window of the specified screen.

XLowerWindow() Lowers the specified window.

XMapRaised() Maps and raises the specified window.

XMapSubwindows() Maps all subwindows of the specified window.

XMapWindow() Maps the specified window.

XMoveResizeWindow() Changes the specified window size and location.

XMoveWindow() Moves the specified window.

XRaiseWindow() Raises the specified window.

XReconfigureWMWindow() Issues a ConfigureWindow request on the specified
top-level window.

XResizeWindow() Changes the specified window’s size.

XRestackWindows() Restacks a set of windows from top to bottom.

XSetWindowBorderWidth() Changes the border width of the window.

XUnmapSubwindows() Unmaps all subwindows of the specified window.

XUnmapWindow() Unmaps the specified window.

XWithdrawWindow() Unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified
screen.

X Window System routines: Changing window attributes
Table 365 provides the routines for changing window attributes.

Table 365. Changing window attributes

Routine Description

XChangeWindowAttributes() Changes one or more window attributes.

XSetWindowBackground() Sets the window background to a specified pixel.

XSetWindowBackgroundPixmap() Sets the window background to a specified pixmap.

XSetWindowBorder() Changes the window border to a specified pixel.

XSetWindowBorderPixmap() Changes the window border tile.

XTranslateCoordinates() Transforms coordinates between windows.

X Window System routines: Obtaining window information
Table 366 provides the routines for obtaining window information.

Table 366. Obtaining window information

Routine Description

XGetGeometry() Gets the current geometry of the specified drawable.

XGetWindowAttributes() Gets the current attributes for the specified window.

XQueryPointer() Gets the pointer coordinates and the root window.

XQueryTree() Obtains the IDs of the children and parent windows.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1031

X Window System routines: Obtaining properties and atoms
Table 367 provides the routines for obtaining properties and atoms.

Table 367. Properties and atoms

Routine Description

XGetAtomName() Gets a name for the specified atom ID.

XInternAtom() Gets an atom for the specified name.

X Window System routines: Manipulating window properties
Table 368 provides the routines for manipulating the properties of windows.

Table 368. Manipulating window properties

Routine Description

XChangeProperty() Changes the property for the specified window.

XDeleteProperty() Deletes a property for the specified window.

XGetWindowProperty() Gets the atom type and property format for the window.

XListProperties() Gets the specified window property list.

XRotateWindowProperties() Rotates the properties in a property array.

X Window System routines: Setting window selections
Table 369 provides the routines for setting window selections.

Table 369. Setting window selections

Routine Description

XConvertSelection() Converts a selection.

XGetSelectionOwner() Gets the selection owner.

XSetSelectionOwner() Sets the selection owner.

X Window System routines: Manipulating colormaps
Table 370 provides the routines for manipulating color maps.

Table 370. Manipulating colormaps

Routine Description

XAllocStandardColormap() Allocates an XStandardColormap structure.

XCopyColormapAndFree() Creates a new colormap from a specified colormap.

XCreateColormap() Creates a colormap.

XFreeColormap() Frees the specified colormap.

XQueryColor() Queries the RGB value for a specified pixel.

XQueryColors() Queries the RGB values for an array of pixels.

XSetWindowColormap() Sets the colormap of the specified window.

1032 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

X Window System routines: Manipulating color cells
Table 371 provides the routines for manipulating color cells.

Table 371. Manipulating color cells

Routine Description

XAllocColor() Allocates a read-only color cell.

XAllocColorCells() Allocates read/write color cells.

XAllocColorPlanes() Allocates read/write color resources.

XAllocNamedColor() Allocates a read-only color cell by name.

XFreeColors() Frees colormap cells.

XLookupColor() Looks up a colorname.

XStoreColor() Stores an RGB value into a single colormap cell.

XStoreColors() Stores RGB values into colormap cells.

XStoreNamedColor() Sets a pixel color to the named color.

X Window System routines: Creating and freeing pixmaps
Table 372 provides the routines for creating and freeing pixmaps.

Table 372. Creating and freeing pixmaps

Routine Description

XCreatePixmap() Creates a pixmap of a specified size.

XFreePixmap() Frees all storage associated with specified pixmap.

X Window System routines: Manipulating graphics contexts
Table 373 provides the routines for manipulating graphics contexts.

Table 373. Manipulating graphics contexts

Routine Description

XChangeGC() Changes the components in the specified Graphics
Context (GC).

XCopyGC() Copies the components from a source GC to a destination
GC.

XCreateGC() Creates a new GC.

XFreeGC() Frees the specified GC.

XGetGCValues() Returns the GC values in the specified structure.

XGContextFromGC() Obtains the GContext resource ID for GC.

XQueryBestTile() Gets the best fill tile shape.

XQueryBestSize() Gets the best size tile, stipple, or cursor.

XQueryBestStipple() Gets the best stipple shape.

XSetArcMode() Sets the arc mode of the specified GC.

XSetBackground() Sets the background of the specified GC.

XSetClipmask() Sets the clip_mask of the specified GC to a specified
pixmap.

XSetClipOrigin() Sets the clip origin of the specified GC.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1033

Table 373. Manipulating graphics contexts (continued)

Routine Description

XSetClipRectangles() Sets the clip_mask of GC to a list of rectangles.

XSetDashes() Sets the dashed line style components of a specified GC.

XSetFillRule() Sets the fill rule of the specified GC.

XSetFillStyle() Sets the fill style of the specified GC.

XSetFont() Sets the current font of the specified GC.

XSetForeground() Sets the foreground of the specified GC.

XSetFunction() Sets display function in the specified GC.

XSetGraphicsExposures() Sets the graphics exposure flag of the specified GC.

XSetLineAttributes() Sets the line drawing components of the GC.

XSetPlaneMask() Sets the plane mask of the specified GC.

XSetState() Sets the foreground, background, plane mask, and
function in GC.

XSetStipple() Sets the stipple of the specified GC.

XSetSubwindowMode() Sets the subwindow mode of the specified GC.

XSetTile() Sets the fill tile of the specified GC.

XSetTSOrigin() Sets the tile or stipple origin of the specified GC.

X Window System routines: Clearing and copying areas
Table 374 provides the routines for clearing and copying areas.

Table 374. Clearing and copying areas

Routine Description

XClearArea() Clears a rectangular area of the window.

XClearWindow() Clears the entire window.

XCopyArea() Copies the drawable area between drawables of the same
root and the same depth.

XCopyPlane() Copies single bit plane of the drawable.

X Window System routines: Drawing lines
Table 375 provides the routines for drawing lines.

Table 375. Drawing lines

Routine Description

XDraw() Draws an arbitrary polygon or curve that is defined by
the specified list of Vertexes as specified in vlist.

XDrawArc() Draws a single arc in the drawable.

XDrawArcs() Draws multiple arcs in a specified drawable.

XDrawFilled() Draws arbitrary polygons or curves and then fills them.

XDrawLine() Draws a single line between two points in a drawable.

XDrawLines() Draws multiple lines in the specified drawable.

XDrawPoint() Draws a single point in the specified drawable.

XDrawPoints() Draws multiple points in the specified drawable.

1034 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 375. Drawing lines (continued)

Routine Description

XDrawRectangle() Draws an outline of a single rectangle in the drawable.

XDrawRectangles() Draws an outline of multiple rectangles in the drawable.

XDrawSegments() Draws multiple line segments in the specified drawable.

X Window System routines: Filling areas
Table 376 provides the routines for filling areas.

Table 376. Filling areas

Routine Description

XFillArc() Fills single arc in drawable.

XFillArcs() Fills multiple arcs in drawable.

XFillPolygon() Fills a polygon area in the drawable.

XFillRectangle() Fills single rectangular area in the drawable.

XFillRectangles() Fills multiple rectangular areas in the drawable.

X Window System routines: Loading and freeing fonts
Table 377 provides the routines for loading and freeing fonts.

Table 377. Loading and freeing fonts

Routine Description

XFreeFont() Unloads the font and frees the storage used by the font.

XFreeFontInfo() Frees the font information array.

XFreeFontNames() Frees a font name array.

XFreeFontPath() Frees data returned by XGetFontPath.

XGetFontPath() Gets the current font search path.

XGetFontProperty() Gets the specified font property.

XListFontsWithInfo() Gets names and information about loaded fonts.

XLoadFont() Loads a font.

XLoadQueryFont() Loads and queries font in one operation.

XListFonts() Gets a list of available font names.

XQueryFont() Gets information about a loaded font.

XSetFontPath() Sets the font search path.

XUnloadFont() Unloads the specified font.

X Window System routines: Querying character string sizes
Table 378 provides the routines for querying the character size of a string.

Table 378. Querying character string sizes

Routine Description

XFreeStringList() Frees the in-memory data associated with the specified
string list.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1035

Table 378. Querying character string sizes (continued)

Routine Description

XQueryTextExtents() Gets a 1-byte character string bounding box from the
server.

XQueryTextExtents16() Gets a 2-byte character string bounding box from the
server.

XStringListToTextProperty() Converts lists of pointers to character strings and text
properties.

XTextExtents() Gets a bounding box of a 1-byte character string.

XTextExtents16() Gets a bounding box of a 2-byte character string.

XTextPropertyToStringList() Returns a list of strings representing the elements of the
specified XTextProperty structure.

XTextWidth() Gets the width of an 8-bit character string.

XTextWidth16() Gets the width of a 2-byte character string.

X Window System routines: Drawing text
Table 379 provides the routines for drawing text.

Table 379. Drawing text

Routine Description

XDrawImageString() Draws 8-bit image text in the specified drawable.

XDrawImageString16() Draws 2-byte image text in the specified drawable.

XDrawString() Draws 8-bit text in the specified drawable.

XDrawString16() Draws 2-byte text in the specified drawable.

XDrawText() Draws 8-bit complex text in the specified drawable.

XDrawText16() Draws 2-byte complex text in the specified drawable.

X Window System routines: Transferring images
Table 380 provides the routines for transferring images.

Table 380. Transferring images

Routine Description

XGetImage() Gets the image from the rectangle in the drawable.

XGetSubImage() Copies the rectangle on the display to the image.

XPutImage() Puts the image from memory into the rectangle in the
drawable.

X Window System routines: Manipulating cursors
Table 381 provides the routines for manipulating cursors.

Table 381. Manipulating cursors

Routine Description

XCreateFontCursor() Creates a cursor from a standard font.

XCreateGlyphCursor() Creates a cursor from font glyphs.

XDefineCursor() Defines a cursor for a window.

1036 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 381. Manipulating cursors (continued)

Routine Description

XFreeCursor() Frees a cursor.

XQueryBestCursor() Gets useful cursor sizes.

XRecolorCursor() Changes the color of a cursor.

XUndefineCursor() Undefines a cursor for a window.

X Window System routines: Handling window manager
functions

Table 382 provides the routines for handling the window manager functions.

Table 382. Handling window manager functions

Routine Description

XAddToSaveSet() Adds a window to the client saveset.

XAllowEvents() Allows events to be processed after a device is frozen.

XChangeActivePointerGrab() Changes the active pointer grab.

XChangePointerControl() Changes the interactive feel of the pointer device.

XChangeSaveSet() Adds or removes a window from the client’s saveset.

XGetInputFocus() Gets the current input focus.

XGetPointerControl() Gets the current pointer parameters.

XGrabButton() Grabs a mouse button.

XGrabKey() Grabs a single key of the keyboard.

XGrabKeyboard() Grabs the keyboard.

XGrabPointer() Grabs the pointer.

XGrabServer() Grabs the server.

XInstallColormap() Installs a colormap.

XKillClient() Removes a client.

XListInstalledColormaps() Gets a list of currently installed colormaps.

XRemoveFromSaveSet() Removes a window from the client’s saveset.

XReparentWindow() Changes the parent of a window.

XSetCloseDownMode() Changes the close down mode.

XSetInputFocus() Sets the input focus.

XUngrabButton() Ungrabs a mouse button.

XUngrabKey() Ungrabs a key.

XUngrabKeyboard() Ungrabs the keyboard.

XUngrabPointer() Ungrabs the pointer.

XUngrabServer() Ungrabs the server.

XUninstallColormap() Uninstalls a colormap.

XWarpPointer() Moves the pointer to an arbitrary point on the screen.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1037

X Window System routines: Manipulating keyboard settings
Table 383 provides the routines for manipulating keyboard settings.

Table 383. Manipulating keyboard settings

Routine Description

XAutoRepeatOff() Turns off the keyboard auto-repeat.

XAutoRepeatOn() Turns on the keyboard auto-repeat.

XBell() Sets the volume of the bell.

XChangeKeyboardControl() Changes the keyboard settings.

XChangeKeyboardMapping() Changes the mapping of symbols to keycodes.

XDeleteModifiermapEntry() Deletes an entry from the XModifierKeymap structure.

XFreeModifiermap() Frees XModifierKeymap structure.

XGetKeyboardControl() Gets the current keyboard settings.

XGetKeyboardMapping() Gets the mapping of symbols to keycodes.

XGetModiferMapping() Gets keycodes to be modifiers.

XGetPointerMapping() Gets the mapping of buttons on the pointer.

XInsertModifiermapEntry() Adds an entry to the XModifierKeymap structure.

XNewModifiermap() Creates the XModifierKeymap structure.

XQueryKeymap() Gets the state of the keyboard keys.

XSetPointerMapping() Sets the mapping of buttons on the pointer.

XSetModifierMapping() Sets keycodes to be modifiers.

X Window System routines: Controlling the screen saver
Table 384 provides the routines for controlling the screen saver.

Table 384. Controlling the screen saver

Routine Description

XActivateScreenSaver() Activates the screen saver.

XForceScreenSaver() Turns the screen saver on or off.

XGetScreenSaver() Gets the current screen saver settings.

XResetScreenSaver() Resets the screen saver.

XSetScreenSaver() Sets the screen saver.

X Window System routines: Manipulating hosts and access
control

Table 385 provides the routines for manipulating hosts and toggling the access
control.

Table 385. Manipulating hosts and access control

Routine Description

XDisableAccessControl() Disables access control.

XEnableAccessControl() Enables access control.

XListHosts() Gets the list of hosts.

XSetAccessControl() Changes access control.

1038 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

X Window System routines: Handling events
Table 386 provides the routines for handling events.

Table 386. Handling events

Routine Description

XCheckIfEvent() Checks event queue for the specified event without
blocking.

XCheckMaskEvent() Removes the next event that matches a specified mask
without blocking.

XCheckTypedEvent() Gets the next event that matches event type.

XCheckTypedWindowEvent() Gets the next event for the specified window.

XCheckWindowEvent() Removes the next event that matches the specified
window and mask without blocking.

XEventsQueued() Checks the number of events in the event queue.

XFlush() Flushes the output buffer.

XGetMotionEvents() Gets the motion history for the specified window.

XIfEvent() Checks the event queue for the specified event and
removes it.

XMaskEvent() Removes the next event that matches a specified mask.

XNextEvent() Gets the next event and removes it from the queue.

XPeekEvent() Peeks at the event queue.

XPeekIfEvent() Checks the event queue for the specified event.

XPending() Returns the number of events that are pending.

XPutBackEvent() Pushes the event back to the top of the event queue.

XSelectInput() Selects events to be reported to the client.

XSendEvent() Sends an event to a specified window.

XSync() Flushes the output buffer and waits until all requests are
completed.

XWindowEvent() Removes the next event that matches the specified
window and mask.

X Window System routines: Enabling and disabling
synchronization

Table 387 provides the routines for toggling synchronization.

Table 387. Enabling and disabling synchronization

Routine Description

XSetAfterFunction() Sets the previous after function.

XSynchronize() Enables or disables synchronization.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1039

X Window System routines: Using default error handling
Table 388 provides the routines for using the default error handling.

Table 388. Using default error handling

Routine Description

XDisplayName() Gets the name of the display currently being used.

XGetErrorText() Gets the error text for the specified error code.

XGetErrorDatabaseText() Gets the error text from the error database.

XSetErrorHandler() Sets the error handler.

XSetIOErrorHandler() Sets the error handler for unrecoverable I/O errors.

X Window System routines: Communicating with window
managers

Table 389 provides the routines for communicating with window managers.

Table 389. Communicating with window managers

Routine Description

XAllocClassHints() Allocates storage for an XClassHint structure.

XAllocIconSize() Allocates storage for an XIconSize structure.

XAllocSizeHints() Allocates storage for an XSizeHints structure.

XAllocWMHints() Allocates storage for an XWMHints structure.

XGetClassHint() Gets the class of a window.

XFetchName() Gets the name of a window.

XGetCommand() Gets a window WM_COMMAND property.

XGetIconName() Gets the name of an icon window.

XGetIconSizes() Gets the values of icon size atom.

XGetNormalHints() Gets size hints for window in normal state.

XGetRGBColormaps() Gets colormap associated with specified atom.

XGetSizeHints() Gets the values of type WM_SIZE_HINTS properties.

XGetStandardColormap() Gets colormap associated with specified atom.

XGetTextProperty() Gets window property of type TEXT.

XGetTransientForHint() Gets WM_TRANSIENT_FOR property for window.

XGetWM_CLIENT_MACHINE Gets the value of a window WM_CLIENT_MACHINE
property.

XGetWMColormapWindows) Gets the value of a window
WM_COLORMAP_WINDOWS property.

XGetWMHints() Gets the value of the window manager hints atom.

XGetWMName() Gets the value of the WM_NAME property.

XGetWMIconName() Gets the value of the WM_ICON_NAME property.

XGetWMNormalHints() Gets the value of the window manager hints atom.

XGetWMProtocols() Gets the value of a window WM_ PROTOCOLS property.

XGetWMSizeHints() Gets the values of type WM_SIZE_HINTS properties.

XGetZoomHints() Gets values of the zoom hints atom.

1040 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 389. Communicating with window managers (continued)

Routine Description

XSetCommand() Sets the value of the command atom.

XSetClassHint() Sets the class of a window.

XSetIconName() Assigns a name to an icon window.

XSetIconSizes() Sets the values of icon size atom.

XSetNormalHints() Sets size hints for a window in normal state.

XSetRGBColormaps() Sets the colormap associated with the specified atom.

XSetSizeHints() Sets the values of the type WM_SIZE_HINTS properties.

XSetStandardColormap() Sets the colormap associated with the specified atom.

XSetStandardProperties() Specifies a minimum set of properties.

XSetTextProperty() Sets window properties of type TEXT.

XSetTransientForHint() Sets WM_TRANSIENT_FOR property for window.

XSetWMClientMachine() Sets window WM_CLIENT_MACHINE property.

XSetWMColormapWindows() Sets a window WM_COLORMAP_WINDOWS property.

XSetWMHints() Sets the value of the window manager hints atom.

XSetWMIconName() Sets the value of the WM_ICON_NAME property.

XSetWMName() Sets the value of the WM_NAME property.

XSetWMNormalHints() Sets the value of the window manager hints atom.

XSetWMProperties() Sets the values of properties for a window manager.

XSetWMProtocols() Sets the value of the WM_PROTOCOLS property.

XSetWMSizeHints() Sets the values of type WM_SIZE_HINTS properties.

XSetZoomHints() Sets the values of the zoom hints atom.

XStoreName() Assigns a name to a window.

X Window System routines: Manipulating keyboard event
functions

Table 390 provides the routines for manipulating keyboard event functions.

Table 390. Manipulating keyboard event functions

Routine Description

XKeycodeToKeysym() Converts keycode to a keysym value.

XKeysymToKeycode() Converts keysym value to keycode.

XKeysymToString() Converts keysym value to keysym name.

XLookupKeysym() Translates a keyboard event into a keysym value.

XLookupMapping() Gets the mapping of a keyboard event from a keymap
file.

XLookupString() Translates the keyboard event into a character string.

XRebindCode() Changes the keyboard mapping in the keymap file.

XRebindKeysym() Maps the character string to a specified keysym and
modifiers.

XRefreshKeyboardMapping() Refreshes the stored modifier and keymap information.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1041

Table 390. Manipulating keyboard event functions (continued)

Routine Description

XStringToKeysym() Converts the keysym name to the keysym value.

XUseKeymap() Changes the keymap files.

XGeometry() Parses window geometry given padding and font values.

XGetDefault() Gets the default window options.

XParseColor() Obtains RGB values from color name.

XParseGeometry() Parses standard window geometry options.

XWMGeometry() Obtains a window’s geometry information.

X Window System routines: Manipulating regions
Table 391 provides the routines for manipulating regions.

Table 391. Manipulating regions

Routine Description

XClipBox() Generates the smallest enclosing rectangle in the region.

XCreateRegion() Creates a new empty region.

XEmptyRegion() Determines whether a specified region is empty.

XEqualRegion() Determines whether two regions are the same.

XIntersectRegion() Computes the intersection of two regions.

XDestroyRegion() Frees storage associated with the specified region.

XOffsetRegion() Moves the specified region by the specified amount.

XPointInRegion() Determines if a point lies in the specified region.

XPolygonRegion() Generates a region from points.

XRectInRegion() Determines if a rectangle lies in the specified region.

XSetRegion() Sets the GC to the specified region.

XShrinkRegion() Reduces the specified region by a specified amount.

XSubtractRegion() Subtracts two regions.

XUnionRegion() Computes the union of two regions.

XUnionRectWithRegion() Creates a union of source region and rectangle.

XXorRegion() Gets the difference between the union and intersection of
regions.

X Window System routines: Using cut and paste buffers
Table 392 provides the routines for using cut and paste buffers.

Table 392. Using cut and paste buffers

Routine Description

XFetchBuffer() Gets data from a specified cut buffer.

XFetchBytes() Gets data from the first cut buffer.

XRotateBuffers() Rotates the cut buffers.

XStoreBuffer() Stores data in a specified cut buffer.

XStoreBytes() Stores data in first cut buffer.

1042 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

X Window System routines: Querying visual types
Table 393 provides the routines for querying visual types.

Table 393. Querying visual types

Routine Description

XGetVisualInfo() Gets a list of visual information structures.

XListDepths() Determines the number of depths that are available on a
given screen.

XListPixmapFormats() Gets the pixmap format information for a given display.

XMatchVisualInfo() Gets visual information matching screen depth and class.

XPixmapFormatValues() Gets the pixmap format information for a given display.

X Window System routines: Manipulating images
Table 394 provides the routines for manipulating images.

Table 394. Manipulating images

Routine Description

XAddPixel() Increases each pixel in pixmap by a constant value.

XCreateImage() Allocates memory for the XImage structure.

XDestroyImage() Frees memory for the XImage structure.

XGetPixel() Gets a pixel value in an image.

XPutPixel() Sets a pixel value in an image.

XSubImage() Creates an image that is a subsection of a specified image.

X Window System routines: Manipulating bit maps
Table 395 provides the routines for manipulating bit maps.

Table 395. Manipulating bit maps

Routine Description

XCreateBitmapFromData() Includes a bit map in the C program.

XCreatePixmapFromBitmapData() Creates a pixmap using bit map data.

XDeleteContext() Deletes data associated with the window and context
type.

XFindContext() Gets data associated with the window and context type.

XReadBitmapFile() Reads in a bit map from a file.

XSaveContext() Stores data associated with the window and context type.

XUniqueContext() Allocates a new context.

XWriteBitmapFile() Writes out a bit map to a file.

X Window System routines: Using the resource manager
Table 396 provides the routines for using the resource manager.

Table 396. Using the resource manager

Routine Description

Xpermalloc() Allocates memory that is never freed.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1043

Table 396. Using the resource manager (continued)

Routine Description

XrmDestroyDatabase() Destroys a resource database and frees its allocated
memory.

XrmGetFileDatabase() Creates a database from a specified file.

XrmGetResource() Retrieves a resource from a database.

XrmGetStringDatabase() Creates a database from a specified string.

XrmInitialize() Initializes the resource manager.

XrmMergeDatabases() Merges two databases.

XrmParseCommand() Stores command options in a database.

XrmPutFileDatabase() Copies the database into a specified file.

XrmPutLineResource() Stores a single resource entry in a database.

XrmPutResource() Stores a resource in a database.

XrmPutStringResource() Stores string resource in a database.

XrmQGetResource() Retrieves a quark from a database.

XrmQGetSearchList() Gets a resource search list of database levels.

XrmQGetSearchResource() Gets a quark search list of database levels.

XrmQPutResource() Stores binding and quarks in a database.

XrmQPutStringResource() Stores string binding and quarks in a database.

XrmQuarkToString() Converts a quark to a character string.

XrmStringToQuark() Converts a character string to a quark.

XrmStringToQuarkList() Converts character strings to a quark list.

XrmStringToBindingQuarkList() Converts strings to bindings and quarks.

XrmUniqueQuark() Allocates a new quark.

X Window System routines: Manipulating display functions
Table 397 provides the routines for manipulating display functions.

Table 397. Manipulating display functions

Routine Description

AllPlanes() XAllPlanes() Returns all bits suitable for use in plane argument.

BitMapBitOrder() XBitMapOrder() Returns either the most or least significant bit in each bit
map unit.

BitMapPad() XBitMapPad() Returns the multiple of bits padding each scanline.

BitMapUnit() XBitMapUnit() Returns the size of a bit map unit in bits.

BlackPixel() XBlackPixel() Returns the black pixel value of the screen specified.

BlackPixelOfScreen() XBlackPixelOfScreen() Returns the black pixel value of the screen specified.

CellsOfScreen() XCellsOfScreen() Returns the number of colormap cells.

ConnectionNumber() XConnectionNumber() Returns the file descriptor of the connection.

CreatePixmapCursor() XCreatePixmapCursor() Creates a pixmap of a specified size.

CreateWindow() XCreateWindow() Creates an unmapped subwindow for a specified parent
window.

DefaultColormap() XDefaultColormap() Returns a default colormap ID for allocation on the screen
specified.

1044 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 397. Manipulating display functions (continued)

Routine Description

DefaultColormapOfScreen() XDefaultColormapOfScreen Returns the default colormap ID of the screen specified.

DefaultDepth() XDefaultDepth() Returns the depth of the default root window.

DefaultDepthOfScreen() XDefaultDepthOfScreen() Returns the default depth of the screen specified.

DefaultGC() XDefaultGC() Returns the default GC of the default root window.

DefaultGCOfScreen() XDefaultGCOfScreen() Returns the default GC of the screen specified.

DefaultScreen() XDefaultScreen() Obtains the default screen referred to in the
XOpenDisplay routine.

DefaultScreenofDisplay() XDefaultScreenofDisplay() Returns the default screen of the display specified.

DefaultRootWindow() XDefaultRootWindow() Obtains the root window for the default screen specified.

DefaultVisual() XDefaultVisual() Returns the default visual type of the screen specified.

DefaultVisualOfScreen() XDefaultVisualOfScreen() Returns the default visual type of the screen specified.

DisplayCells() XDisplayCells() Displays the number of entries in the default colormap.

DisplayHeight() XDisplayHeight() Displays the height of the screen in pixels.

DisplayHeightMM() XDisplayHeightMM() Displays the height of the screen in millimeters.

DisplayOfScreen() XDisplayOfScreen() Displays the type of screen specified.

DisplayPlanes() XDisplayPlanes() Displays the depth (number of planes) of the root
window of the screen specified.

DisplayString() XDisplayString() Displays the string passed to XOpenDisplay when the
current display was opened.

DisplayWidth() XDisplayWidth() Displays the width of the specified screen in pixels.

DisplayWidthMM() XDisplayWidthMM() Displays the width of the specified screen in millimeters.

DoesBackingStore() XDoesBackingStore() Indicates whether the specified screen supports backing
stores.

DoesSaveUnders() XDoesSaveUnders() Indicates whether the specified screen supports save
unders.

EventMaskOfScreen() XEventMaskOfScreen() Returns the initial root event mask for a specified screen.

HeightMMOfScreen() XHeightMMOfScreen() Returns the height of a specified screen in millimeters.

HeightOfScreen() XHeightOfScreen() Returns the height of a specified screen in pixels.

ImageByteOrder() XImageByteOrder() Specifies the required byte order for each scanline unit of
an image.

IsCursorKey() Returns TRUE if keysym is on cursor key.

IsFunctionKey() Returns TRUE if keysym is on function keys.

IsKeypadKey() Returns TRUE if keysym is on keypad.

IsMiscFunctionKey() Returns TRUE if keysym is on miscellaneous function keys.

IsModifierKey() Returns TRUE if keysym is on modifier keys.

IsPFKey() Returns TRUE if keysym is on PF keys.

LastKnownRequestProcessed()
XLastKnownRequestProcessed()

Extracts the full serial number of the last known request
processed by the X server.

MaxCmapsOfScreen() XMaxCmapsOfScreen() Returns the maximum number of colormaps supported
by the specified screen.

MinCmapsOfScreen() XMinCmapsOfScreen() Returns the minimum number of colormaps supported by
the specified screen.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1045

Table 397. Manipulating display functions (continued)

Routine Description

NextRequest() XNextRequest() Extracts the full serial number to be used for the next
request to be processed by the X Server.

PlanesOfScreen() XPlanesOfScreen() Returns the depth (number of planes) in a specified
screen.

ProtocolRevision() XProtocolRevision() Returns the minor protocol revision number (0) of the X
server associated with the display.

ProtocolVersion() XProtocolVersion() Returns the major version number (11) of the protocol
associated with the display.

QLength() XQLength() Returns the length of the event queue for the display.

RootWindow() XRootWindow() Returns the root window of the current screen.

RootWindowOfScreen() XRootWindowOfScreen() Returns the root window of the specified screen.

ScreenCount() XScreenCount() Returns the number of screens available.

XScreenNumberOfScreen() Returns the screen index number of the specified screen.

ScreenOfDisplay() XScreenOfDisplay() Returns the pointer to the screen of the display specified.

ServerVendor() XServerVendor() Returns the pointer to a null-determined string that
identifies the owner of the X server implementation.

VendorRelease() XVendorRelease() Returns the number related to the vendor’s release of the
X server.

WhitePixel() XWhitePixel() Returns the white pixel value for the current screen.

WhitePixelOfScreen() XWhitePixelOfScreen() Returns the white pixel value of the specified screen.

WidthMMOfScreen() XWidthMMOfScreen() Returns the width of the specified screen in millimeters.

WidthOfScreen() XWidthOfScreen() Returns the width of the specified screen in pixels.

X Window System routines: Extension routines
With X Window System Extension Routines, you can create extensions to the core
Xlib functions with the same performance characteristics. The following list shows
the protocol requests for X Window System extensions:
v XQueryExtension
v XListExtensions
v XFreeExtensionList

Table 398 lists the X Window System Extension Routines and provides a short
description of each routine.

Table 398. Extension routines

Routine Description

XAllocID() Returns a resource ID that can be used when creating
new resources.

XESetCloseDisplay() Defines a procedure to call when XCloseDisplay is called.

XESetCopyGC() Defines a procedure to call when a GC is copied.

XESetCreateFont() Defines a procedure to call when XLoadQueryFont is
called.

XESetCreateGC() Defines a procedure to call when a new GC is created.

1046 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 398. Extension routines (continued)

Routine Description

XESetError() Suppresses the call to an external error handling routine
and defines an alternative routine for error handling.

XESetErrorString() Defines a procedure to call when an I/O error is detected.

XESetEventToWire() Defines a procedure to call when an event must be
converted from the host to wire format.

XESetFreeFont() Defines a procedure to call when XFreeFont is called.

XESetFreeGC() Defines a procedure to call when a GC is freed.

XESetWireToEvent() Defines a procedure to call when an event is converted
from the wire to the host format.

XFreeExtensionList() Frees memory allocated by XListExtensions.

XListExtensions() Returns a list of all extensions supported by the server.

XQueryExtension() Indicates whether a named extension is present.

X Window System routines: MIT extensions to X
The AIX extensions described in the IBM AIX X-Window Programmer’s Reference are
not supported by the X Window System API provided by the TCP/IP library
routines.

The following MIT extensions are supported by the TCP/IP X client code:
v SHAPE
v MITMISC
v MULTIBUF

Table 399 lists the routines that allow an application to use these extensions.

Table 399. MIT extensions to X

Routine Description

XShapeQueryExtension Queries to see if server supports the SHAPE extension.

XShapeQueryVersion Checks the version number of the server SHAPE
extension.

XShapeCombineRegion Converts the specified region into a list of rectangles and
calls XShapeRectangles.

XShapeCombineRectangles Performs a CombineRectangles operation.

XShapeCombineMask Performs a CombineMask operation.

XShapeCombineShape Performs a CombineShape operation.

XShapeOffsetShape Performs an OffsetShape operation.

XShapeQueryExtents Sets the extents of the bounding and clip shapes.

XShapeSelectInput Selects Input Events.

XShapeInputSelected Returns the current input mask for extension events on
the specified window.

XShapeGetRectangles Gets a list of rectangles describing the region specified.

XMITMiscQueryExtension Queries to see if server supports the MITMISC extension.

XMITMiscSetBugMode Sets the compatibility mode switch.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1047

Table 399. MIT extensions to X (continued)

Routine Description

XMITMiscGetBugMode Queries the compatibility mode switch.

XmbufQueryExtension Queries to see if server supports the MULTIBUF
extension.

XmbufGetVersion Gets the version number of the extension.

XmbufCreateBuffers Requests that multiple buffers be created.

XmbufDestroyBuffers Requests that the buffers be destroyed.

XmbufDisplayBuffers Displays the indicated buffers.

XmbufGetWindowAttributes Gets the multibuffering attributes.

XmbufChangeWindowAttributes Sets the multibuffering attributes.

XmbufGetBufferAttributes Gets the attributes for the indicated buffer.

XmbufChangeBufferAttributes Sets the attributes for the indicated buffer.

XmbufGetScreenInfo Gets the parameters controlling how mono and stereo
windows can be created on the indicated screen.

XmbufCreateStereoWindow Creates a stereo window.

X Window System routines: Associate table functions
When you need to associate arbitrary information with resource IDs, use the
XAssocTable to associate your own data structures with X resources, such as bit
maps, pixmaps, fonts, and windows.

An XAssocTable can be used to type X resources. For example, to create three or
four types of windows with different properties, each window ID is associated
with a pointer to a user-defined window property data structure. (A generic type,
called XID, is defined in XLIB.H.)

Follow these guidelines when using an XAssocTable.
v Ensure the correct display is active before initiating an XAssocTable function,

because all XIDs are relative to a specified display.
v Restrict the size of the table (number of buckets in the hashing system) to a

power of two, and assign no more than eight XIDs for each bucket to maximize
the efficiency of the table.

There is no restriction on the number of XIDs for each table or display, or the
number of displays for each table.

Table 400 lists the Associate table functions and provides a short description of
each function.

Table 400. Associate table functions

Routine Description

XCreateAssocTable () Returns a pointer to the newly created associate table.

XDeleteAssoc() Deletes an entry from the specified associate table.

XDestroyAssocTable() Frees memory allocated to the specified associate table.

XLookUpAssoc() Obtains data from the specified associate table.

XMakeAssoc() Creates an entry in the specified associate table.

1048 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

X Window System routines: Miscellaneous utility routines
The MIT X Miscellaneous Utility routines are included in SEZAX11L. These are a
set of common utility functions that have been useful to application writers.

Table 401 lists the Miscellaneous utility routines and provides a short description of
each routine.

Table 401. Miscellaneous utility routines

Routine Description

XctCreate() Creates an XctData structure for parsing a Compound
Text string.

XctFree() Frees all data associated with the XctData structure.

XctNextItem() Parses the next item from the Compound Text string.

XctReset() Resets the XctData structure to reparse the Compound
Text string.

XmuAddCloseDisplayHook() Adds a callback for the given display.

XmuAddInitializer() Registers a procedure to be invoked the first time
XmuCallInitializers is called on a given application
context.

XmuAllStandardColormaps() Creates all of the appropriate standard colormaps.

XmuCallInitializers() Calls each of the procedures that have been registered
with XmuAddInitializer.

XmuClientWindow() Finds a window at or below the specified window.

XmuCompareISOLatin1() Compares two strings, ignoring case differences.

XmuConvertStandardSelection() Converts many standard selections.

XmuCopyISOLatin1Lowered() Copies a string, changing all Latin-1 uppercase letters to
lowercase.

XmuCopyISOLatin1Uppered() Copies a string, changing all Latin-1 lowercase letters to
uppercase.

XmuCreateColormap() Creates a colormap.

XmuCreatePixmapFromBitmap() Creates a pixmap of the specified width, height, and
depth.

XmuCreateStippledPixmap() Creates a two-pixel by one-pixel stippled pixmap of
specified depth on the specified screen.

XmuCursorNameToIndex() Returns the index in the standard cursor font for the
name of a standard cursor.

XmuCvtFunctionToCallback() Converts a callback procedure to a callback list containing
that procedure.

XmuCvtStringToBackingStore() Converts a string to a backing-store integer.

XmuCvtStringToBitmap() Creates a bit map suitable for window manager icons.

XmuCvtStringToCursor() Converts a string to a Cursor.

XmuCvtStringToJustify() Converts a string to an XtJustify enumeration value.

XmuCvtStringToLong() Converts a string to an integer of type long.

XmuCvtStringToOrientation() Converts a string to an XtOrientation enumeration value.

XmuCvtStringToShapeStyle() Converts a string to an integer shape style.

XmuCvtStringToWidget() Converts a string to an immediate child widget of the
parent widget passed as an argument.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1049

Table 401. Miscellaneous utility routines (continued)

Routine Description

XmuDeleteStandardColormap() Removes the specified property from the specified screen.

XmuDQAddDisplay() Adds the specified display to the queue.

XmuDQCreate() Creates and returns an empty XmuDisplayQueue.

XmuDQDestroy() Releases all memory associated with the specified queue.

XmuDQLookupDisplay() Returns the queue entry for the specified display.

XmuDQNDisplays() Returns the number of displays in the specified queue.

XmuDQRemoveDisplay() Removes the specified display from the specified queue.

XmuDrawLogo() Draws the official X Window System logo.

XmuDrawRoundedRectangle() Draws a rounded rectangle.

XmuFillRoundedRectangle() Draws a filled rounded rectangle.

XmuGetAtomName() Returns the name of an Atom.

XmuGetColormapAllocation() Determines the best allocation of reds, greens, and blues
in a standard colormap.

XmuGetHostname() Returns the host name.

XmuInternAtom() Caches the Atom value for one or more displays.

XmuInternStrings() Converts a list of atom names into Atom values.

XmuLocateBitmapFile() Reads a file in standard bit map file format.

XmuLookupAPL() This function is similar to XLookupString, except that it
maps a key event to an APL string.

XmuLookupArabic() This function is similar to XLookupString, except that it
maps a key event to a Latin and Arabic (ISO 8859-6)
string.

XmuLookupCloseDisplayHook() Determines if a callback is installed.

XmuLookupCyrillic() This function is similar to XLookupString, except that it
maps a key event to a Latin and Cyrillic (ISO 8859-5)
string.

XmuLookupGreek() This function is similar to XLookupString, except that it
maps a key event to a Latin and Greek (ISO 8859-7)
string.

XmuLookupHebrew() This function is similar to XLookupString, except that it
maps a key event to a Latin and Hebrew (ISO 8859-8)
string.

XmuLookupJISX0201() This function is similar to XLookupString, except that it
maps a key event to a string in the JIS X0201-1976
encoding.

XmuLookupKana() This function is similar to XLookupString, except that it
maps a key event to a string in the JIS X0201-1976
encoding.

XmuLookupLatin1() This function is identical to XLookupString.

XmuLookupLatin2() This function is similar to XLookupString, except that it
maps a key event to a Latin-2 (ISO 8859-2) string.

XmuLookupLatin3() This function is similar to XLookupString, except that it
maps a key event to a Latin-3 (ISO 8859-3) string.

XmuLookupLatin4() This function is similar to XLookupString, except that it
maps a key event to a Latin-4 (ISO 8859-4) string.

1050 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 401. Miscellaneous utility routines (continued)

Routine Description

XmuLookupStandardColormap() Creates or replaces a standard colormap if one does not
currently exist.

XmuLookupString() Maps a key event into a specific key symbol set.

XmuMakeAtom() Creates and initializes an opaque object.

XmuNameOfAtom() Returns the name of an AtomPtr.

XmuPrintDefaultErrorMessage() Prints an error message, equivalent to Xlib’s default error
message.

XmuReadBitmapData() Reads a standard bit map file description.

XmuReadBitmapDataFromFile() Reads a standard bit map file description from the
specified file.

XmuReleaseStippledPixmap() Frees a pixmap created with XmuCreateStippledPixmap.

XmuRemoveCloseDisplayHook() Deletes a callback that has been added with
XmuAddCloseDisplayHook.

XmuReshapeWidget() Reshapes the specified widget, using the Shape extension.

XmuScreenOfWindow() Returns the screen on which the specified window was
created.

XmuSimpleErrorHandler() A simple error handler for Xlib error conditions.

XmuStandardColormap() Creates a standard colormap for the given screen.

XmuUpdateMapHints() Clears the PPosition and PSize flags and sets the
USPosition and USSize flags.

XmuVisualStandardColormaps() Creates all of the appropriate standard colormaps for a
given visual.

X Window System routines: X authorization routines
The MIT X Authorization routines are included in SEZAX11L. These routines are
used to deal with X authorization data in X clients.

Table 402 lists the X authorization routines and provides a short description of each
routine.

Table 402. Authorization routines

Routine Description

XauFileName() Generates the default authorization file name.

XauReadAuth() Reads the next entry from the authfile.

XuWriteAuth() Writes an authorization entry to the authfile.

XauGetAuthByAddr() Searches for an authorization entry.

XauLockAuth() Does the work necessary to synchronously update an
authorization file.

XauUnlockAuth() Undoes the work of XauLockAuth.

XauDisposeAuth() Frees storage allocated to hold an authorization entry.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1051

X Window System toolkit
An X Window System Toolkit is a set of library functions layered on top of the
X Window System Xlib functions that allows you to simplify the design of
applications by providing an underlying set of common user interface functions.
Included are mechanisms for defining and expanding interclient and
intracomponent interaction independently, masking implementation details from
both the application and component implementor.

An X Window System Toolkit consists of the following:
v A set of programming mechanisms, called Intrinsics, that are used to build

widgets.
v An architectural model to help programmers design new widgets, with enough

flexibility to accommodate different application interface layers.
v A consistent interface, in the form of a coordinated set of widgets and

composition policies, some of which are application domain-specific, while
others are common across several application domains.

The fundamental data type of the X Window System Toolkit is the widget. A
widget is allocated dynamically and contains state information. Every widget
belongs to one widget class that is allocated statically and initialized. The widget
class contains the operations allowed on widgets of that class.

An X Window System Toolkit manages the following functions:
v Toolkit initialization
v Widgets and widget geometry
v Memory
v Window, data set, and timer events
v Input focus
v Selections
v Resources and resource conversion
v Translation of events
v Graphics contexts
v Pixmaps
v Errors and warnings

You must remap many of the X Widget and X Intrinsics routine names. This
remapping is done in a header file called XT@REMAP.H. This file is automatically
included by the INTRINSIC.H header file. In debugging your application, see the
XT@REMAP.H file to find the remapped names of the X Toolkit routines.

Some of the X Window System header data sets have been renamed from their
original distribution names, because of the data set naming conventions in the
MVS environment. Such name changes are generally restricted to those header files
used internally by the actual widget code, rather than the application header files,
to minimize the number of changes required for an application to be ported to the
MVS environment.

In porting applications to the MVS environment, you might have to make changes
to header file names in Table 403 on page 1053.

1052 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 403. X Intrinsic header file names

MIT distribution name TCP/IP name

CompositeI.h ComposiI.h

CompositeP.h ComposiP.h

ConstrainP.h ConstraP.h

IntrinsicI.h IntriniI.h

IntrinsicP.h IntriniP.h

PassivGraI.h PassivGr.h

ProtocolsP.h ProtocoP.h

SelectionI.h SelectiI.h

WindowObjP.h WindowOP.h

Xt Intrinsics routines
Table 404 provides the Xt Intrinsics routines and a short description of each
routine.

Table 404. Xt Intrinsics routines

Routine Description

CompositeClassPartInitialize Initializes the CompositeClassPart of a composite widget.

CompositeDeleteChild Deletes a child widget from a composite widget.

CompositeDestroy Destroys a composite widget.

CompositeInitialize Initializes a composite widget structure.

CompositeInsertChild Inserts a child widget in a composite widget.

RemoveCallback Removes a callback procedure from a callback list.

XrmCompileResourceList Compiles an XtResourceList into an XrmResourceList.

XtAddActions Declares an action table and registers it with the
translation manager

XtAddCallback Adds a callback procedure to the callback list of the
specified widget.

XtAddCallbacks Adds a list of callback procedures to the callback list of
specified widget.

XtAddConverter Adds a new converter.

XtAddEventHandler Registers an event handler procedure with the dispatch
mechanism when an event matching the mask occurs on
the specified widget.

XtAddExposureToRegion Computes the union of the rectangle defined by the
specified exposure event and region.

XtAddGrab Redirects user input to a model widget.

XtAddInput Registers a new source of events.

XtAddRawEventHandler Registers an event handler procedure with the dispatch
mechanism without causing the server to select for that
event.

XtAddTimeOut Creates a timeout value in the default application context
and returns an identifier for it.

XtAddWorkProc Registers a work procedure in the default application
context.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1053

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtAppAddActionHook Adds an actionhook procedure to an application context.

XtAppAddActions Declares an action table and registers it with the
translation manager.

XtAppAddConverter Registers a new converter.

XtAppAddInput Registers a new file as an input source for a specified
application.

XtAppAddTimeOut Creates a timeout value and returns an identifier for it.

XtAppAddWorkProc Registers a work procedure for a specified procedure.

XtAppCreateShell Creates a top-level widget that is the root of a widget
tree.

XtAppError Calls the installed unrecoverable error procedure.

XtAppErrorMsg Calls the high-level error handler.

XtAppGetErrorDatabase Obtains the error database and merges it with an
application or database specified by a widget.

XtAppGetErrorDatabaseText Obtains the error database text for an error or warning
for an error message handler.

XtAppGetSelectionTimeout Gets and returns the current selection timeout (ms) value.

XtAppInitialize A convenience routine for initializing the toolkit.

XtAppMainLoop Process input by calling XtAppNextEvent and
XtDispatchEvent.

XtAppNextEvent Returns the value from the top of a specified application
input queue.

XtAppPeekEvent Returns the value from the top of a specified application
input queue without removing input from queue.

XtAppPending Determines if the input queue has any events for a
specified application.

XtAppProcessEvent Processes applications that require direct control of the
processing for different types of input.

XtAppReleaseCacheRefs Decrements the reference count for the conversion entries
identified by the refs argument.

XtAppSetErrorHandler Registers a procedure to call on unrecoverable error
conditions. The default error handler prints the message
to standard error.

XtAppSetErrorMsgHandler Registers a procedure to call on unrecoverable error
conditions. The default error handler constructs a string
from the error resource database.

XtAppSetFallbackResources Sets the fallback resource list that will be loaded at
display initialization time.

XtAppSetSelectionTimeout Sets the Intrinsics selection timeout value.

XtAppSetTypeConverter Registers the specified type converter and destructor in
all application contexts created by the calling process.

XtAppSetWarningHandler Registers a procedure to call on nonfatal error conditions.
The default warning handler prints the message to
standard error.

1054 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtAppSetWarningMsgHandler Registers a procedure to call on nonfatal error conditions.
The default warning handler constructs a string from
error resource database.

XtAppWarning Calls the installed nonfatal error procedure.

XtAppWarningMsg Calls the installed high-level warning handler.

XtAugmentTranslations Merges new translations into an existing widget
translation table.

XtBuildEventMask Retrieves the event mask for a specified widget.

XtCallAcceptFocus Calls the accept_focus procedure for the specified widget.

XtCallActionProc Searches for the named action routine and, if found, calls
it.

XtCallbackExclusive Calls customized code for callbacks to create pop-up
shell.

XtCallbackNone Calls customized code for callbacks to create pop-up
shell.

XtCallbackNonexclusive Calls customized code for callbacks to create pop-up
shell.

XtCallbackPopdown Pops down a shell that was mapped by callback
functions.

XtCallbackReleaseCacheRef A callback that can be added to a callback list to release a
previously returned XtCacheRef value.

XtCallbackReleaseCacheRefList A callback that can be added to a callback list to release a
list of previously returned XtCacheRef value.

XtCallCallbackList Calls all callbacks on a callback list.

XtCallCallbacks Executes the callback procedures in a widget callback list.

XtCallConverter Looks up the specified type converter in the application
context and invokes the conversion routine.

XtCalloc Allocates and initializes an array.

XtClass Obtains the class of a widget and returns a pointer to the
widget class structure.

XtCloseDisplay Closes a display and removes it from an application
context.

XtConfigureWidget Moves and resizes the sibling widget of the child making
the geometry request.

XtConvert Invokes resource conversions.

XtConvertAndStore Looks up the type converter registered to convert
from_type to to_type and then calls XtCallConverter.

XtConvertCase Determines upper and lowercase equivalents for a
KeySym.

XtCopyAncestorSensitive Copies the sensitive value from a widget record.

XtCopyDefaultColormap Copies the default colormap from a widget record.

XtCopyDefaultDepth Copies the default depth from a widget record.

XtCopyFromParent Copies the parent from a widget record.

XtCopyScreen Copies the screen from a widget record.

XtCreateApplicationContext Creates an opaque type application context.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1055

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtCreateApplicationShell Creates an application shell widget by calling
XtAppCreateShell.

XtCreateManagedWidget Creates and manages a child widget in a single
procedure.

XtCreatePopupShell Creates a pop-up shell.

XtCreateWidget Creates an instance of a widget.

XtCreateWindow Calls XcreateWindow with the widget structure and
parameter.

XtDatabase Obtains the resource database for a particular display.

XtDestroyApplicationContext Destroys an application context.

XtDestroyGC Deallocates graphics context when it is no longer needed.

XtDestroyWidget Destroys a widget instance.

XtDirectConvert Invokes resource conversion.

XtDisownSelection Informs the Intrinsics selection mechanism that the
specified widget is to lose ownership of the selection.

XtDispatchEvent Receives X events and calls appropriate event handlers.

XtDisplay Returns the display pointer for the specified widget.

XtDisplayInitialize Initializes a display and adds it to an application context.

XtDisplayOfObject Returns the display pointer for the specified widget.

XtDisplayStringConversionWarning Issues a warning message for conversion routines.

XtDisplayToApplicationContext Retrieves the application context associated with a
Display.

XtError Calls the installed unrecoverable error procedure.

XtErrorMsg A low-level error and warning handler procedure type.

XtFindFile Searches for a file using substitutions in a path list.

XtFree Frees an allocated block of storage.

XtGetActionKeysym Retrieves the KeySym and modifiers that matched the
final event specification in a translation table entry.

XtGetApplicationNameAndClass Returns the application name and class as passed to
XtDisplayInitialize

XtGetApplicationResources Retrieves resources that are not specific to a widget, but
apply to the overall application.

XtGetConstraintResourceList Returns the constraint resource list for a particular
widget.

XtGetErrorDatabase Obtains the error database and returns the address of the
error database.

XtGetErrorDatabaseText Obtains the error database text for an error or warning.

XtGetGC Returns a read-only sharable GC.

XtGetKeysymTable Returns a pointer to the KeySym to KeyCode mapping
table for a particular display.

XtGetMultiClickTime Returns the multiclick time setting.

XtGetResourceList Obtains the resource list structure for a particular class.

1056 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtGetSelectionRequest Retrieves the SelectionRequest event that triggered the
convert_selection procedure.

XtGetSelectionTimeout Obtains the current selection timeout.

XtGetSelectionValue Obtains the selection value in a single, logical unit.

XtGetSelectionValueIncremental Obtains the selection value using incremental transfers.

XtGetSelectionValues Takes a list of target types and client data and obtains the
current value of the selection converted to each of the
targets.

XtGetSelectionValuesIncremental A function similar to XtGetSelectionValueIncremental
except that it takes a list of targets and client_data.

XtGetSubresources Obtains resources other than widgets.

XtGetSubvalues Retrieves the current value of a nonwidget resource data
associated with a widget instance.

XtGetValues Retrieves the current value of a resource associated with a
widget instance.

XtGrabButton Passively grabs a single pointer button.

XtGrabKey Passively grabs a single key of the keyboard.

XtGrabKeyboard Actively grabs the keyboard.

XtGrabPointer Actively grabs the pointer.

XtHasCallbacks Finds the status of a specified widget callback list.

XtInitialize Initializes the toolkit, application, and shell.

XtInitializeWidgetClass Initializes a widget class without creating any widgets.

XtInsertEventHandler Registers an event handler procedure that receives events
before or after all previously registered event handlers.

XtInsertRawEventHandler Registers an event handler procedure that receives events
before or after all previously registered event handlers
without selecting for the events.

XtInstallAccelerators Installs accelerators from a source widget to destination
widget.

XtInstallAllAccelerators Installs all the accelerators from a widget and all the
descendants of the widget onto one destination widget.

XtIsApplicationShell Determines whether a specified widget is a subclass of an
application shell widget.

XtIsComposite Determines whether a specified widget is a subclass of a
composite widget.

XtIsConstraint Determines whether a specified widget is a subclass of a
constraint widget.

XtIsManaged Determines the managed state of a specified child widget.

XtIsObject Determines whether a specified widget is a subclass of an
object widget.

XtIsOverrideShell Determines whether a specified widget is a subclass of an
override shell widget.

XtIsRealized Determines if a widget has been realized.

XtIsRectObj Determines whether a specified widget is a subclass of a
RectObj widget.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1057

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtIsSensitive Determines the current sensitivity state of a widget.

XtIsShell Determines whether a specified widget is a subclass of a
shell widget.

XtIsSubclass Determines whether a specified widget is in a specific
subclass.

XtIsTopLevelShell Determines whether a specified widget is a subclass of a
TopLevelShell widget.

XtIsTransientShell Determines whether a specified widget is a subclass of a
TransientShell widget.

XtIsVendorShell Determines whether a specified widget is a subclass of a
VendorShell widget.

XtIsWidget Determines whether a specified widget is a subclass of a
Widget widget.

XtIsWMShell Determines whether a specified widget is a subclass of a
WMShell widget.

XtKeysymToKeycodeList Returns the list of KeyCodes that map to a particular
KeySym.

XtLastTimestampProcessed Retrieves the timestamp from the most recent call to
XtDispatchEvent.

XtMainLoop An infinite loop that processes input.

XtMakeGeometryRequest A request from the child widget to a parent widget for a
geometry change.

XtMakeResizeRequest Makes a resize request from a widget.

XtMalloc Allocates storage.

XtManageChild Adds a single child to a parent widget list of managed
children.

XtManageChildren Adds a list of widgets to the geometry-managed,
displayable, subset of its composite parent widget.

XtMapWidget Maps a widget explicitly.

XtMenuPopupAction Pops up a menu when a pointer button is pressed or
when the pointer is moved into the widget.

XtMergeArgLists Merges two ArgList structures.

XtMoveWidget Moves a sibling widget of the child making the geometry
request.

XtName Returns a pointer to the instance name of the specified
object.

XtNameToWidget Translates a widget name to a widget instance.

XtNewString Copies an instance of a string.

XtNextEvent Returns the value from the header of the input queue.

XtOpenDisplay Opens, initializes, and adds a display to an application
context.

XtOverrideTranslations Overwrites existing translations with new translations.

XtOwnSelection Sets the selection owner when using atomic transfer.

XtOwnSelectionIncremental Sets the selection owner when using incremental
transfers.

1058 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtParent Returns the parent widget for the specified widget.

XtParseAcceleratorTable Parses an accelerator table into the opaque internal
representation.

XtParseTranslationTable Compiles a translation table into the opaque internal
representation of type XtTranslations.

XtPeekEvent Returns the value from the front of the input queue
without removing it from the queue.

XtPending Determines if the input queue has events pending.

XtPopdown Unmaps a pop-up from within an application.

XtPopup Maps a pop-up from within an application.

XtPopupSpringLoaded Maps a spring-loaded pop-up from within an application.

XtProcessEvent Processes one input event, timeout, or alternate input
source.

XtQueryGeometry Queries the preferred geometry of a child widget.

XtRealizeWidget Realizes a widget instance.

XtRealloc Changes the size of an allocated block of storage,
sometimes moving it.

XtRegisterCaseConverter Registers a specified case converter.

XtRegisterGrabAction Registers button and key grabs for a widget window
according to the event bindings in the widget translation
table.

XtReleaseGC Deallocates a shared GC when it is no longer needed.

XtRemoveActionHook Removes an action hook procedure without destroying
the application context.

XtRemoveAllCallbacks Deletes all callback procedures from a specified widget
callback list.

XtRemoveCallback Deletes a callback procedure from a specified widget
callback list only if both the procedure and the client data
match.

XtRemoveCallbacks Deletes a list of callback procedures from a specified
widget callback list.

XtRemoveEventHandler Removes a previously registered event handler.

XtRemoveGrab Removes the redirection of user input to a modal widget.

XtRemoveInput Discontinues a source of input by causing the Intrinsics
read routine to stop watching for input from the input
source.

XtRemoveRawEventHandler Removes previously registered raw event handler.

XtRemoveTimeOut Clears a timeout value by removing the timeout.

XtRemoveWorkProc Removes the specified background work procedure.

XtResizeWidget Resizes a sibling widget of the child making the geometry
request.

XtResizeWindow Resizes a child widget that already has the values for its
width, height, and border width.

XtResolvePathname Searches for a file using standard substitutions in a path
list.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1059

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtScreen Returns the screen pointer for the specified widget.

XtScreenOfObject Returns the screen pointer for the nearest ancestor of
object that is of class Widget.

XtSetErrorHandler Registers a procedure to call under unrecoverable error
conditions.

XtSetErrorMsgHandler Registers a procedure to call under unrecoverable error
conditions.

XtSetKeyboardFocus Redirects keyboard input to a child of a composite widget
without calling XSetInputFocus.

XtSetKeyTranslator Registers a key translator.

XtSetMappedWhenManaged Changes the widget map_when_managed field.

XtSetMultiClickTime Sets the multi-click time for an application.

XtSetSelectionTimeout Sets the Intrinsics selection timeout.

XtSetSensitive Sets the sensitivity state of a widget.

XtSetSubvalues Sets the current value of a nonwidget resource associated
with an instance.

XtSetTypeConverter Registers a type converter for all application contexts in a
process.

XtSetValues Modifies the current value of a resource associated with
widget instance.

XtSetWarningHandler Registers a procedure to be called on non-fatal error
conditions.

XtSetWarningMsgHandler Registers a procedure to be called on nonfatal error
conditions.

XtSetWMColormapWindows Sets the value of the WM_COLORMAP_WINDOWS
property on a widget’s window.

XtStringConversionWarning A convenience routine for old format resource converters
that convert from strings.

XtSuperclass Obtains the superclass of a widget by returning a pointer
to the superclass structure of the widget.

XtToolkitInitialize Initializes the X Toolkit internals.

XtTranslateCoords Translates an [x,y] coordinate pair from widget
coordinates to root coordinates.

XtTranslateKey The default key translator routine.

XtTranslateKeycode Registers a key translator.

XtUngrabButton Cancels a passive button grab.

XtUngrabKey Cancels a passive key grab.

XtUngrabKeyboard Cancels an active keyboard grab.

XtUngrabPointer Cancels an active pointer grab.

XtUninstallTranslations Causes the entire translation table for widget to be
removed.

XtUnmanageChild Removes a single child from the managed set of its
parent.

XtUnmanageChildren Removes a list of children from the managed list of the
parent, but does not destroy the children widgets.

1060 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 404. Xt Intrinsics routines (continued)

Routine Description

XtUnmapWidget Unmaps a widget explicitly.

XtUnrealizeWidget Destroys the associated widget and its descendants.

XtVaAppCreateShell Creates a top-level widget that is the root of a widget tree
using varargs lists.

XtVaAppInitialize Initializes the Xtk internals, creates an application context,
opens and initializes a display, and creates the initial
application shell instance using varargs lists.

XtVaCreateArgsList Dynamically allocates a varargs list for use with
XtVaNestedList in multiple calls.

XtVaCreateManagedWidget Creates and manages a child widget in a single procedure
using varargs lists.

XtVaCreatePopupShell Creates a pop-up shell using varargs lists.

XtVaCreateWidget Creates an instance of a widget using varargs lists.

XtVaGetApplicationResources Retrieves resources for the overall application using
varargs list.

XtVaGetSubresources Fetches resources for widget subparts using varargs list.

XtVaGetSubvalues Retrieves the current values of nonwidget resources
associated with a widget instance using varargs lists.

XtVaGetValues Retrieves the current values of resources associated with a
widget instance using varargs lists.

XtVaSetSubvalues Sets the current values of nonwidget resources associated
with a widget instance using varargs lists.

XtVaSetValues Modifies the current values of resources associated with a
widget instance using varargs lists.

XtWarning Calls the installed non-fatal error procedure.

XtWarningMsg Calls the installed high-level warning handler.

XtWidgetToApplicationContext Gets the application context for given widget.

XtWindow Returns the window of the specified widget.

XtWindowOfObject Returns the window for the nearest ancestor of object that
is of class Widget.

XtWindowToWidget Translates a window and display pointer into a widget
instance.

X Window System toolkit: Application resources
X applications can be modified at run time by a set of resources. Applications that
make use of an X Window System toolkit can be modified by additional sets of
application resources. These resources are searched until a resource specification is
found. The X Intrinsics determine the actual search order used for determining a
resource value.

The search order used in the TSO environment, in descending order of preference,
is:
1. Command Line

Standard arguments include:
a. Command switches (-display, -fg, -foreground, +rv)

Appendix H. X Window System interface V11R4 and Motif version 1.1 1061

b. Resource manager directives (-name, -xrm)
c. Natural language directive (-xnllanguage)

2. User Environment File
Use the source found from the user_id.XDEFAULT.host data set. In this case, host
is the string returned by the gethostname() call.

3. Server and User Preference Resources
Use the first source found from:
a. RESOURCE_MANAGER property on the root window [screen0]
b. user_id.X.DEFAULTS data set

4. Application Class Resources
Use the first source found from:
a. The default application resource data set named user_id.XAPDF.classname,

where classname is the application specified class name.
The MVS data set name XAPDF is modified, if a natural language directive
is specified as xnllanguageXAPDF, where xnllanguage is the string specified
by the natural language directive.

b. Fallback resources defined by XtAppSetFallbackResources within the
application.

X Window System routines: Athena widget support
The X Window System support with TCP/IP includes the widget set developed at
Massachusetts Institute of Technology (MIT), which is generally known as the
Athena widget set.

The Athena widget set supports the following widgets:

AsciiSink
AsciiSrc
AsciiText
Box
Clock
Command
Dialog
Form
Grip
Label
List
Logo
Mailbox
MenuButton

Paned
Scrollbar
Simple
SimpleMenu
Sme (Simple Menu Entry)
SmeBSB (BSB Menu Entry)
SmeLine
StripChart
Text
TextSink
TextSrc
Toggle
VPaned
Viewport

Table 405 provides the Athena widget routines with a short description of each
routine.

Table 405. Athena widget routines

Routine Description

XawAsciiSave Saves the changes made in the current text source into a
file.

XawAsciiSaveAsFile Saves the contents of the current text buffer into a named
file.

1062 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 405. Athena widget routines (continued)

Routine Description

XawAsciiSourceChanged Determines if the text buffer in an AsciiSrc object has
changed.

XawAsciiSourceFreeString Frees the storage associated with the string from an
AsciiSrc widget requested with a call to XtGetValues.

XawDialogAddButton Adds a new button to a Dialog widget.

XawDialogGetValueString Returns the character string in the text field of a Dialog
Widget.

XawDiskSourceCreate Creates a disk source.

XawFormDoLayout Forces or defers a relayout of the Form.

XawInitializeWidgetSet Forces a reference to vendor shell so that the one in this
widget is installed.

XawListChange Changes the list that is displayed.

XawListHighlight Highlights an item in the list.

XawListShowCurrent Retrieves the list element that is currently set.

XawListUnhighlight Unhighlights an item in the list.

XawPanedAllowResize Enables or disables a child’s request for pane resizing.

XawPanedGetMinMax Retrieves the minimum and maximum height settings for
a pane.

XawPanedGetNumSub Retrieves the number of panes in a paned widget.

XawPanedSetMinMax Sets the minimum and maximum height settings for a
pane.

XawPanedSetRefigureMode Enables or disables automatic recalculation of pane sizes
and positions.

XawScrollbarSetThumb Sets the position and length of a Scrollbar thumb.

XawSimpleMenuAddGlobalActions Registers an XawPositionSimpleMenu global action
routine.

XawSimpleMenuClearActiveEntry Clears the SimpleMenu widget internal information about
the currently highlighted menu entry.

XawSimpleMenuGetActiveEntry Gets the currently highlighted menu entry.

XawStringSourceCreate Creates a string source.

XawTextDisableRedisplay Disables redisplay while making several changes to a Text
Widget.

XawTextDisplay Displays batched updates.

XawTextDisplayCaret Enables and disables the insert point.

XawTextEnableRedisplay Enables redisplay.

XawTextGetInsertionPoint Returns the current position of the insert point.

XawTextGetSelectionPos Retrieves the text that has been selected by this text
widget.

XawTextGetSource Retrieves the current text source for the specified widget.

XawTextInvalidate Redisplays a range of characters.

XawTextReplace Modifies the text in an editable Text widget.

XawTextSearch Searches for a string in a Text widget.

XawTextSetInsertionPoint Moves the insert point to the specified source position.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1063

Table 405. Athena widget routines (continued)

Routine Description

XawTextSetLastPos Sets the last position data in an AsciiSource Object.

XawTextSetSelection Selects a piece of text.

XawTextSetSelectionArray Assigns a new selection array to a text widget.

XawTextSetSource Replaces the text source in the specified widget.

XawTextSinkClearToBackground Clears a region of the sink to the background color.

XawTextSinkDisplayText Stub function that in subclasses will display text.

XawTextSinkFindDistance Finds the Pixel Distance between two text positions.

XawTextSinkFindPosition Finds a position in the text.

XawTextSinkGetCursorBounds Finds the bounding box for the insert cursor.

XawTextSinkInsertCursor Places the InsertCursor.

XawTextSinkMaxHeight Finds the minimum height that contains a given number
of lines.

XawTextSinkMaxLines Finds the maximum number of lines that fit in a given
height.

XawTextSinkResolve Resolves a location to a position.

XawTextSinkSetTabs Sets the Tab stops.

XawTextSourceConvertSelection Dummy selection converter.

XawTextSourceRead Reads the source into a buffer.

XawTextSourceReplace Replaces a block of text with new text.

XawTextSourceScan Scans the text source for the number and type of item
specified.

XawTextSourceSearch Searches the text source for the text block passed.

XawTextSourceSetSelection Allows special setting of the selection.

XawTextTopPosition Returns the character position of the left-most character
on the first line displayed in the widget.

XawTextUnsetSelection Unhighlights previously highlighted text in a widget.

XawToggleChangeRadioGroup Allows a toggle widget to change radio groups.

XawToggleGetCurrent Returns the RadioData associated with the toggle widget
that is currently active in a toggle group.

XawToggleSetCurrent Sets the Toggle widget associated with the radio_data
specified.

XawToggleUnsetCurrent Unsets all Toggles in the radio_group specified.

Some of the header files have been renamed from their original distribution names
because of the data set naming conventions in the MVS environment. In addition,
some of the header file names were changed to eliminate duplicate data set names
with the Motif-based widget support. If your application uses these header files,
you must use the new header file names in Table 406. These data set members can
be found in the SEZACMAC partitioned data set. They carry an H extension in
this text to distinguish them as header files.

Table 406. Athena header file names

MIT distribution name TCP/IP name

AsciiSinkP.h AscSinkP.h

1064 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Table 406. Athena header file names (continued)

MIT distribution name TCP/IP name

AsciiSrcP.h AscSrcP.h

AsciiTextP.h AscTextP.h

Command.h ACommand.h

CommandP.h ACommanP.h

Form.h AForm.h

FormP.h AFormP.h

Label.h ALabel.h

LabelP.h ALabelP.h

List.h AList.h

ListP.h AListP.h

MenuButtoP.h MenuButP.h

Scrollbar.h AScrollb.h

ScrollbarP.h AScrollP.h

SimpleMenP.h SimpleMP.h

StripCharP.h StripChP.h

TemplateP.h TemplatP.h

Text.h AText.h

TextP.h ATextP.h

TextSinkP.h TextSinP.h

TextSrcP.h ATextSrP.h

ViewportP.h ViewporP.h

X Window System routines: Motif-based widget support
The X Window System support with TCP/IP includes the Motif-based widget set
(Release 1.1).

The Motif-based widget set supports the following gadgets and widgets:

ArrowButton, ArrowGadget,
and ArrowButtonGadget

BulletinBoard
CascadeButton

and CascadeButtonGadget
Command
DialogShell
DrawingArea
DrawnButton
Form
Frame
Label and LabelGadget
List
MainWindow

MenuShell
MessageBox
PanedWindow
PushButton and PushButtonGadget
RowColumn
Sash
Scale
ScrollBar
ScrolledWindow
SelectionBox and SelectionDialog
Separator and SeparatorGadget
Text
ToggleButton and ToggleButtonGadget

Appendix H. X Window System interface V11R4 and Motif version 1.1 1065

FileSelectionBox and FileSelectionDialog widgets are not supported in TCP/IP
Version 3 Release 2 for MVS.

To run a Motif-based application, you must copy the module
SEZAINST(KEYSYMDB) to hlq.XKEYSYM.DB or user_id.XKEYSYM.DB to make it
available to your application at run-time.

Note: The EZAGETIN job copies SEZAINST(KEYSYMDB) to hlq.XKEYSYM.DB.

Some of the header files have been renamed from their original distribution names
because of the data set naming conventions in the MVS environment. Such name
changes are generally restricted to those header files used internally by the actual
widget code, rather than the application header data sets, to minimize the number
of changes required for an application to be ported to the MVS environment.

When porting applications to the MVS environment, you might have to make
changes to the header file names in Table 407. These data set members can be
found in the SEZACMAC partitioned data set. They carry an H extension in this
text to distinguish them as header files.

Table 407. Motif header file names

Motif distribution name TCP/IP name

BulletinBP.h BulletBP.h

CascadeBG.h CascadBG.h

CascadeBGP.h CascaBGP.h

CascadeBP.h CascadBP.h

CutPasteP.h CutPastP.h

DrawingAP.h DrawinAP.h

ExtObjectP.h ExtObjeP.h

MenuShellP.h MenuSheP.h

MessageBP.h MessagBP.h

ProtocolsP.h ProtocoP.h

RowColumnP.h RowColuP.h

ScrollBarP.h ScrollBP.h

ScrolledWP.h ScrollWP.h

SelectioB.h SelectiB.h

SelectioBP.h SelectBP.h

SeparatoG.h SeparatG.h

SeparatoGP.h SeparaGP.h

SeparatorP.h SeparatP.h

ToggleBGP.h TogglBGP.h

TraversalI.h TraversI.h

VirtKeysP.h VirtKeyP.h

X Window System routines: z/OS UNIX System Services support
The following topics provide information about using z/OS UNIX System Services
for the X Window System.

1066 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

For information about using z/OS UNIX System Services sockets, see z/OS XL
C/C++ Runtime Library Reference.

X Window System routines: What is provided with z/OS UNIX
System Services

The z/OS UNIX System Services X Window System support provided with
TCP/IP includes the following APIs:
v SEZAROE1 and SEZACMTX compiled to run under z/OS UNIX System

Services. SEZAROE1 is a combination of the reentrant versions of the X Window
System libraries (see z/OS Communications Server: IP Sockets Application
Programming Interface Guide and Reference for information about data sets).

v .SEZAROE2 (z/OS UNIX System Services Athena Widget set for reentrant
modules).

v SEZAROE3 (z/OS UNIX System Services Motif Widget set for reentrant
modules).
The SEZAROE1, SEZAROE2, and SEZAROE3 library members are:
– Fixed block 80, in object deck format.
– Compiled with the C/370 RENT compile-time option.
– Used as input for reentrant z/OS UNIX System Services X Window System

and socket programs.
– Passed to the C/370 prelinker. Use the prelink utility to combine all input text

decks into a single text deck.

X Window System routines: z/OS UNIX System Services
software requirements

Application programs using the X Window System API in z/OS UNIX System
Services are written in C and should be compiled, linked, and executed using the
z/OS C/C++ Compiler and the run-time environment of the Language
Environment for MVS that is provided with z/OS.

You must have the AD/Cycle C/370 Library V1R2M0 and the AD/Cycle LE/370
Library V1R3M0 available when you compile and link your program.

You must include MANIFEST.H as the first #include statement in the source of
every z/OS UNIX System Services MVS X Window System application program to
remap the socket functions to the correct run-time library names.

In z/OS UNIX System Services, the DISPLAY environment variable is used by the
X Window System to identify the host name of the target display.

X Window System routines: z/OS UNIX System Services
application resource file

With the X Window System, you can modify certain characteristics of an
application at run time by means of application resources. Typically, application
resources are set to tailor the appearance and possibly the behavior of an
application. The application resources can specify information about application
window sizes, placement, coloring, font usage, and other functional details.

In the z/OS UNIX System Services environment, this information can be found in
the file:
/u/user_id/.Xdefaults

Appendix H. X Window System interface V11R4 and Motif version 1.1 1067

where:
/u/user_id

is found from the environment variable home.

Identifying the target display in z/OS UNIX System Services
The DISPLAY environment variable is used by the X Window System to identify
the host name of the target display.

The following is the format of the DISPLAY environment variable:
host_name:target_server.target_screen

Value Description

host_name
Specifies the host name or IP address of the host machine on which the
X Window System server is running.

target_server
Specifies the number of the display server on the host machine.

target_screen
Specifies the screen to be used on the target server.

For more information about resolving a host name to an IP address, see z/OS XL
C/C++ Runtime Library Reference.

Compiling and linking with z/OS UNIX System Services
The following steps describe how to compile, link-edit, and run your z/OS UNIX
System Services X Window System application under MVS batch, using the
EDCCLG cataloged procedure supplied by IBM.

You must make the following changes to the EDCCLG cataloged procedure, which
is supplied with AD/Cycle C/370 Version 1 Release 2 Compiler Licensed Program
(5688-216).

In the compilation step, make the following changes:
v Change the CPARM parameters to specify one of the following values:

– CPARM='DEF(IBMCPP),RENT,LO'

– CPARM='DEF(IBMCPP,_POSIX1_ SOURCE=1),RENT,LO'

– CPARM='DEF(IBMCPP,_OPEN_ SYS),RENT,LO'

– CPARM='DEF(IBMCPP,_OPEN_ SOCKETS,_POSIX1_SOURCE=1),RENT,LO'

– CPARM='DEF(IBMCPP,_OPEN_ SOCKETS,_OPEN_SYS),RENT,LO'

Note: The recommended CPARMS are:
CPARM='DEF(IBMCPP,_OPEN_SOCKETS,_POSIX1_SOURCE=1),RENT,LO'

RENT is the reentrant option and LO is the long-name option. You must specify
these options to use z/OS UNIX System Services MVS functions. You must also
specify the feature text macro, IBMCPP.
If you choose to just access the z/OS UNIX System Services MVS functions
defined by the POSIX standards 1003.1, 1003.1a, 1003.2, and 1003.4a, then specify
the feature test macro POSIX1_SOURCE=1 to expose the appropriate definitions
for the read(), write(), fcntl(), and close() functions.

1068 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

If you choose to access all of the z/OS UNIX System Services MVS functions
supported by C/370, including those defined by the POSIX standards 1003.1,
1003.1a, 1003.2, and 1003.4a, then specify the feature test macro _OPEN_SYS.
If you choose to access the z/OS UNIX System Services MVS socket functions or
errno values, then specify the feature test macro _OPEN_SOCKETS to expose the
socket-related definitions in all of the include files.

Note: Compile all C source using the def(IBMCPP) preprocessor symbol. See
“X Window System interface in the MVS environment: Compiling and linking”
on page 1019 for information about compiling and linking your program in
MVS.
For a complete discussion of all of the AD/Cycle C/370 parameters, see
AD/Cycle C/370 Programming Guide.

v Add the following lines after the //SYSLIB DD statement for the IBM C/370
library edc.v1r2m0.SEDCDHDR:

// DD DSN=sys1.SFOMHDRS,DISP=SHR
// DD DSN=SEZACMAC,DISP=SHR

v Add the following //USERLIB DD statement:
//USERLIB DD DSN=USER.MYPROG.H,DISP=SHR

In the prelink edit step, make the following changes:
v Add the following prelink parameter:

PPARM='OMVS'

v To link-edit programs that use only X11 library functions, add the following line
after the prelink //SYSLIB DD statement for the IBM AD/Cycle C/370 library
cee.v1r3m0.SCEEOBJ:

// DD DSN=SEZAROE1,DISP=SHR

v To link-edit programs that use the Athena Toolkit functions, including Athena
widget sets, add the following lines after the prelink //SYSLIB DD statement for
the IBM AD/Cycle C/370 library cee.v1r3m0.SCEEOBJ:

// DD DSN=SEZAROE2,DISP=SHR
// DD DSN=SEZAROE1,DISP=SHR

v To link-edit programs that use theMotif Toolkit functions, add the following
lines after the prelink //SYSLIB DD statement for the IBM AD/Cycle C/370
library cee.v1r3m0.SCEEOBJ:

// DD DSN=SEZAROE3,DISP=SHR
// DD DSN=SEZAROE1,DISP=SHR

For a complete discussion about compiling and link-editing the X Window
System in MVS z/OS UNIX System Services, see z/OS XL C/C++ Runtime
Library Reference.

To run your program in the z/OS UNIX System Services shell, make the following
changes:
v Set the DISPLAY environment variable to the name or IP address of the X server

on which you want to display the application output. The following code is an
example:

DISPLAY=CHARM.RALEIGH.IBM.COM:0.0
export DISPLAY

v Allow the host application access to the X server.
On the workstation where you want to display the application output, you must
grant permission for the MVS host to access the X server. To do this, enter the
xhost command:

Appendix H. X Window System interface V11R4 and Motif version 1.1 1069

xhost ralmvs1

Compiling and linking with z/OS UNIX System Services using
c89

The following c89 utility options can be specified:
v IBMCPP must always be specified.
v The c89 utility assumes _OPEN_SYS and includes all of the z/OS UNIX System

Services MVS functions supported by C/370. However, _OPEN_SOCKETS must
be specified if z/OS UNIX System Services MVS sockets are being used by the
application program.

-D IBMCPP
-D _OPEN_SOCKETS

Notes:

1. When you compile and link-edit your application program using the c89
utility with z/OS UNIX System Services sockets and TCP/IP Version 3
Release 1 for X Window System, you must include the z/OS UNIX System
Services socket library before the X Window System include files:

-l“//'
sys1.SFOMHDRS'”

-l“//'SEZACMAC'”

-l“//'SEZAROE1'”

2. The flag for the prelinker libraries, -l, is a dash followed by the lowercase
letter L.

v If the Athena Toolkit functions are required, then also specify:
-l“//'SEZAROE2'”

v If the Motif Toolkit functions are required, then also specify:
-l“//'SEZAROE3'”

To run your program under TSO, enter the following line:
CALL 'USER.MYPROG.LOAD(PROGRAM1)' 'POSIX(ON)'

This loads the run-time library from cee.v1r3m0.SCEERUN. To use the z/OS UNIX
System Services MVS C/370 functions, you must either specify the run-time
option:

POSIX(ON)

or include the following statement in your C source program:
#pragma runopts(POSIX(ON))

Standard X client applications for z/OS UNIX System Services
For information about standard X Client applications for X Window System on
z/OS UNIX System Services, see “Standard X client applications” on page 1025.

Application resources for z/OS UNIX System Services
X applications can be modified at run time by a set of resources. Applications that
make use of an X Window System toolkit can be modified by additional sets of
application resources. These resources are searched until a resource specification is
found. The X Intrinsics determine the actual search order used for determining a
resource value.

1070 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

The search order used in the z/OS UNIX System Services environment, in
descending order of preference, is:
1. Command Line

Standard arguments include:
a. Command switches (-display, -fg, -foreground, +rv)
b. Resource manager directives (-name, -xrm)
c. Natural language directives (-xnllanguage)

2. User Environment File
Use the source found from the file /u/user_id/.Xdefault-host.
/u/user_id/.Xdefault-host is found from the environment variable home, and
host is the string returned by the gethostname() call.

3. Server and User Preference Resources
Use the first source found from:
a. RESOURCE_MANAGER property on the root window [screen0]
b. /u/user_id/.Xdefaults

/u/user_id is found from the environment variable home.
4. Application Class Resources

Use the first source found from:
a. The default application resource file

/u/user_id/classname

where classname is the application specified class name, and /u/user_id is
found from the environment variable home.

b. Fallback resources defined in the file /usr/lib/X11/app-defaults/
classnamewhere classname is the application-specified class name.

Appendix H. X Window System interface V11R4 and Motif version 1.1 1071

1072 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix I. Syslog daemon name/token pair and ECSA
storage mapping

When the syslog daemon is started, a system-level name/token pair is created for
other address spaces to retrieve. The name/token pair exists until the end of the
syslogd job. The name/token pair is defined as follows:

Name A 16-byte character string, which is EZBSYSLOGD padded with blanks.

Value A 16-byte value.
v First 8 bytes contain 4 bytes zero and 4 bytes ECSA address.
v Last 8 bytes contain 4 bytes ECSA storage length and 4 bytes zero.

The ECSA storage contains following information.

Offset
(Dec)

Offset
(Hex)

Length
bytes
(Dec)

Type Content Notes

0 0 16 Char Eye catcher = token name EZBSYSLOGD

16 10 4 Binary ECSA storage version Current
version is
binary 1

20 14 4 Reserved For optimal
alignment

Information for the last known Local
syslogd server

24 18 8 Char AS name of syslogd jobname

32 20 4 Binary Address space ID of syslogd ASID

36 24 4 Binary UNIX process ID of syslogd PID

40 28 8 Binary Last updated Time stamp

48 30 4 Reserved

52 34 4 Binary Length of configuration file name

56 38 1025
(max
1024 +
1)

Char Name of configuration file without
quotes. A USS file location starts with
a slash (/) and an MVS data set name
starts with anything else. For
example:

v mvs.dataset.name(member)

v mvs.dataset.name

v /etc/syslogd.conf

Must be fully
qualified MVS
data set name
or full path
name of UNIX
file name

1081 439 979 Reserved

Information for the last known
Network syslogd server

2060 80C 8 Char AS name of syslogd jobname

2068 814 4 Binary Address space ID of syslogd ASID

2072 818 4 Binary UNIX process ID of syslogd PID

2076 81C 8 Binary Last updated Time stamp

© Copyright IBM Corp. 2000, 2015 1073

Offset
(Dec)

Offset
(Hex)

Length
bytes
(Dec)

Type Content Notes

2084 824 4 Reserved

2088 828 4 Binary Length of configuration file name

2092 82C 1025
(max
1024 +
1)

Char Name of configuration file without
quotes. A USS file location starts with
a slash (/) and an MVS data set name
starts with anything else. For
example:

v mvs.dataset.name(member)

v mvs.dataset.name

v /etc/syslogd.conf

Must be fully
qualified MVS
data set name
or full path
name of UNIX
file name

3117 C2D 979 Reserved

1074 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Appendix J. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The
Internet Protocol suite is still evolving through requests for comments (RFC). New
protocols are being designed and implemented by researchers and are brought to
the attention of the Internet community in the form of RFCs. Some of these
protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

You can request RFCs through electronic mail, from the automated Network
Information Center (NIC) mail server, by sending a message to
service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject
line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,
send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by
subscription. Online copies are available at the following Web address:
http://www.rfc-editor.org/rfc.html.

Draft RFCs that have been implemented in this and previous Communications
Server releases are listed at the end of this topic.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652
Telnet output carriage-return disposition option D. Crocker

RFC 653
Telnet output horizontal tabstops option D. Crocker

RFC 654
Telnet output horizontal tab disposition option D. Crocker

RFC 655
Telnet output formfeed disposition option D. Crocker

RFC 657
Telnet output vertical tab disposition option D. Crocker

RFC 658
Telnet output linefeed disposition D. Crocker

RFC 698
Telnet extended ASCII option T. Mock

© Copyright IBM Corp. 2000, 2015 1075

http://www.rfc-editor.org/rfc.html

RFC 726
Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker

RFC 727
Telnet logout option M.R. Crispin

RFC 732
Telnet Data Entry Terminal option J.D. Day

RFC 733
Standard for the format of ARPA network text messages D. Crocker, J. Vittal,
K.T. Pogran, D.A. Henderson

RFC 734
SUPDUP Protocol M.R. Crispin

RFC 735
Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736
Telnet SUPDUP option M.R. Crispin

RFC 749
Telnet SUPDUP—Output option B. Greenberg

RFC 765
File Transfer Protocol specification J. Postel

RFC 768
User Datagram Protocol J. Postel

RFC 779
Telnet send-location option E. Killian

RFC 783
TFTP Protocol (revision 2) K.R. Sollins

RFC 791
Internet Protocol J. Postel

RFC 792
Internet Control Message Protocol J. Postel

RFC 793
Transmission Control Protocol J. Postel

RFC 820
Assigned numbers J. Postel

RFC 821
Simple Mail Transfer Protocol J. Postel

RFC 822
Standard for the format of ARPA Internet text messages D. Crocker

RFC 823
DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826
Ethernet Address Resolution Protocol: Or converting network protocol addresses
to 48.bit Ethernet address for transmission on Ethernet hardware D. Plummer

RFC 854
Telnet Protocol Specification J. Postel, J. Reynolds

1076 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 855
Telnet Option Specification J. Postel, J. Reynolds

RFC 856
Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857
Telnet Echo Option J. Postel, J. Reynolds

RFC 858
Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859
Telnet Status Option J. Postel, J. Reynolds

RFC 860
Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861
Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862
Echo Protocol J. Postel

RFC 863
Discard Protocol J. Postel

RFC 864
Character Generator Protocol J. Postel

RFC 865
Quote of the Day Protocol J. Postel

RFC 868
Time Protocol J. Postel, K. Harrenstien

RFC 877
Standard for the transmission of IP datagrams over public data networks J.T.
Korb

RFC 883
Domain names: Implementation specification P.V. Mockapetris

RFC 884
Telnet terminal type option M. Solomon, E. Wimmers

RFC 885
Telnet end of record option J. Postel

RFC 894
Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

RFC 896
Congestion control in IP/TCP internetworks J. Nagle

RFC 903
Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M.
Theimer

RFC 904
Exterior Gateway Protocol formal specification D. Mills

RFC 919
Broadcasting Internet Datagrams J. Mogul

Appendix J. Related protocol specifications 1077

RFC 922
Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927
TACACS user identification Telnet option B.A. Anderson

RFC 933
Output marking Telnet option S. Silverman

RFC 946
Telnet terminal location number option R. Nedved

RFC 950
Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952
DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

RFC 959
File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961
Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974
Mail routing and the domain system C. Partridge

RFC 1001
Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and
methods NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1002
Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed
specifications NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1006
ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

RFC 1009
Requirements for Internet gateways R. Braden, J. Postel

RFC 1011
Official Internet protocols J. Reynolds, J. Postel

RFC 1013
X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

RFC 1014
XDR: External Data Representation standard Sun Microsystems

RFC 1027
Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J.
Quarterman

RFC 1032
Domain administrators guide M. Stahl

RFC 1033
Domain administrators operations guide M. Lottor

RFC 1034
Domain names—concepts and facilities P.V. Mockapetris

1078 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 1035
Domain names—implementation and specification P.V. Mockapetris

RFC 1038
Draft revised IP security option M. St. Johns

RFC 1041
Telnet 3270 regime option Y. Rekhter

RFC 1042
Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel,
J. Reynolds

RFC 1043
Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T.
Thompson

RFC 1044
Internet Protocol on Network System's HYPERchannel: Protocol specification K.
Hardwick, J. Lekashman

RFC 1053
Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055
Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

RFC 1057
RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

RFC 1058
Routing Information Protocol C. Hedrick

RFC 1060
Assigned numbers J. Reynolds, J. Postel

RFC 1067
Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J.
Davin

RFC 1071
Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

RFC 1072
TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073
Telnet window size option D. Waitzman

RFC 1079
Telnet terminal speed option C. Hedrick

RFC 1085
ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091
Telnet terminal-type option J. VanBokkelen

RFC 1094
NFS: Network File System Protocol specification Sun Microsystems

RFC 1096
Telnet X display location option G. Marcy

RFC 1101
DNS encoding of network names and other types P. Mockapetris

Appendix J. Related protocol specifications 1079

RFC 1112
Host extensions for IP multicasting S.E. Deering

RFC 1113
Privacy enhancement for Internet electronic mail: Part I — message encipherment
and authentication procedures J. Linn

RFC 1118
Hitchhikers Guide to the Internet E. Krol

RFC 1122
Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

RFC 1123
Requirements for Internet Hosts—Application and Support R. Braden, Ed.

RFC 1146
TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155
Structure and identification of management information for TCP/IP-based
internets M. Rose, K. McCloghrie

RFC 1156
Management Information Base for network management of TCP/IP-based internets
K. McCloghrie, M. Rose

RFC 1157
Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.
Schoffstall, J. Davin

RFC 1158
Management Information Base for network management of TCP/IP-based
internets: MIB-II M. Rose

RFC 1166
Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179
Line printer daemon protocol L. McLaughlin

RFC 1180
TCP/IP tutorial T. Socolofsky, C. Kale

RFC 1183
New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris

RFC 1184
Telnet Linemode Option D. Borman

RFC 1186
MD4 Message Digest Algorithm R.L. Rivest

RFC 1187
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188
Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D.
Katz

RFC 1190
Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

1080 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 1191
Path MTU discovery J. Mogul, S. Deering

RFC 1198
FYI on the X window system R. Scheifler

RFC 1207
FYI on Questions and Answers: Answers to commonly asked “experienced
Internet user” questions G. Malkin, A. Marine, J. Reynolds

RFC 1208
Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213
Management Information Base for Network Management of TCP/IP-based
internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215
Convention for defining traps for use with the SNMP M. Rose

RFC 1227
SNMP MUX protocol and MIB M.T. Rose

RFC 1228
SNMP-DPI: Simple Network Management Protocol Distributed Program Interface
G. Carpenter, B. Wijnen

RFC 1229
Extensions to the generic-interface MIB K. McCloghrie

RFC 1230
IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231
IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236
IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256
ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267
Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268
Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFC 1269
Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S.
Willis, J. Burruss

RFC 1270
SNMP Communications Services F. Kastenholz, ed.

RFC 1285
FDDI Management Information Base J. Case

RFC 1315
Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C.
Carvalho

RFC 1321
The MD5 Message-Digest Algorithm R. Rivest

Appendix J. Related protocol specifications 1081

RFC 1323
TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

RFC 1325
FYI on Questions and Answers: Answers to Commonly Asked "New Internet
User" Questions G. Malkin, A. Marine

RFC 1327
Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

RFC 1340
Assigned Numbers J. Reynolds, J. Postel

RFC 1344
Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349
Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350
The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351
SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353
Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

RFC 1354
IP Forwarding Table MIB F. Baker

RFC 1356
Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D.
Robinson, R. Ullmann

RFC 1358
Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363
A Proposed Flow Specification C. Partridge

RFC 1368
Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K.
McCloghrie

RFC 1372
Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374
IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381
SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382
SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387
RIP Version 2 Protocol Analysis G. Malkin

RFC 1388
RIP Version 2 Carrying Additional Information G. Malkin

1082 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 1389
RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390
Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393
Traceroute Using an IP Option G. Malkin

RFC 1398
Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

RFC 1408
Telnet Environment Option D. Borman, Ed.

RFC 1413
Identification Protocol M. St. Johns

RFC 1416
Telnet Authentication Option D. Borman, ed.

RFC 1420
SNMP over IPX S. Bostock

RFC 1428
Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

RFC 1442
Structure of Management Information for version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1443
Textual Conventions for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445
Administrative Model for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Galvin, K. McCloghrie

RFC 1447
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)
K. McCloghrie, J. Galvin

RFC 1448
Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464
Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

RFC 1469
IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483
Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514
Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516
Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster,
K. McCloghrie

Appendix J. Related protocol specifications 1083

RFC 1521
MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies N. Borenstein,
N. Freed

RFC 1535
A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

RFC 1536
Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel,
C. Neuman, P. Danzig, S. Miller

RFC 1537
Common DNS Data File Configuration Errors P. Beertema

RFC 1540
Internet Official Protocol Standards J. Postel

RFC 1571
Telnet Environment Option Interoperability Issues D. Borman

RFC 1572
Telnet Environment Option S. Alexander

RFC 1573
Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577
Classical IP and ARP over ATM M. Laubach

RFC 1583
OSPF Version 2 J. Moy

RFC 1591
Domain Name System Structure and Delegation J. Postel

RFC 1592
Simple Network Management Protocol Distributed Protocol Interface Version 2.0
B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594
FYI on Questions and Answers— Answers to Commonly Asked "New Internet
User" Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644
T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

RFC 1646
TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M.
Angel

RFC 1647
TN3270 Enhancements B. Kelly

RFC 1652
SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M.
Rose, E. Stefferud, D. Crocker

RFC 1664
Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C.
Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693
An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

1084 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 1695
Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2
M. Ahmed, K. Tesink

RFC 1701
Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1702
Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.
Farinacci, P. Traina

RFC 1706
DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712
DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D.
Baldoni

RFC 1713
Tools for DNS debugging A. Romao

RFC 1723
RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752
The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

RFC 1766
Tags for the Identification of Languages H. Alvestrand

RFC 1771
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794
DNS Support for Load Balancing T. Brisco

RFC 1819
Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L.
Delgrossi, L. Berger Eds.

RFC 1826
IP Authentication Header R. Atkinson

RFC 1828
IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830
SMTP Service Extensions for Transmission of Large and Binary MIME Messages
G. Vaudreuil

RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2 R. Srinivasan

RFC 1832
XDR: External Data Representation Standard R. Srinivasan

RFC 1833
Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850
OSPF Version 2 Management Information Base F. Baker, R. Coltun

Appendix J. Related protocol specifications 1085

RFC 1854
SMTP Service Extension for Command Pipelining N. Freed

RFC 1869
SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D.
Crocker

RFC 1870
SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K.
Moore

RFC 1876
A Means for Expressing Location Information in the Domain Name System C.
Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884
IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888
OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.
Houldsworth, A. Lloyd

RFC 1891
SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892
The Multipart/Report Content Type for the Reporting of Mail System
Administrative Messages G. Vaudreuil

RFC 1894
An Extensible Message Format for Delivery Status NotificationsK. Moore, G.
Vaudreuil

RFC 1901
Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose,
S. Waldbusser

RFC 1902
Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1903
Textual Conventions for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904
Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1905
Protocol Operations for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906
Transport Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1086 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 1907
Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908
Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912
Common DNS Operational and Configuration Errors D. Barr

RFC 1918
Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

RFC 1928
SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

RFC 1930
Guidelines for creation, selection, and registration of an Autonomous System (AS)
J. Hawkinson, T. Bates

RFC 1939
Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982
Serial Number Arithmetic R. Elz, R. Bush

RFC 1985
SMTP Service Extension for Remote Message Queue Starting J. De Winter

RFC 1995
Incremental Zone Transfer in DNS M. Ohta

RFC 1996
A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

RFC 2010
Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011
SNMPv2 Management Information Base for the Internet Protocol using SMIv2
K. McCloghrie, Ed.

RFC 2012
SNMPv2 Management Information Base for the Transmission Control Protocol
using SMIv2 K. McCloghrie, Ed.

RFC 2013
SNMPv2 Management Information Base for the User Datagram Protocol using
SMIv2 K. McCloghrie, Ed.

RFC 2018
TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A.
Romanow

RFC 2026
The Internet Standards Process — Revision 3 S. Bradner

Appendix J. Related protocol specifications 1087

RFC 2030
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D.
Mills

RFC 2033
Local Mail Transfer Protocol J. Myers

RFC 2034
SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040
The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R.
Rivest

RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies N. Freed, N. Borenstein

RFC 2052
A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen,
P. Vixie

RFC 2065
Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

RFC 2066
TELNET CHARSET Option R. Gellens

RFC 2080
RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096
IP Forwarding Table MIB F. Baker

RFC 2104
HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,
R. Canetti

RFC 2119
Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound,
W. Stevens

RFC 2136
Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed.,
S. Thomson, Y. Rekhter, J. Bound

RFC 2137
Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163
Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

RFC 2168
Resolution of Uniform Resource Identifiers using the Domain Name System R.
Daniel, M. Mealling

RFC 2178
OSPF Version 2 J. Moy

RFC 2181
Clarifications to the DNS Specification R. Elz, R. Bush

1088 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 2205
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R.
Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin

RFC 2210
The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211
Specification of the Controlled-Load Network Element Service J. Wroclawski

RFC 2212
Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

RFC 2215
General Characterization Parameters for Integrated Service Network Elements S.
Shenker, J. Wroclawski

RFC 2217
Telnet Com Port Control Option G. Clarke

RFC 2219
Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228
FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230
Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233
The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240
A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246
The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251
Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254
The String Representation of LDAP Search Filters T. Howes

RFC 2261
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2262
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2271
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2273
SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

Appendix J. Related protocol specifications 1089

RFC 2274
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279
UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292
Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308
Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320
Definitions of Managed Objects for Classical IP and ARP Over ATM Using
SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328
OSPF Version 2 J. Moy

RFC 2345
Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

RFC 2352
A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355
TN3270 Enhancements B. Kelly

RFC 2358
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2373
IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374
An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O'Dell, S.
Deering

RFC 2375
IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385
Protection of BGP Sessions via the TCP MD5 Signature Option A. Hefferman

RFC 2389
Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

RFC 2401
Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402
IP Authentication Header S. Kent, R. Atkinson

RFC 2403
The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

1090 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 2404
The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.
Doraswamy

RFC 2406
IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408
Internet Security Association and Key Management Protocol (ISAKMP) D.
Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409
The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

RFC 2428
FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

RFC 2445
Internet Calendaring and Scheduling Core Object Specification (iCalendar) F.
Dawson, D. Stenerson

RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley,
W. Ford, W. Polk, D. Solo

RFC 2460
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461
Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

RFC 2462
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

RFC 2464
Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466
Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S.
Onishi

RFC 2476
Message Submission R. Gellens, J. Klensin

RFC 2487
SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505
Anti-Spam Recommendations for SMTP MTAs G. Lindberg

Appendix J. Related protocol specifications 1091

RFC 2523
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535
Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538
Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O.
Gudmundsson

RFC 2539
Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake
3rd

RFC 2540
Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554
SMTP Service Extension for Authentication J. Myers

RFC 2570
Introduction to Version 3 of the Internet-standard Network Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571
An Architecture for Describing SNMP Management Frameworks B. Wijnen, D.
Harrington, R. Presuhn

RFC 2572
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2573
SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576
Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 2578
Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

RFC 2579
Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2580
Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

RFC 2581
TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583
Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

1092 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 2591
Definitions of Managed Objects for Scheduling Management Operations D. Levi,
J. Schoenwaelder

RFC 2625
IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

RFC 2635
Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings
(spam*) S. Hambridge, A. Lunde

RFC 2637
Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud,
W. Little, G. Zorn

RFC 2640
Internationalization of the File Transfer Protocol B. Curtin

RFC 2665
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2671
Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672
Non-Terminal DNS Name Redirection M. Crawford

RFC 2675
IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710
Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

RFC 2711
IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740
OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753
A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis,
R. Guerin

RFC 2782
A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P.
Vixix, L. Esibov

RFC 2821
Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822
Internet Message Format P. Resnick, Ed.

RFC 2840
TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845
Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

Appendix J. Related protocol specifications 1093

RFC 2852
Deliver By SMTP Service Extension D. Newman

RFC 2874
DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

RFC 2915
The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R.
Daniel

RFC 2920
SMTP Service Extension for Command Pipelining N. Freed

RFC 2930
Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941
Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942
Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946
Telnet Data Encryption Option T. Ts'o

RFC 2952
Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

RFC 2953
Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992
Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019
IP Version 6 Management Information Base for The Multicast Listener Discovery
Protocol B. Haberman, R. Worzella

RFC 3060
Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J.
Strassner, A. Westerinen

RFC 3152
Delegation of IP6.ARPA R. Bush

RFC 3164
The BSD Syslog Protocol C. Lonvick

RFC 3207
SMTP Service Extension for Secure SMTP over Transport Layer Security P.
Hoffman

RFC 3226
DNSSEC and IPv6 A6 aware server/resolver message size requirements O.
Gudmundsson

RFC 3291
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 3363
Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name
System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain

1094 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 3376
Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I.
Kouvelas, B. Fenner, A. Thyagarajan

RFC 3390
Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410
Introduction and Applicability Statements for Internet-Standard Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 3411
An Architecture for Describing Simple Network Management Protocol (SNMP)
Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 3412
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 3413
Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer,
B. Stewart

RFC 3414
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3416
Version 2 of the Protocol Operations for the Simple Network Management
Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3417
Transport Mappings for the Simple Network Management Protocol (SNMP) R.
Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3418
Management Information Base (MIB) for the Simple Network Management
Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3419
Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484
Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3493
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J.
McCann, W. Stevens

RFC 3513
Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S.
Deering

RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE) T. Kivinen, M. Kojo

Appendix J. Related protocol specifications 1095

RFC 3542
Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard
Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3566
The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel, H.
Herbert

RFC 3569
An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584
Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 3602
The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S.
Kelly

RFC 3629
UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678
Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B.
Quinn

RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba,
W. Dixon

RFC 3810
Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed., L.
Costa, Ed.

RFC 3826
The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP
User-based Security Model U. Blumenthal, F. Maino, K McCloghrie.

RFC 3947
Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen,
V. Volpe

RFC 3948
UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe,
L. DiBurro, M. Stenberg

RFC 4001
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 4007
IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E.
Nordmark, B. Zill

RFC 4022
Management Information Base for the Transmission Control Protocol (TCP) R.
Raghunarayan

RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload
(ESP) J. Viega, D. McGrew

1096 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

RFC 4109
Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

RFC 4113
Management Information Base for the User Datagram Protocol (UDP) B. Fenner,
J. Flick

RFC 4191
Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

RFC 4217
Securing FTP with TLS P. Ford-Hutchinson

RFC 4292
IP Forwarding Table MIB B. Haberman

RFC 4293
Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301
Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302
IP Authentication Header S. Kent

RFC 4303
IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation
(DOI) for Internet Security Association and Key Management Protocol
(ISAKMP) S. Kent

RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2
(IKEv2) J. Schiller

RFC 4308
Cryptographic Suites for IPsec P. Hoffman

RFC 4434
The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol P.
Hoffman

RFC 4443
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

RFC 4552
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678
Server/Application State Protocol v1 A. Bivens

RFC 4753
ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754
IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature
Algorithm (ECDSA) D. Fu, J. Solinas

RFC 4809
Requirements for an IPsec Certificate Management Profile C. Bonatti, Ed., S.
Turner, Ed., G. Lebovitz, Ed.

Appendix J. Related protocol specifications 1097

RFC 4835
Cryptographic Algorithm Implementation Requirements for Encapsulating
Security Payload (ESP) and Authentication Header (AH) V. Manral

RFC 4862
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei

RFC 4868
Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec S.
Kelly, S. Frankel

RFC 4869
Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941
Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R.
Draves, S. Krishnan

RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX B.
Korver

RFC 5014
IPv6 Socket API for Source Address Selection E. Nordmark, S. Chakrabarti, J.
Laganier

RFC 5095
Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G.
Neville-Neil

RFC 5175
IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282
Using Authenticated Encryption Algorithms with the Encrypted Payload of the
Internet Key Exchange version 2 (IKEv2) Protocol D. Black, D. McGrew

RFC 5996
Internet Key Exchange Protocol Version 2 (IKEv2) C. Kaufman, P. Hoffman, Y.
Nir, P. Eronen

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Other groups can also distribute working
documents as Internet drafts. You can see Internet drafts at http://www.ietf.org/
ID.html.

1098 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://www.ietf.org/ID.html
http://www.ietf.org/ID.html

Appendix K. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you can view the information through the z/OS
Internet Library website or IBM Knowledge Center. If you continue to experience
problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

One exception is command syntax that is published in railroad track format, which
is accessible using screen readers with IBM Knowledge Center, as described in
“Dotted decimal syntax diagrams.”

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing IBM
Knowledge Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always

© Copyright IBM Corp. 2000, 2015 1099

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v A question mark (?) means an optional syntax element. A dotted decimal

number followed by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax elements, are
optional. If there is only one syntax element with a dotted decimal number, the ?
symbol is displayed on the same line as the syntax element, (for example 5?
NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax
elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and
5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional;
that is, you can choose one or none of them. The ? symbol is equivalent to a
bypass line in a railroad diagram.

v An exclamation mark (!) means a default syntax element. A dotted decimal
number followed by the ! symbol and a syntax element indicate that the syntax
element is the default option for all syntax elements that share the same dotted

1100 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

decimal number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option
for the FILE keyword. In this example, if you include the FILE keyword but do
not specify an option, default option KEEP will be applied. A default option also
applies to the next higher dotted decimal number. In this example, if the FILE
keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines
2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies
only to the next higher dotted decimal number, 2.1 (which does not have an
associated keyword), and does not apply to 2? FILE. Nothing is used if the
keyword FILE is omitted.

v An asterisk (*) means a syntax element that can be repeated 0 or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data area, you know that you
can include one data area, more than one data area, or no data area. If you hear
the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST,
STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix K. Accessibility 1101

1102 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2000, 2015 1103

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations might not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing

1104 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:

Notices 1105

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California. Popper was created by Austin Shelton,
Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without specific prior

1106 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC.

Notices 1107

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

1108 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The IBM implementation of the Resource Reservation Setup Protocol API (RAPI)
described in this document is derived from the Resource Reservation Setup
Protocol API (RAPI) specification, The Open Group Document Number C809, ISBN
185912264, published by The Open Group, December 1998.

The specification document is copyrighted by The Open Group. See The Open
Group website at http://www.opengroup.org/publications/catalog/c809.htm for

Notices 1109

http://www.ibm.com/software/network/commserver/support

the source of the specification. See z/OS Communications Server: IP Programmer's
Guide and Reference for details about IBM use of this information.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or

1110 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www-01.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS Communications Server.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 1111

http://www-01.ibm.com/software/support/systemsz/lifecycle/
http://www-01.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1112 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xxxvi.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2015 1113

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want to
administer and maintain IP. Use this document with the z/OS
Communications Server: IP Configuration Guide. The
information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with the
z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server:
IP User's Guide and Commands

SC27-3662 This document describes how to use TCP/IP applications. It
contains requests with which a user can log on to a remote
host using Telnet, transfer data sets using FTP, send and
receive electronic mail, print on remote printers, and
authenticate network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA and
IP commands.

1114 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

Bibliography 1115

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC27-3646 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

1116 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Index

Special characters
<rapi.h> header 168

adspec definitions 170
filter spec definitions 172
flowspec definitions 170
function interface definitions 173
general definitions 168
policy definitions 172
reservation style definitions 172
tspec definitions 169

A
accessibility 1099
accounting 729, 731
activation and refresh record, IPSec IKE tunnel 973
activation record, IPSec manual tunnel 990
activation/refresh record, IPSec IKE tunnel 963
added record, IPSec dynamic tunnel 987
addr parameter on RPC call

on clnttcp_create() 222
on clntudp_create() 223
on get_myaddress() 224
on pmap_getmaps() 226
on pmap_getport() 226
on pmap_rmtcall() 227
on xdrmem_create() 268

adspec definitions 170
adspec pieces 181
adspecs 163
AF_INET6 727
agent distributed protocol interface (DPI) 3, 35
ap parameter on RPC call, on xdr_opaque_auth() 254
APPLDATA 1006
application data 995

format 995
FTP client 996
FTP client data format 998
FTP client format for the control connection 997
FTP daemon format 999
FTP server format for the control connection 1000
FTP server format for the data connection 1001
identifying 995
TN3270E Telnet server 1009

application resources, X Windows 1061, 1070
Application Transparent Transport Layer Security

(AT-TLS) 659
applications, functions and protocols

Network Computing System (NCS) 285
remote procedure calls (RPC) 195
SNMP DPI 3, 35
X Window system interface 183, 1013

ar parameter on RPC call, on xdr_accepted_reply() 242
areas, clearing and copying, X Windows 1034
areas, filling, X Windows 1035
arrp parameter on RPC call, on xdr_array() 243
assembler applications 744

real-time data
EZBTMIC1 537
EZBTMIC4 537

associate table functions, X Windows 1048
asynchronous event handling, RAPI 163
AT-TLS

CICS transaction considerations 660
coding the SIOCTTLSCTL ioctl 665
defined 659
sample code for building and issuing the SIOCTTLSCTL

ioctl 679
starting on a connection 661
steps for implementing a controlling server

application 663
steps for implementing an aware server application 662
steps for starting an aware or controlling server

application 663
using the SIOCTTLSCTL ioctl 661

athena widget set headers 1018
Athena Widget Support 1062
aup_gids parameter on RPC call, on authunix_create() 209
aupp parameter on RPC call, on xdr_authunix_parms() 244
auth parameter on RPC call, on auth_destroy() 208
auth_destroy(), RPC call 208
authnone_create()(RPC) 208
authorization routines, X Windows 1051
authunix_create_default() 209
authunix_create() (RPC) 209
autolog procedure section 776

B
BANK sample program data sets, NCS 307
basep parameter on RPC call, on xdr_vector() 266
BINOP sample program

Data sets, NCS 298
bitmaps, manipulating 1043
bp parameter on RPC call, on xdr_bool() 244
buffers, cut and paste, X Windows 1042
building X client modules 1028

C
C/C++ applications 744
c89 utility options 1070
callrpc() 210
CC CLIST, processed by RPCGEN 203
changing window attributes 1031
character set selection 84
character string sizes, X Windows 1035
chdr parameter on RPC call, on xdr_callhdr() 246
choices parameter on RPC call, on xdr_union() 265
CICS socket interface 996
Client

cleanup 195
free resources 195
initialize 195
port numbers 198
process caLL 195
remote procedure call 195

client connection initiation record, TSO Telnet 855
client connection termination record, TSO Telnet 856

© Copyright IBM Corp. 2000, 2015 1117

clnt parameter on RPC call
on clnt_call() 212
on clnt_control() 213
on clnt_destroy() 215
on clnt_freeres() 216
on clnt_geterr() 216
on clnt_perror() 218
on clnt_sperror() 220

clnt_broadcast() 211
clnt_call() 212
clnt_control() 213
clnt_create() 214
clnt_destroy() 215
clnt_freeres() 216
clnt_geterr() 216
clnt_pcreateerror() 217
clnt_perrno() 218
clnt_perror() 218
clnt_spcreateerror() 219
clnt_sperrno() 220
clnt_sperror() 220
clnt_stat enumerated type 203
clntraw_create() 221
clnttcp_create() 222
clntudp_create() 223
cmsg parameter on RPC call, on xdr_callmsg() 246
cnt parameter on RPC call, on xdr_opaque() 254
color cells, manipulating, X Windows 1033
colormaps, manipulating, X Windows 1032
common record format, Type 119 SMF records 745
Communications Server for z/OS, online information xxxvii
compiler nidl 292
compiling and linking

C sockets 6
Kerberos 6
NCS 290, 295
RPC 205
SNMP 6, 38
UNIX System Services 1070
X Windows 1019, 1068

connecting to an agent through UNIX 70
controlled-load services formats 178, 179
COPY 378
cp parameter on RPC call

on xdr_char() 247
on xdr_opaque() 254

creating and destroying windows 1030
cursors, manipulating, X Windows 1036

D
data format concepts 770, 858
data structures

header files for RPCs 205
header files for X Window system 288, 1017
MANIFEST.H, to remap names 204
pascal include data set 288

deactivation and expire record, IPSec IKE tunnel 970
deactivation record, IPSec dynamic tunnel 986
deactivation record, IPSec manual tunnel 991
dfault parameter on RPC call, on xdr_union() 265
diagnosis, network management 655
Differentiated Services Policies 723
Digital Certificate Access Server (DCAS), configuring 708
Digital Certificate Access Server (DCAS), defining request and

response specifications 704
Digital Certificate Access Server (DCAS), interfacing with 703

disability 1099
dispatch(), on svc_register() 234
display functions, X Windows 1044
DNS, online information xxxix
dp parameter on RPC call, on xdr_double.parms() 248
DPI requests, processing 4
DPI_CLOSE_reason_codes 85
DPI_PACKET_LEN() 53
DPI_RC_values 88
DPI_UNREGISTER_reason_codes 86
DPI, packet types 85
DPI, value types 87
DPIawait_packet_from_agent() 67
DPIconnect_to_agent_TCP() 69
DPIconnect_to_agent_UNIXstream() 70
DPIdebug() 53
DPIdisconnect_from_agent() 71
DPIget_fd_for_handle() 72
DPIsend_packet_to_agent() 73
drop TCP connections or UDP endpoints

interfaces
configuration and enablement 602
EZBNMIFR 602
request and response data structures 627
request format 606
response format 618

dscmp parameter on RPC call, on xdr_union() 265

E
eachresult parameter on RPC call, on clnt_broadcast() 212
elemsize parameter on RPC call, on xdr_vector() 266
elproc parameter on RPC call, on xdr_array() 243
elsize parameter on RPC call, on xdr_array() 243
ep parameter on RPC call, on xdr_enum.parms() 249, 266
error code, DPI RESPONSE error codes 85
error handling, default, X Windows 1040
errp parameter on RPC call, on clnt_geterr() 216
events handling, X Windows 1039
extension routines, X Windows 1046
EZASMF76 585
EZASMF77 586, 743
EZBCTAPI 634
EZBNMIFR 602
EZBNMIFR interface 600
EZBTMIC1 537
EZBTMIC4 537

F
FCAI_IE_InternalErr 412
FCAI_IE_LengthInvalid 410
FCAI_PollWait 411
FCAI_ReqTimer 410
FCAI_Status_TraceFailed 409
FCAI_TraceStatus 409
fDPIparse() 54
fDPIparse(), SNMP 7
fDPIset() 54
file parameter on RPC call, on xdrstdio_create() 271
Files, Motif, location 191
filter spec definitions 172
filter specs 163
filter, mail 313
FIND 378
flowspecs 162

1118 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

fonts, loading and freeing, X Windows 1035
formats for controlled-load services 178, 179
formatting packet and data trace records

interfaces 632
configuration and enablement 634
EZBCTAPI 634

passing options 648
fp parameter on RPC call, on xdr_float() 250
FTP

accounting 733
client application data format for the data connection 998
client transfer completion record 761
client transfer completion user name 767
daemon, application data format 999
logon failure record 960
transfer completion record 934
Type 119 SMF records 743

FTP client
application data 996
application data format for the control connection 997

FTP client API 343
additional output 403
call formats 347
compatibility 344
control block 350
controlling requests 410
converting parameter descriptions 348
exceptional conditions 412
FCAI_IE_InternalErr 412
FCAI_IE_LengthInvalid 410
FCAI_PollWait 411
FCAI_ReqTimer 410
FCAI_Status_TraceFailed 409
FCAI_TraceStatus 409
field values 350
guidelines and requirements 344
interpreting results 407
messages and replies 406
output register 403
programming notes 409
prompts 404
reporting failures 409
requests 365

GETL 374
INIT 366
POLL 372
SCMD 369
TERM 380

sample programs 417
sending requests 365
specifying a wait time 411
tracing 413
unanticipated conditions 412
z/OS FTP client behavior 348

FTP client login failure record 557
FTP client session record 561
FTP client transfer initialization record 552
FTP server

application data format for the control connection 1000
application data format for the data connection 1001

FTP server logon failure record 960
FTP server session record 565
FTP server transfer completion record 934
FTP server transfer initialization record 546
function

DPI_PACKET_LEN() 53
DPIawait_packet_from_agent() 67

function (continued)
DPIconnect_to_agent_TCP() 69
DPIdebug() 53
DPIdisconnect_from_agent() 71
DPIget_fd_for_handle() 72
DPIsend_packet_to_agent() 73
fDPIparse() 54
fDPIset() 54
lookup_host() 74
lookup_host6() 75
mkDPIAreYouThere() 55
mkDPIclose() 56
mkDPIopen() 57
mkDPIregister() 59
mkDPIresponse() 60
mkDPIset() 62
mkDPItrap() 64
mkDPIunregister() 65
pDPIpacket() 66

G
general definitions, RAPI 168
GET request processing 4
get_myaddress() 224
GET-NEXT request processing 4
GETL 374

Assembler example 379
COPY operation 374, 378
example 376
FIND operation 374, 378

GETL request
result guidelines 377

GetProfile Callable NMI 768
getreq() (RPC) 233
getrpcport() 225
GetTnProfile Callable NMI 858
gid parameter on RPC call, on authunix_create() 209
graphics contexts, manipulating, X Windows 1033

H
handle parameter on RPC call, on xdrrec_create() 269
header files

NCS 288
NCS C 288
remote procedure calls 205
SNMP DPI 5
X Window system

Athena Widget Set 1018
OSF/Motif 1019
X Window system and Xt Intrinsics 1018

header files, RAPI 168
high_vers parameter on RPC call, on svcerr_progvers() 239
host parameter on RPC call

on authunix_create() 209
on callrpc() 210
on clnt_create() 214
on getrpcport() 225

hosts and access control, X Windows 1038

I
IBM Software Support Center, contacting xxxi
ICMP

statistics 834

Index 1119

ICMP (continued)
TCP/IP statistics record 826

identifying the target display, X Windows 1016, 1068
images, manipulating, X Windows 1043
images, transferring 1036
in parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_call() 213
on pmap_rmtcall() 228
on svc_freeargs() 232
on svc_getargs() 232

include, snmp_dpi.h 89
info parameter on RPC call, on clnt_control() 214
Information APARs xxxv
INIT 366

example 366
INIT request

result guidelines 368
inproc parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_call() 213
on pmap_rmtcall() 227
on registerrpc() 230
on svc_freeargs() 232
on svc_getargs() 232

integrated services adspec 182
integrated services data structures and macros 174

adspec pieces 181
formats for controlled-load services 178, 179
general definitions 175
generic tspec format 177
integrated services adspec 182
integrated services flowspec 181
integrated services tspec 181

integrated services flowspec 181
integrated services tspec 181
interface statistics record 839
interfaces

drop TCP connections or UDP endpoints
configuration and enablement 602
EZBNMIFR 602
request and response data structures 627
request format 606
response format 618

formatting packet and data trace records 632
configuration and enablement 634
EZBCTAPI 634

monitor TCP/UDP endpoints, TCP/IP storage , and
TN3270 performance

configuration and enablement 602
EZBNMIFR 602
request and response data structures 627
request format 606
response format 618

Real-time NMI
common record header 533
configuration and enablement 530
connecting to the server 532
copying the real-time data 537
interacting with the servers 532
processing the output records 541
records 534
requests sent by the client to the server 534

Real-time TCP/IP network monitoring 527
RPC 195

interfaces (continued)
SNA network monitoring data

configuration 587
data structures and records 593
enabling and disabling 588
request/response format 589

SNA network monitoring NMI 587
TCP/IP callable NMI (EZBNMIFR) 600
TCP/IP network monitoring

communicating with the server 588
TMI_CopyBuffer 540

X Window System 183, 1013
Internet, finding z/OS information online xxxvii
intrinsics routines, X Windows 1053
ip parameter on RPC call, on xdr_int() 252
IP security, processing records for 745
IPSec dynamic tunnel added 987
IPSec dynamic tunnel deactivation 986
IPSec dynamic tunnel removed 988
IPSec IKE tunnel activation and refresh 963, 973
IPSec IKE tunnel deactivation and expire 970
IPSec manual tunnel activation 990
IPSec manual tunnel deactivation 991
IPv4 configuration section 777
IPv6 configuration section 781

K
keyboard 1099
keyboard events, X Windows 1041
Keyboard settings, manipulating, X Windows 1038

L
len parameter on RPC call

on authunix_create() 209
on xdr_inline() 252

lf_smpl.c sample mail filter 313
libraries

SNMP 6
X Window system 1013

license, patent, and copyright information 1103
limits 88
lines, drawing, X Windows 1034
listener application data 996
logon failure record, FTP server 960
lookup_host() 74
lookup_host6() 75
low_vers parameter on RPC call, on svcerr_progvers() 239
lp parameter on RPC call, on xdr_long() 253

M
macro, DPI_PACKET_LEN() 53
mail filter

callbacks
xxfi_abort 327
xxfi_body 326
xxfi_close 327
xxfi_connect 323
xxfi_envfrom 324
xxfi_envrcpt 324
xxfi_eoh 326
xxfi_eom 326
xxfi_header 325
xxfi_helo 323

1120 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

mail filter (continued)
compiling and linking sample source 313
data access functions

smfi_getpriv 317
smfi_getsymval 316
smfi_setpriv 317
smfi_setreply 318

library control functions
smfi_main 316
smfi_register 314
smfi_setconn 315
smfi_settimeout 315

message modification functions
smfi_addheader 319
smfi_addrcpt 320
smfi_chgheader 319
smfi_delrcpt 321
smfi_replacebody 322

running 313
mainframe

education xxxv
management information base (MIB) 3, 4, 35
MANIFEST.H data set, long name remapping 204
manipulating window properties 1032
manipulating windows 1030
mapping SMF records 744
maxsize parameter on RPC call

on xdr_array() 243
on xdr_bytes() 245
on xdr_string() 261

messages and replies
FTP client API 406

MIT extensions to X 1047
mkDPIAreYouThere() 55
mkDPIclose() 56
mkDPIopen() 57
mkDPIregister() 8, 59
mkDPIresponse() 8, 60
mkDPIset() 9, 62
mkDPItrap() 10, 64
mkDPIunregister() 65
monitor TCP/UDP endpoints, TCP/IP storage , and TN3270

performance
interfaces

configuration and enablement 602
EZBNMIFR 602
request and response data structures 627
request format 606
response format 618

Motif-Based Widget Support, X Windows 1065
multiple stacks

SMF accounting 585

N
NCS

compiling, linking, and running sample program 303
IDL data sets 288
MVS limitations 286
NCSDEFS.H, defined 289
portability issues 289
redefines for sample program 298
RPC-RUNTIME library 288
sample programs 297
USERDEFS.H, user defined 289

NCS header data sets 288

NCS portability
CLIST, RUNCCP 293
converting C identifiers, using CPP define 293
NCSDEFS.H, NCS defines 289
NCSDEFS.H, required user define 289
NIDL compiler 290, 292
Running CPP (NCS C Preprocessor) 293

nelem parameter on RPC call, on xdr_vector() 266
Network Computing System Reference Manual 291
Network Driver Interface Specifications 286
network management

diagnosis 655
file storage locations 656
interfaces

formatting packet and data trace records 632
Real-time TCP/IP network monitoring 527
request errors 599
SNA network monitoring NMI 587
TCP/IP callable NMI (EZBNMIFR) 600

overview 419
NIDL compiler 290
NIDL compiler option 292
NSC, BANK sample program data sets 307
NSC, BINOP sample program data sets 298
NSC, NCSSMP sample program data sets 303
NSC, Running UUID@GEN identifier generator 297

O
objp parameter on RPC call, on xdr_free() 251
obtaining properties and atoms, X Windows 1032
obtaining window information, X Windows 1031
op parameter on RPC call

on xdrmem_create() 268
on xdrstdio_create() 271

opening and closing a display, X Windows 1030
OSF/Motif header files 1019
out parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_call() 213
on clnt_freeres() 216
on pmap_rmtcall() 228
on svc_sendreply() 236

outproc parameter on RPC call
on callrpc() 210, 211
on clnt_broadcast() 211
on clnt_call() 213
on clnt_freeres() 216
on pmap_rmtcall() 228
on registerrpc() 230
on svc_sendreply() 236

P
packet DPI, mkDPIpacket() 11
PAPI

client library services 331
compiling and linking an application 330
connecting and retrieving data

papi_connect 332
papi_debug 333
papi_disconnect 333
papi_free_perf_data 334
papi_get_perf_data 335

helper functions 329

Index 1121

PAPI (continued)
papi_get_action_perf_by_id 337
papi_get_action_perf_info 338
papi_get_actions_count 339
papi_get_policy_instance 339
papi_get_rule_perf_by_id 340
papi_get_rule_perf_info 340
papi_get_rules_count 341
papi_strerror 342

introduction 329
return codes 330
running an application 330
using 329

papi_connect 332
papi_debug 333
papi_disconnect 333
papi_free_perf_data 334
papi_get_action_perf_by_id 337
papi_get_action_perf_info 338
papi_get_actions_count 339
papi_get_perf_data 335
papi_get_policy_instance 339
papi_get_rule_perf_by_id 340
papi_get_rule_perf_info 340
papi_get_rules_count 341
papi_strerror 342
pDPIpacket() 66
pixmaps, creating and freeing, X Windows 1033
pmap_getmaps() 226
pmap_getport() 226
pmap_rmtcall() 227
pmap_set() 228
pmap_unset() 229
Policy Agent, programming interface 329
Policy API (PAPI) 329
policy performance data retrieval 329
POLL 372

example 372
POLL request

result guidelines 373
port parameter on RPC call, on pmap_set() 229
portability issues, NCS 289
portmapper 197
portmapper, well-known port 198
portp parameter on RPC call, on auth_destroy() 228
pos parameter on RPC call, on xdr_setpos() 259
pp parameter on RPC call

on xdr_pointer() 256
on xdr_reference() 257

prerequisite information xxxv
proc parameter on RPC call

on xdr_free() 251
on xdr_pointer() 257
on xdr_reference() 257

procedure calls, remote
portmapper, contacting 198
target assistance 198

processing a set request 4
processing DPI requests 4
processing GET requests 4
procname parameter on RPC call, on registerrpc() 230
procnum parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_call() 213
on pmap_rmtcall() 227
on registerrpc() 230

profile event record, TCP/IP 767
prognum parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_create() 215
on clntraw_create() 221
on clnttcp_create() 222
on clntudp_create() 223
on getrpcport() 225
on pmap_getport() 226
on pmap_rmtcall() 227
on pmap_set() 228
on pmap_unset() 229
on registerrpc() 230
on svc_register() 234
on svc_unregister() 236

prompts
FTP client API 404

protocol parameter on RPC call
on clnt_create() 215
on getrpcport() 225
on pmap_getport() 227
on pmap_set() 228

Q
query_DPI_port() 13

R
RAPI (Resource Reservation Setup Protocol API) 149
RAPI error codes 166
RAPI error handling 165
RAPI function interface definitions 173
RAPI objects 162

adspecs 163
filter specs 163
flowspecs 162
sender templates 163
sender tspecs 162

RAPI policy definitions 172
RAPI reservation style definitions 172
rapi_dispatch() 165
rapi_event_rtn_t 151
rapi_fmt_adspec() 159
rapi_fmt_filtspec() 159
rapi_fmt_flowspec() 160
rapi_fmt_tspec() 161
rapi_getfd() 165
rapi_release() 154
rapi_reserve() 154
rapi_sender() 156
rapi_session() 157
rapi_version() 158
rc values, DPI_RC_values 88
rdfds parameter on RPC call, on svc_getreq() 233
RDMA network interface card (RNIC) interface statistics

record 909
readit() parameter, on xdrrec_create() 269
real-time data

assembler applications
EZBTMIC1 537
EZBTMIC4 537

Real-time NMI
format of common portion of output records 541
format of service-specific portion of output records 542

1122 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Real-time NMI (continued)
interface

processing the output records 541
interfaces

common record header 533
configuration and enablement 530
connecting to the server 532
copying the real-time data 537
interacting with the servers 532
records 534
requests sent by the client to the server 534

Real-time SMF NMI
record

FTP client login failure record 557
FTP client session record 561
FTP client transfer initialization record 552
FTP server session record 565
FTP server transfer initialization record 546

record formats 546
reason code, DPI CLOSE reason codes 85
reason code, DPI UNREGISTER reason codes 86
record

Real-time SMF NMI
FTP client login failure record 557
FTP client session record 561
FTP client transfer initialization record 552
FTP server session record 565
FTP server transfer initialization record 546

record formats
Real-time SMF NMI 546

recv_buf_size parameter on RPC call
on svctcp_create() 241
on svcudp_create() 242

recvsize parameter on RPC call, on xdrrec_create() 269
recvsz parameter on RPC call, on clnttcp_create() 222
reference sections

well-known port assignments 719
regions, X Windows 1042
REGISTER request processing 5
registered application data

APPLDATA 1006
CONNECT 1002
GIVESOCKET 1003
LISTEN 1004
TAKESOCKET 1004

registerrpc() 230
regs parameter on RPC call, on xdr_pmap() 255
remote Procedure and external data representation calls

auth_destroy() 208
authnone_create() 208
authunix_create_default() 209
authunix_create() 209
callrpc() 210
clnt_broadcast() 211
clnt_call() 212
clnt_control() 213
clnt_create() 214
clnt_destroy() 215
clnt_freeres() 216
clnt_geterr() 216
clnt_pcreateerror() 217
clnt_perrno() 218
clnt_perror() 218
clnt_spcreateerror() 219
clnt_sperrno() 220
clnt_sperror() 220
clntraw_create() 221

remote Procedure and external data representation calls
(continued)

clnttcp_create() 222
clntudp_create() 223
get_myaddress() 224
getrpcport() 225
pmap_getmaps() 226
pmap_getport() 226
pmap_rmtcall() 227
pmap_set() 228
pmap_unset() 229
registerrpc() 230
rpc_createerr 207
svc_destroy() 231
svc_fds() 207
svc_freeargs() 231
svc_getargs() 232
svc_getcaller() 233
svc_getreq() 233
svc_register() 234
svc_run() 235
svc_sendreply() 235
svc_unregister() 236
svcerr_auth() 237
svcerr_decode() 237
svcerr_noproc() 238
svcerr_noprog() 238
svcerr_progvers() 239
svcerr_systemerr() 239
svcerr_weakauth() 240
svcraw_create() 240
svctcp_create() 241
svcudp_create() 241
xdr_accepted_reply() 242
xdr_array() 243
xdr_authunix_parms() 244
xdr_bool() 244
xdr_bytes() 245
xdr_callhdr() 246
xdr_callmsg() 246
xdr_char() 247
xdr_destroy() 248
xdr_double() 248
xdr_enum() 249
xdr_float() 250
xdr_free() 250
xdr_getpos() 251
xdr_inline() 252
xdr_int() 252
xdr_long() 253
xdr_opaque_auth() 254
xdr_opaque() 254
xdr_pmap() 255
xdr_pmaplist() 256
xdr_pointer() 256
xdr_reference() 257
xdr_rejected_reply() 258
xdr_replymsg() 259
xdr_setpos() 259
xdr_short() 260
xdr_string() 261
xdr_u_char() 262
xdr_u_int() 263
xdr_u_long() 263
xdr_u_short() 264
xdr_union() 265
xdr_vector() 266

Index 1123

remote Procedure and external data representation calls
(continued)

xdr_void() 267
xdr_wrapstring() 267
xdrmem_create() 268
xdrrec_create() 268
xdrrec_endofrecord() 269
xdrrec_eof() 270
xdrrec_skiprecord() 270
xdrstdio_create() 270
xprt_register() 271
xprt_unregister() 271

remote procedure call (RPC)
header files 205
portmapper 197
portmapper, contacting 198
RPCGEN command 202
RPCGEN sample programs 278
sample programs

GENESEND, client 272
GENESERV, server 273
RAWEX, raw data stream 275

remote procedure call (RPC) global variables
global variables 206
rpc_createerr 207
svc_fds 207

remote procedure call (RPC) protocol
clnt_stat enumerated type 203
compilng and linking 205
enumerations 205
MANIFEST.H, remapping file names with 204
porting 204
system return messages, accessing 204
system return messages, printing 205

removed record, IPSec dynamic tunnel 988
request parameter on RPC call, on clnt_control() 214
resource manager, X Windows 1043
Resource Reservation Protocol (RSVP) 149
Resource Reservation Setup Protocol API (RAPI) 149
return code, DPI CLOSE reason codes 85
return code, DPI UNREGISTER reason codes 86
RFC (request for comments) 1075

accessing online xxxvii
rmsg parameter on RPC call, on xdr_replymsg() 259
rp parameter on RPC call, on xdr_pmaplist() 256
RPC interface 195
RPC Porting 204
rpc_createerr 207
RPCGEN command parameters 202
rr parameter on RPC call, on xdr_rejected_reply() 258
RSVP agent 149
RSVP error codes 167
run-time options, nidl 292

S
s parameter on RPC call

on clnt_pcreateerror() 217
on clnt_perrno() 218
on clnt_spcreateerror() 219
on clnt_sperror() 220

sample FTP client API programs 417
sample mail filter 313
sample NCS programs

compiling, linking, and running 303
redefines for this sample program 298

sample RPC programs 272, 297

SCMD 369
example 369

SCMD request
result guidelines 371

screen saver, controlling, X Windows 1038
selection, character set 84
send_buf_size parameter on RPC call

on svctcp_create() 241
on svcudp_create() 242

sender templates 163
sender tspecs 162
sendmail, configuration file 313
sendmsg() considerations

AF_INET6 727
IBM C/C++ applications 727
UNIX System Services Assembler Callable Services

Environment 727
sendnow parameter on RPC call, on xdrrec_endofrecord() 269
sendsize parameter on RPC call, on xdrrec_create() 269
sendsz parameter on RPC call, on clnttcp_create() 222
server

contacting server programs 198
server port statistics record 843
server, remote procedure calls

initialize 195
process 195
receive request 195
reply 195
transaction and cleanup 195

SET, SNMP DPI request 4
setting window selections 1032
shortcut keys 1099
simple network management protocol (SNMP) 3, 35
SIOCSAPPLDATA IOCTL 711
size parameter on RPC call

on xdr_pointer() 256
on xdr_reference() 257
on xdrmem_create() 268

sizep parameter on RPC call
on xdr_array() 243
on xdr_bytes() 245

SMC-R link group statistics record 901
SMC-R link state end record 906
SMC-R link state start record 905
SMF (System Management Facility)

record type 119 586
SMF record layout

API calls 735
FTP client 736
Telnet client 738
TN3270E Telnet server 732

SMF record layout, Type 118
FTP server 733

SMF records
description 584
mapping 731, 744
type 109 585, 729
type 118 585, 731
type 119 586, 743

SMF type 119 subtypes 100-104
record formats 546

smfi_addheader 319
smfi_addrcpt 320
smfi_chgheader 319
smfi_delrcpt 321
smfi_getpriv 317
smfi_getsymval 316

1124 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

smfi_main 316
smfi_register 314
smfi_replacebody 322
smfi_setconn 315
smfi_setpriv 317
smfi_setreply 318
smfi_settimeout 315
SNA network monitoring data

interfaces
configuration 587
data structures and records 593
enabling and disabling 588
request/response format 589

SNA network monitoring NMI interface 587
SNA session initiation record, TN3270E Telnet server 848
SNA session termination record, TN3270E Telnet server 849
SNMP

client program 14, 115
compiling and linking 6, 38
fDPIparse() 7
GET-NEXT 4
header files 5
library routines 6
mkDPIpacket() 11
mkDPIregister() 8
mkDPIresponse() 8
mkDPIset() 9
mkDPItrap() 10
query_DPI_port() 13
REGISTER request, processing 5
TRAP request 5

SNMP agents 3, 35
SNMP manager API 117
SNMP subagents 3, 35
SNMP_CLOSE_reason_codes 85
snmp_dpi_close_packet 76
snmp_dpi_get_packet 76
snmp_dpi_hdr 77
snmp_dpi_next_packet 79
SNMP_DPI_packet_types 85
snmp_dpi_resp_packet 80
snmp_dpi_set_packet 81
snmp_dpi_u64 83
snmp_dpi_ureg_packet 82
snmp_dpi.h 89
SNMP_ERROR_codes 85
SNMP_TYPE_value_types 87
SNMP_UNREGISTER_reason_codes 86
snmpAddVarBind 119
snmpBuildPDU 120
snmpBuildSession 121
snmpBuildV1TrapPDU 139
snmpBuildV2TrapOrInformPDU 141
snmpCreateVarBinds 122
snmpFreeDecodedPDU 123
snmpFreeOID 123
snmpFreePDU 124
snmpFreeVarBinds 124
snmpGetErrorInfo 124
snmpGetNumberOfVarBinds 125
snmpGetOID 126
snmpGetRequestId 126
snmpGetSockFd 127
snmpGetValue 127
snmpGetVarbind 127
snmpInitialize 128
snmpSendRequest 129

snmpSetLogFunction 131
snmpSetLogLevel 131
snmpSetRequestId 132
snmpTerminate 133
snmpTerminateSession 133
snmpValueCreateCounter32 134
snmpValueCreateCounter64 134
snmpValueCreateGauge32 134
snmpValueCreateInteger 135
snmpValueCreateInteger32 135
snmpValueCreateIPAddr 136
snmpValueCreateNull 136
snmpValueCreateOctet 136
snmpValueCreateOID 137
snmpValueCreateOpaque 137
snmpValueCreateTimerTicks 138
snmpValueCreateUnsigned32 138
sock parameter on RPC call, on svctcp_create() 241
socket close record, UDP 846
sockets

compiler restrictions 1067
UNIX System Services 1067
using 1067

sockp parameter on RPC call
on clnttcp_create() 222
on clntudp_create() 223
on svcudp_create() 241

softcopy information xxxv
software requirements

UNIX System Services 1067
X Windows 1014

sp parameter on RPC call
on xdr_bytes() 245
on xdr_short() 260
on xdr_string() 261
on xdr_wrapstring() 267

standard data format concepts 748
Start/Stop record, TCP/IP 845
stat parameter on RPC call

on clnt_perrno() 218
on clnt_sperrno() 220

statistics record, interface 839
statistics record, SMC-R link group 901
statistics record, TCP/IP 826
structure

snmp_dpi_close_packet 76
snmp_dpi_get_packet 76
snmp_dpi_hdr 77
snmp_dpi_next_packet 79
snmp_dpi_resp_packet 80
snmp_dpi_set_packet 81
snmp_dpi_u64 83
snmp_dpi_ureg_packet 82

subroutines (X Window system) 1030
subtype 71 940
subtype 74, IPSec IKE tunnel deactivation and expire

record 970
subtype 75, IPSec IKE tunnel activation and refresh

record 973
subtype 76, IPSec dynamic tunnel deactivation record 986
subtype 77, IPSec dynamic tunnel added record 987
subtype 78, IPSec dynamic tunnel removed record 988
subtype 79, IPSec manual tunnel activation record 990
subtype 80, IPSec manual tunnel deactivation record 991
summary of changes xli, xlii
svc_destroy() 231
svc_fds() 207

Index 1125

svc_freeargs() 231
svc_getargs() 232
svc_getcaller() 233
svc_getreq() 233
svc_register() 234
svc_run() 235
svc_sendreply() 235
svc_unregister() 236
svcerr_auth() 237
svcerr_decode() 237
svcerr_noproc() 238
svcerr_noprog() 238
svcerr_progvers() 239
svcerr_systemerr() 239
svcerr_weakauth() 240
svcraw_create() 240
svctcp_create() 241
svcudp_create() 241
synchronization, enable and disable, X Windows 1039
syntax diagram, how to read xxxiii
SYSTCPCN 544
SYSTCPCN interface 527
SYSTCPDA 542
SYSTCPDA interface 527
SYSTCPOT 542
SYSTCPOT interface 527
SYSTCPSM 544
SYSTCPSM interface 527
System Management Facility, see also SMF 584, 585, 586, 729,

731, 743
system toolkit, X Windows 1052

T
tasks

(noun, gerund phrase)
steps 145

aware or controlling server application, starting
steps 663

aware server application, implementing
steps 662

capturing trace records
steps for 643, 645

Compile
steps for the BANK program 309
steps for the NCSSMP program 305
steps for the sample BINOP program 300

connection routing information, retrieving
steps 685

controlling server application, implementing
steps 663

creating an ancillary socket
steps 715

issuing the GETL request
steps for 378

issuing the INIT request
steps for 368

issuing the POLL request
steps for 373

issuing the SCMD request
steps for 371

issuing the TERM request
steps for 382

Link
steps for the BANK program 311
steps for the NCSSMP program 306
steps for the sample BINOP program 301

tasks (continued)
partner security credentials, retrieving

steps 686
Run

steps for the BANK program 312
steps for the NCSSMP program 307
steps for the sample BINOP program 302

Setup
steps for the BANK program 308
steps for the NCSSMP program 303
steps for the sample BINOP program 299

TCP connection initiation record 750
TCP connection termination record 752
TCP connections, trusted

coding the SIOCGPARTNERINFO ioctl 690
coding the SIOCSPARTNERINFO ioctl 690

TCP_KeepAlive socket option 716
TCP/IP

autolog procedure section 776
common identification section, SMF Type 119 749
IPv4 configuration section 777
IPv6 configuration section 781
online information xxxvii
profile record profile information common section 773
profile record profile information data set name

section 776
protocol specifications 1075
stack Start/Stop record 845
statistics record 826
TCP/IP profile record distributed dynamic VIPA (DVIPA)

section 821
TCP/IP profile record dynamic VIPA (DVIPA) address

section 817
TCP/IP profile record dynamic VIPA (DVIPA) routing

section 820
TCP/IP profile record Global configuration section 786
TCP/IP profile record interface section 793
TCP/IP profile record IPSec common section 807
TCP/IP profile record IPSec rule section 808
TCP/IP profile record IPv6 address section 800
TCP/IP profile record management section 805
TCP/IP profile record network access section 814
TCP/IP profile record port section 790
TCP/IP profile record routing section 800
TCP/IP profile record source IP section 802
TCP/IP profile record TCP configuration section 784
TCP/IP profile record UDP configuration section 785

TCP/IP network monitoring
interfaces 527

communicating with the server 588
TMI_CopyBuffer 540

SYSTCPCN 544
SYSTCPDA 542
SYSTCPSM 544

TCP/IP profile record distributed dynamic VIPA (DVIPA)
section 821

TCP/IP profile record dynamic VIPA (DVIPA) address
section 817

TCP/IP profile record dynamic VIPA (DVIPA) routing
section 820

TCP/IP profile record Global configuration section 786
TCP/IP profile record interface section 793
TCP/IP profile record IPSec common section 807
TCP/IP profile record IPSec rule section 808
TCP/IP profile record IPv6 address section 800
TCP/IP profile record management section 805
TCP/IP profile record network access section 814

1126 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

TCP/IP profile record port section 790
TCP/IP profile record profile information common

section 773
TCP/IP profile record profile information data set name

section 776
TCP/IP profile record routing section 800
TCP/IP profile record source IP section 802
TCP/IP profile record TCP configuration section 784
TCP/IP profile record UDP configuration section 785
tcpip.v3r1.data sets

SEZAOLDX 1013
SEZARNT1 1013
SEZAX11L 1013
SEZAXAWL 1013
SEZAXMLB 1013
SEZAXTLB 1013

Technotes xxxv
Telnet

TN3270E Telnet server SNA session initiation record 848
TN3270E Telnet server SNA session termination

record 849
TSO Telnet client connection initiation record 855
TSO Telnet client connection termination record 856
Type 119 SMF records 743

Telnet profile event record, TCP/IP 857
TERM 380

example 381
TERM request

result guidelines 381
text, drawing, X Windows 1036
TMI_CopyBuffer 540
TN3270E Telnet server

accounting 732
application data 1009
SMF record layout 732
SNA session initiation record 848
SNA session termination record 849

tout parameter on RPC call
on clnt_call() 213
on pmap_rmtcall() 228

tracing
FTP client API 413

trademark information 1111
transfer completion record, FTP client 761
transfer completion record, FTP server 934
transfer completion user name, FTP client 767
TRAP request processing 5
trusted TCP connections

coding the SIOCGPARTNERINFO ioctl 690
coding the SIOCSPARTNERINFO ioctl 690

TSO Telnet client connection initiation record 855
TSO Telnet client connection termination record 856
tspec definitions 169
tspec format 177
Type 109 SMF records 585, 729
Type 118 SMF records 585, 731
Type 119 SMF records 586, 743

autolog procedure section 776
common record format 745
common TCP/IP identification section 749
CSSMTP configuration record (subtype 48) 911
CSSMTP configuration record (subtype 49) 916
CSSMTP configuration record (subtype 51) 924
CSSMTP mail record (subtype 50) 920
CSSMTP statistical record (subtype 52) 929
DVIPA removed (subtype 33) 892
DVIPA status change (subtype 32) 890

Type 119 SMF records (continued)
DVIPA target added (subtype 34) 894
DVIPA target removed (subtype 35) 896
DVIPA target server ended (subtype 37) 899
DVIPA target server started (subtype 36) 898
FTP client transfer completion record 761
FTP client transfer completion user name 767
FTP server logon failure record 960
FTP server transfer completion record 934
interface statistics record 839
IPSec dynamic tunnel added record 987
IPSec dynamic tunnel deactivation record 986
IPSec dynamic tunnel removed record 988
IPSec IKE tunnel activation and /refresh record 963
IPSec IKE tunnel activation and refresh record 973
IPSec IKE tunnel deactivation and expire record 970
IPSec manual tunnel activation record 990
IPSec manual tunnel deactivation record 991
IPv4 configuration section 777
IPv6 configuration section 781
RDMA network interface card (RNIC) interface statistics

record 909
record subtypes 746
server port statistics record 843
SMC-R link group statistics record 901
SMC-R link state end record 906
SMC-R link state start record 905
standard data format concepts 748
TCP connection initiation record 750
TCP connection termination record 752
TCP/IP profile event record 767
TCP/IP profile record distributed dynamic VIPA (DVIPA)

section 821
TCP/IP profile record dynamic VIPA (DVIPA) address

section 817
TCP/IP profile record dynamic VIPA (DVIPA) routing

section 820
TCP/IP profile record Global configuration section 786
TCP/IP profile record interface section 793
TCP/IP profile record IPSec common section 807
TCP/IP profile record IPSec rule section 808
TCP/IP profile record IPv6 address section 800
TCP/IP profile record management section 805
TCP/IP profile record network access section 814
TCP/IP profile record port section 790
TCP/IP profile record profile information common

section 773
TCP/IP profile record profile information data set name

section 776
TCP/IP profile record routing section 800
TCP/IP profile record source IP section 802
TCP/IP profile record TCP configuration section 784
TCP/IP profile record UDP configuration section 785
TCP/IP stack Start/Stop record 845
TCP/IP statistics record 826
TCP/IP Telnet profile event record 857
TN3270E Telnet server SNA session initiation record 848
TN3270E Telnet server SNA session termination

record 849
TSO Telnet client connection initiation record 855
TSO Telnet client connection termination record 856
UDP socket close record 846

types, DPI packet types 85

U
ucp parameter on RPC call, on xdr_u_char() 262

Index 1127

UDP
socket close record 846
TCP/IP statistics record 826

uid parameter on RPC call, on authunix_create() 209
ulp parameter on RPC call, on xdr_u_long() 264
UNIX System Services

compiling and linking 1070
sockets 1067
software requirements 1067
using 1067
what is provided 1067

UNIXstream function 70
unp parameter on RPC call, on xdr_union() 265
up parameter on RPC call, on xdr_u_int() 263
using

Motif 191
X Window System 183

usp parameter on RPC call, on xdr_u_short() 264
utility routines, X Windows 1049
UUID@GEN identifier generator 297

V
value ranges 88
value types, SNMP_TYPE_value_types 87
versnum parameter on RPC call

on callrpc() 210
on clnt_broadcast() 211
on clnt_create() 215
on clntraw_create() 221
on clnttcp_create() 222
on clntudp_create() 223
on getrpcport() 225
on pmap_getport() 226
on pmap_rmtcall() 227
on pmap_set() 228
on pmap_unset() 229
on registerrpc() 230
on svc_register() 234
on svc_unregister() 236

visual types 1043
VTAM, online information xxxvii

W
wait parameter on RPC call, on clntudp_create() 223
well-known port assignments 719
what is provided, UNIX System Services 1067
what is provided, X Windows 1013
why parameter on RPC call, on svcerr_auth() 237
widgets, defining 1052
window manager functions, X Windows 1037
window manager, communicating with, X Window

system 1040
writeit() parameter on RPC, on xdrrec_create() 269

X
X Window system

application resource file 1016, 1067
areas, clearing and copying 1034
areas, filling 1035
associate table functions 1048
bitmaps, manipulating 1043
buffers, cut and paste 1042
changing window attributes 1031

X Window system (continued)
character string sizes 1035
color cells, manipulating 1033
colormaps, manipulating 1032
creating an application 1017
creating and destroying windows 1030
cursors, manipulating, X Windows 1036
defining widgets 1052
display functions 1044
error handling, default 1040
events handling 1039
extension routines 1046
fonts, loading and freeing 1035
graphics contexts 1033
header files 1017, 1018
hosts and access control 1038
identifying target display 1016, 1068
images, manipulating 1043
images, transferring 1036
keyboard events, manipulating 1041
keyboard settings, handling 1038
lines, drawing 1034
manipulating window properties 1032
manipulating windows 1030
obtaining properties and atoms 1032
obtaining window information 1031
opening and closing a display 1030
pixmaps, creating and freeing 1033
porting applications 1052
regions, manipulating 1042
resource manager 1043
sample programs, X Windows 1023
screen saver, controlling 1038
setting window selections 1032
synchronization, enable and disable 1039
text, drawing 1036
visual types 1043
window manager functions 1037
window managers, communicating 1040
X client applications 1025
X client modules, building 1028
X defaults 1016
X Window system Interface 183, 1013, 1014
X Window system Toolkit 1052
Xt Intrinsics 1061, 1070

X Window system, application layer
Application Resources 1061, 1070
Athena Widget Support 1062
Authorization Routines 1051
Miscellaneous Utility Routines 1049
MIT Extensions 1047
Motif-Based Widget Support 1065
Routines 1030
Xt Intinsics Routines 1053

X Window system, what is provided 1013
xdr_accepted_reply() 242
xdr_array() 243
xdr_authunix_parms() 244
xdr_bool() 244
xdr_bytes() 245
xdr_callhdr() 246
xdr_callmsg() 246
xdr_char() 247
xdr_destroy() 248
xdr_double() 248
xdr_elem parameter on RPC call, on xdr_vector() 266
xdr_enum() 249

1128 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

xdr_float() 250
xdr_free() 250
xdr_getpos() 251
xdr_inline() 252
xdr_int() 252
xdr_long() 253
xdr_opaque_auth() 254
xdr_opaque() 254
xdr_pmap() 255
xdr_pmaplist() 256
xdr_pointer() 256
xdr_reference() 257
xdr_rejected_reply() 258
xdr_replymsg() 259
xdr_setpos() 259
xdr_short() 260
xdr_string() 261
xdr_u_char() 262
xdr_u_int() 263
xdr_u_long() 263
xdr_u_short() 264
xdr_union() 265
xdr_vector() 266
xdr_void() 267
xdr_wrapstring() 267
xdrmem_create() 268
xdrrec_create() 268
xdrrec_endofrecord() 269
xdrrec_eof() 270
xdrrec_skiprecord() 270
xdrs parameter on RPC call

on xdr_accepted_reply() 242
on xdr_array() 243
on xdr_authunix_parms() 244
on xdr_bool() 244
on xdr_bytes() 245
on xdr_callhdr() 246
on xdr_callmsg() 246
on xdr_char() 247
on xdr_destroy() 248
on xdr_double() 248
on xdr_enum() 249
on xdr_float() 250
on xdr_getpos() 251
on xdr_inline() 252
on xdr_int() 252
on xdr_long() 253
on xdr_opaque_auth() 254
on xdr_opaque() 254
on xdr_pmap() 255
on xdr_pmaplist() 256
on xdr_pointer() 256
on xdr_reference() 257
on xdr_rejected_reply() 258
on xdr_replymsg() 259
on xdr_setpos() 259
on xdr_short() 260
on xdr_string() 261
on xdr_u_char() 262
on xdr_u_int() 263
on xdr_u_long() 264
on xdr_u_short() 264
on xdr_union() 265
on xdr_vector() 266
on xdr_wrapstring() 267
on xdrmem_create() 268
on xdrrecc_create() 269

xdrs parameter on RPC call (continued)
on xdrrecc_endofrecord() 269
on xdrrecc_eof() 270
on xdrrecc_skiprecord() 270
on xdrstdio_create() 271

xdrstdio_create() 270
xprt parameter on RPC call

on svc_destroy() 231
on svc_freeargs() 232
on svc_getargs() 232
on svc_getcaller() 233
on svc_register() 234
on svc_sendreply() 236
on svcerr_auth() 237
on svcerr_decode() 237
on svcerr_noproc() 238
on svcerr_noprog() 238
on svcerr_progvers() 239
on svcerr_systemerr() 239
on svcerr_weakauth() 240
on xprt_register() 271
on xprt_unregister() 271

xprt_register() 271
xprt_unregister() 271
xxfi_abort 327
xxfi_body 326
xxfi_close 327
xxfi_connect 323
xxfi_envfrom 324
xxfi_envrcpt 324
xxfi_eoh 326
xxfi_eom 326
xxfi_header 325
xxfi_helo 323

Z
z/OS Basic Skills Information Center xxxv
z/OS, documentation library listing 1113

Index 1129

1130 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

Communicating your comments to IBM

If you especially like or dislike anything about this document, you can send us
comments electronically by using one of the following methods:

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, and telephone
number. Make sure to include the following information in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 2000, 2015 1131

http://www.ibm.com/systems/z/os/zos/webqs.html

1132 z/OS V2R2.0 Communications Server: IP Programmer's Guide and Reference

����

Product Number: 5650-ZOS

Printed in USA

SC27-3659-03

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	How to read a syntax diagram
	Prerequisite and related information

	Summary of changes for IP Programmer's Guide and Reference
	Changes made in z/OS Version 2 Release 2
	Changes made in z/OS Version 2 Release 1, as updated September 2014
	Changes made in z/OS Version 2 Release 1, as updated December 2013
	Summary of changes for z/OS Version 2 Release 1

	Chapter 1. General programming information
	Overview of Distributed Protocol Interface (DPI) versions 1.1 and 2.0

	Chapter 2. SNMP agent Distributed Protocol Interface version 1.1
	SNMP agents and subagents
	Processing DPI requests
	Processing a GET request
	Processing a SET request
	Processing a GET-NEXT request
	Processing a REGISTER request
	Processing a TRAP request
	SNMP agent DPI header files

	SNMP agent DPI: Compiling and linking
	SNMP agent DPI: Sample compilation cataloged procedure additions
	SNMP agent DPI: Sample link-edit cataloged procedure additions

	SNMP DPI library routines
	mkDPIlist()
	fDPIparse()
	mkDPIregister()
	mkDPIresponse()
	mkDPIset()
	mkDPItrap()
	mkDPItrape()
	pDPIpacket()
	query_DPI_port()

	Sample SNMP DPI client program for C sockets for version 1.1
	Using the DPISAMPL program
	DPISAMPN NCCFLST for the SNMP manager
	Compiling and linking the DPISAMPL.C source code
	dpiSample table MIB descriptions
	The DPISAMPL.C source code

	Chapter 3. SNMP agent Distributed Protocol Interface version 2.0
	SNMP agents and subagents
	DPI agent requests

	SNMP DPI version 2.0 library
	SNMP DPI Version 2.0 API

	Compiling and linking DPI Version 2.0
	Compiling and linking DPI Version 2.0: UNIX System Services environment
	Compiling and linking DPI Version 2.0: MVS environment

	DPI Version 1.x base code considerations
	Migrating your SNMP DPI subagent to Version 2.0
	Required actions for migrating your SNMP DPI subagent to Version 2.0
	Recommended actions for migrating your SNMP DPI subagent to Version 2.0
	snmp_dpi_xxxx_packet structures name changes

	SNMP DPI environment variables
	SNMP DPI subagent programming concepts
	Specifying the SNMP DPI API
	DPI subagent connect processing
	DPI subagent OPEN request
	DPI subagent REGISTER request
	DPI subagent GET processing
	DPI subagent SET processing
	DPI subagent GETNEXT processing
	DPI subagent GETBULK processing request
	DPI subagent TRAP request
	DPI subagent ARE_YOU_THERE request
	DPI subagent UNREGISTER request
	DPI subagent CLOSE request

	Multithreading programming considerations
	Functions, data structures, and constants
	Basic DPI API functions
	The DPIdebug() function
	The DPI_PACKET_LEN() macro
	The fDPIparse() function
	The fDPIset() function
	The mkDPIAreYouThere() function
	The mkDPIclose() function
	The mkDPIopen() function
	The mkDPIregister() function
	The mkDPIresponse() function
	The mkDPIset() function
	The mkDPItrap() function
	The mkDPIunregister() function
	The pDPIpacket() function

	Transport-related DPI API functions
	The DPIawait_packet_from_agent() function
	The DPIconnect_to_agent_TCP() function
	The DPIconnect_to_agent_UNIXstream() function
	The DPIdisconnect_from_agent() function
	The DPIget_fd_for_handle() function
	The DPIsend_packet_to_agent() function
	The lookup_host() function
	The lookup_host6() function

	DPI structures
	The snmp_dpi_close_packet structure
	The snmp_dpi_get_packet structure
	The snmp_dpi_hdr structure
	The snmp_dpi_next_packet structure
	The snmp_dpi_resp_packet structure
	The snmp_dpi_set_packet structure
	The snmp_dpi_ureg_packet structure
	The snmp_dpi_u64 structure

	DPI OPEN character set selection
	SNMP DPI constants, values, return codes, and include file
	DPI CLOSE reason codes
	DPI packet types
	DPI RESPONSE error codes
	DPI UNREGISTER reason codes
	DPI SNMP value types
	Value representation of DPI SNMP value types
	Value ranges and limits for DPI SNMP value types
	Return codes from DPI transport-related functions
	The snmp_dpi.h include file
	snmp_dpi.h include parameters
	snmp_dpi.h include description

	DPI subagent example
	Overview of subagent processing
	SNMP DPI: Connecting to the agent
	SNMP DPI: Registering a subtree with the agent
	SNMP DPI: Processing requests from the agent
	SNMP DPI: Processing a GET request
	SNMP DPI: Processing a GETNEXT request
	SNMP DPI: Processing a SET/COMMIT/UNDO request
	SNMP DPI: Processing an UNREGISTER request
	SNMP DPI: Processing a CLOSE request
	SNMP DPI: Generating a TRAP

	Chapter 4. Running the sample SNMP DPI client program for version 2.0
	Using the sample SNMP DPI client program
	Compiling and linking the dpi_mvs_sample.c source code
	DPISimple-MIB descriptions

	Chapter 5. SNMP manager API
	SNMP protocol
	The SNMP manager API overview
	The SNMP notification API overview
	SNMP manager API functions
	Configuration entry considerations
	snmpAddVarBind – Adds a VarBind to the SnmpVarBinds structure
	snmpAddVarBind description
	snmpAddVarBind parameters
	snmpAddVarBind result

	snmpBuildPDU – Builds an SNMP PDU
	snmpBuildPDU description
	snmpBuildPDU parameters
	snmpBuildPDU result

	snmpBuildSession – Creates a session
	snmpBuildSession description
	snmpBuildSession parameters
	snmpBuildSession result

	snmpCreateVarBinds – Creates a VarBind structure
	snmpCreateVarBinds description
	snmpCreateVarBinds parameters
	snmpCreateVarBinds result

	snmpFreeDecodedPDU - Free the decoded PDU
	snmpFreeDecodedPDU description
	snmpFreeDecodedPDU parameters
	snmpFreeDecodedPDU result

	snmpFreeOID - Free an OID string
	snmpFreeOID description
	snmpFreeOID parameters
	snmpFreeOID result

	snmpFreePDU – Frees the resources of a PDU
	snmpFreePDU description
	snmpFreePDU parameters
	snmpFreePDU result

	snmpFreeVarBinds – Frees the VarBinds structure
	snmpFreeVarBinds description
	snmpFreeVarBinds parameters
	snmpFreeVarBinds result

	snmpGetErrorInfo - Get the error information from the PDU response
	snmpGetErrorInfo description
	snmpGetErrorInfo parameters
	snmpGetErrorInfo result

	snmpGetNumberOfVarBinds – Get the number of VarBinds attached to the PDU
	snmpGetNumberOfVarBinds description
	snmpGetNumberOfVarBinds parameters
	snmpGetNumberOfVarBinds result

	snmpGetOID – Get the OID from the VarBind structure
	snmpGetOID description
	snmpGetOID parameters
	snmpGetOID result

	snmpGetRequestId – Get the PDU’s requestId value
	snmpGetRequestId description
	snmpGetRequestId parameters
	snmpGetRequestId result

	snmpGetSockFd – Get the socket’s file descriptor
	snmpGetSockFd description
	snmpGetSockFd parameters
	snmpGetSockFd result

	snmpGetValue – Get the value from the VarBind structure
	snmpGetValue description
	snmpGetValue parameters
	snmpGetValue result

	snmpGetVarbind – Get a VarBind attached to the PDU
	snmpGetVarbind description
	snmpGetVarbind parameters
	snmpGetVarbind result

	snmpInitialize – Initialize the manager environment
	snmpInitialize description
	snmpInitialize parameters
	snmpInitialize result

	snmpSendRequest – Send the snmpPDU request to an agent
	snmpSendRequest description
	snmpSendRequest parameters
	snmpSendRequest result

	snmpSetLogFunction – Set the logging level
	snmpSetLogFunction description
	snmpSetLogFunction parameters
	snmpSetLogFunction result

	snmpSetLogLevel – Set the logging level
	snmpSetLogLevel description
	snmpSetLogLevel parameters
	snmpSetLogLevel result

	snmpSetRequestId – Set the PDU’s requestId value
	snmpSetRequestId description
	snmpSetRequestId parameters
	snmpSetRequestId result

	snmpTerminate – Release the resources
	snmpTerminate description
	snmpTerminate parameters
	snmpTerminate result

	snmpTerminateSession – Terminate a session
	snmpTerminateSession description
	snmpTerminateSession parameters
	snmpTerminateSession result

	snmpValueCreateCounter32 – Create an smiValue of type Counter32
	snmpValueCreateCounter32 description
	snmpValueCreateCounter32 parameters
	snmpValueCreateCounter32 result

	snmpValueCreateCounter64 – Create an smiValue of type Counter64
	snmpValueCreateCounter64 description
	snmpValueCreateCounter64 parameters
	snmpValueCreateCounter64 result

	snmpValueCreateGauge32 – Create an smiValue of type Gauge32
	snmpValueCreateGauge32 description
	snmpValueCreateGauge32 parameters
	snmpValueCreateGauge32 result

	snmpValueCreateInteger – Create an smiValue of type Integer
	snmpValueCreateInteger description
	snmpValueCreateInteger parameters
	snmpValueCreateInteger result

	snmpValueCreateInteger32 – Create an smiValue of type Integer32
	snmpValueCreateInteger32 description
	snmpValueCreateInteger32 parameters
	snmpValueCreateInteger32 result

	snmpValueCreateIPAddr – Create an smiValue of type IPAddr
	snmpValueCreateIPAddr description
	snmpValueCreateIPAddr parameters
	snmpValueCreateIPAddr result

	snmpValueCreateNull – Create an smiValue of type Null
	snmpValueCreateNull description
	snmpValueCreateNull parameters
	snmpValueCreateNull result

	snmpValueCreateOctet – Create an smiValue of type Octet
	snmpValueCreateOctet description
	snmpValueCreateOctet parameters
	snmpValueCreateOctet result

	snmpValueCreateOID – Create an smiValue of type OID
	snmpValueCreateOID description
	snmpValueCreateOID parameters
	snmpValueCreateOID result

	snmpValueCreateOpaque – Create an smiValue of type Opaque
	snmpValueCreateOpaque description
	snmpValueCreateOpaque parameters
	snmpValueCreateOpaque result

	snmpValueCreateTimerTicks – Create an smiValue of type TimerTicks
	snmpValueCreateTimerTicks description
	snmpValueCreateTimerTicks parameters
	snmpValueCreateTimerTicks result

	snmpValueCreateUnsigned32 – Create an smiValue of type Unsigned32
	snmpValueCreateUnsigned32 description
	snmpValueCreateUnsigned32 parameters
	snmpValueCreateUnsigned32 result

	SNMP notification API functions
	snmpBuildV1TrapPDU – Builds an SNMP V1 trap PDU
	snmpBuildV1TrapPDU description
	snmpBuildV1TrapPDU parameters
	snmpBuildV1TrapPDU result

	snmpBuildV2TrapOrInformPDU – Builds an SNMP V2 trap or inform PDU
	snmpBuildV2TrapOrInformPDU description
	snmpBuildV2TrapOrInformPDU parameters
	snmpBuildV2TrapOrInformPDU result

	SNMP manager API configuration file
	SNMP manager API statement syntax
	SNMP manager API general rules

	Steps for compiling and linking SNMP manager API applications
	Running your SNMP manager API application
	Debugging the SNMP manager API
	Sample SNMP manager API source code

	Chapter 6. Resource Reservation Setup Protocol API (RAPI)
	API outline
	Compiling and linking RAPI applications
	Running RAPI applications
	Event upcall
	rapi_event_rtn_t - Event upcall
	rapi_event_rtn_t description
	rapi_event_rtn_t parameters
	rapi_event_rtn_t result

	Client library services
	rapi_release - Remove a session
	rapi_release description
	rapi_release parameters
	rapi_release result

	rapi_reserve - Make, modify, or delete a reservation
	rapi_reserve description
	rapi_reserve parameters
	rapi_reserve result

	rapi_sender - Specify sender parameters
	rapi_sender description
	rapi_sender parameters
	rapi_sender result

	rapi_session - Create a session
	rapi_session description
	rapi_session parameters
	rapi_session result
	rapi_session extended description

	rapi_version - RAPI version
	rapi_version description
	rapi_version result

	RAPI formatting routines
	rapi_fmt_adspec - Format an adspec
	rapi_fmt_adspec description
	rapi_fmt_adspec parameters
	rapi_fmt_adspec result

	rapi_fmt_filtspec - Format a filtspec
	rapi_fmt_filtspec description
	rapi_fmt_filtspec parameters
	rapi_fmt_filtspec result

	rapi_fmt_flowspec - Format a flowspec
	rapi_fmt_flowspec description
	rapi_fmt_flowspec parameters
	rapi_fmt_flowspec result

	rapi_fmt_tspec - Format a tspec
	rapi_fmt_tspec description
	rapi_fmt_tspec parameters
	rapi_fmt_tspec result

	RAPI objects
	RAPI objects - Flowspecs
	RAPI_FLOWSTYPE_Simplified
	RAPI_FLOWSTYPE_Intserv
	RAPI_FLOWSTYPE_Intserv upcalls

	RAPI objects - Sender tspecs
	RAPI_TSPECTYPE_Simplified
	RAPI_TSPECTYPE_Intserv
	RAPI_TSPECTYPE_Intserv upcalls

	RAPI objects - Adspecs
	RAPI_ADSTYPE_Simplified
	RAPI_ADSTYPE_Intserv
	RAPI_ADSTYPE_Intserv upcalls

	RAPI objects - Filter specs and sender templates

	RAPI asynchronous event handling
	rapi_dispatch - Dispatch API event
	rapi_dispatch description
	rapi_dispatch parameters
	rapi_dispatch result

	rapi_getfd - Get file descriptor
	rapi_getfd description
	rapi_getfd parameters
	rapi_getfd result

	RAPI error handling
	RAPI error codes
	RSVP error codes

	RAPI header files
	RAPI header files: Integer and floating point types
	The <rapi.h> header
	<rapi.h> header general definitions
	<rapi.h> header tspec definitions
	<rapi.h> header flowspec definitions
	<rapi.h> header adspec definitions
	<rapi.h> header filter spec definitions
	<rapi.h> header policy definitions
	<rapi.h> header reservation style definitions
	<rapi.h> header function interface definitions

	Integrated services data structures and macros
	Integrated services data structures and macros general definitions
	Integrated services data structures and macros generic tspec format
	Integrated services data structures and macros formats for controlled-load service
	Integrated services data structures and macros formats for guaranteed service
	Integrated services data structures and macros basic adspec pieces
	Integrated services flowspec
	Integrated services tspec
	Integrated services adspec

	Chapter 7. X Window System interface in the z/OS Communications Server environment
	X Window System and Motif
	DLL support for the X Window System
	How the X Window System interface works in the MVS environment
	z/OS UNIX application resource file
	Identifying the target display in z/OS UNIX

	X Window System programming considerations
	Porting Motif applications to z/OS UNIX MVS
	Compiling and linking Motif and X Window System applications

	Running an X Window System or Motif DLL-enabled application
	X Window System environment variables
	Motif environment variables
	EBCDIC/ASCII translation in the X Window System
	EBCDIC/ASCII translation in the X Window System: Locale independent translation
	EBCDIC/ASCII translation in the X Window System: Locale dependent translation
	XTextProperty with COMPOUND_TEXT encoding

	Standard clients supplied with MVS z/OS UNIX X Window System support
	Demonstration programs supplied with MVS z/OS UNIX X Window System support
	X Window System and Motif files locations
	Previous function X11R6.1 and Motif 1.2
	New function X11R6.6 and Motif 2.1.30

	Chapter 8. Remote procedure calls in the z/OS Communications Server environment
	The RPC interface
	Portmapper and rpcbind
	Contacting portmapper or rpcbind
	Portmapper and rpcbind target assistance
	Registering with rpcbind
	Deregistering with rpcbind
	Obtaining address lists from the rpcbind server
	RPC servers in a CINET environment
	Using ENF event code 80 to listen for rpcbind events
	RPCGEN command
	clnt_stat enumerated type

	Porting RPC applications
	Remapping file names with MANIFEST.H
	Accessing system return messages
	Printing system return messages
	Enumerations
	Header files for remote procedure calls

	Compiling and linking RPC applications
	Compatibility considerations when compiling and linking RPC applications
	Sample compilation cataloged procedure additions
	Compiling and linking RPC applications: Nonreentrant modules
	Compiling and linking RPC applications: Reentrant modules

	RPC global variables
	rpc_createerr
	svc_fds
	svc_fdset
	Remote procedure and external data representation calls
	auth_destroy()
	authnone_create()
	authunix_create()
	authunix_create_default()
	callrpc()
	clnt_broadcast()
	clnt_call()
	clnt_control()
	clnt_create()
	clnt_destroy()
	clnt_freeres()
	clnt_geterr()
	clnt_pcreateerror()
	clnt_perrno()
	clnt_perror()
	clnt_spcreateerror()
	clnt_sperrno()
	clnt_sperror()
	clntraw_create()
	clnttcp_create()
	clntudp_create()
	get_myaddress()
	getrpcport()
	pmap_getmaps()
	pmap_getport()
	pmap_rmtcall()
	pmap_set()
	pmap_unset()
	registerrpc()
	svc_destroy()
	svc_freeargs()
	svc_getargs()
	svc_getcaller()
	svc_getreq()
	svc_getreqset()
	svc_register()
	svc_run()
	svc_sendreply()
	svc_unregister()
	svcerr_auth()
	svcerr_decode()
	svcerr_noproc()
	svcerr_noprog()
	svcerr_progvers()
	svcerr_systemerr()
	svcerr_weakauth()
	svcraw_create()
	svctcp_create()
	svcudp_create()
	xdr_accepted_reply()
	xdr_array()
	xdr_authunix_parms()
	xdr_bool()
	xdr_bytes()
	xdr_callhdr()
	xdr_callmsg()
	xdr_char()
	xdr_destroy()
	xdr_double()
	xdr_enum()
	xdr_float()
	xdr_free()
	xdr_getpos()
	xdr_inline()
	xdr_int()
	xdr_long()
	xdr_opaque()
	xdr_opaque_auth()
	xdr_pmap()
	xdr_pmaplist()
	xdr_pointer()
	xdr_reference()
	xdr_rejected_reply()
	xdr_replymsg()
	xdr_setpos()
	xdr_short()
	xdr_string()
	xdr_text_char()
	xdr_u_char()
	xdr_u_int()
	xdr_u_long()
	xdr_u_short()
	xdr_union()
	xdr_vector()
	xdr_void()
	xdr_wrapstring()
	xdrmem_create()
	xdrrec_create()
	xdrrec_endofrecord()
	xdrrec_eof()
	xdrrec_skiprecord()
	xdrstdio_create()
	xprt_register()
	xprt_unregister()
	Sample RPC programs
	Running RPC sample programs
	Starting the GENESERV server
	Running GENESEND client
	Running the RAWEX module

	RPC client
	RPC server
	RPC raw data stream

	RPCGEN sample programs
	Generating your own sequential data sets
	Building client and server executable modules
	Running RPCGEN sample programs

	Chapter 9. Remote procedure calls in the z/OS UNIX System Services environment
	Deviations from Sun RPC 4.0
	Using z/OS UNIX System Services RPC
	Support for 64-bit integers
	UDP transport protocol CLIENT handles
	RPC restrictions

	Chapter 10. Network Computing System
	NCS and the Network Computing Architecture
	NCS components
	Remote procedure call runtime library
	Location broker
	Network interface definition language compiler

	MVS implementation of NCS
	NCS system IDL data sets
	NCS C header data sets and the Pascal include data set
	NCS RPC run-time library
	NCS portability issues
	NCS defines NCSDEFS.H
	Required user-defined USERDEFS.H

	NCS: Preprocessing, compiling, and linking
	NCS preprocessor programs
	NIDL compiler
	Converting C identifiers using the CPP program

	Compiling and linking NCS programs
	NCS: Sample compilation cataloged procedure additions
	NCS: Sample link-edit cataloged procedure additions

	Running UUID@GEN
	NCS sample programs
	The NCSSMP sample program
	NCS sample redefines

	Compiling, linking, and running the sample BINOP program
	Setting up the sample BINOP program
	Compiling the sample BINOP program
	Linking the sample BINOP program
	Running the sample BINOP program

	Compiling, linking, and running the NCSSMP program
	Setting up the NCSSMP program
	Compiling the NCSSMP program
	Linking the NCSSMP program
	Running the NCSSMP program

	Compiling, linking, and running the sample BANK program
	Setting up the sample BANK program
	Compiling the sample BANK program
	Linking the sample BANK program
	Running the sample BANK program

	Chapter 11. Running the sample mail filter program
	Compiling and linking the lf_smpl.c source code
	Specifying filters in the sendmail configuration file
	Running the sample mail filter program
	Library control functions
	smfi_register
	smfi_register description
	smfi_register parameters
	smfi_register result

	smfi_setconn
	smfi_settimeout
	smfi_settimeout description
	smfi_settimeout parameters
	smfi_settimeout result

	smfi_main
	smfi_main description
	smfi_main parameters
	smfi_main result

	Data access functions
	smfi_getsymval
	smfi_getpriv
	smfi_getpriv description
	smfi_getpriv parameters
	smfi_getpriv result

	smfi_setpriv
	smfi_setreply
	smfi_setreply description
	smfi_setreply parameters
	smfi_setreply result

	Message modification functions
	smfi_addheader
	smfi_chgheader
	smfi_addrcpt
	smfi_delrcpt
	smfi_replacebody

	Mail filter callbacks
	xxfi_connect - Connection information
	xxfi_connect description
	xxfi_connect parameters
	xxfi_connect result

	xxfi_helo - SMTP HELO/EHLO command
	xxfi_helo description
	xxfi_helo parameters

	xxfi_envfrom - Envelope sender
	xxfi_envfrom description
	xxfi_envfrom parameters
	xxfi_envfrom result

	xxfi_envrcpt - Envelope recipient
	xxfi_envrcpt description
	xxfi_envrcpt parameters
	xxfi_envrcpt result

	xxfi_header - Header
	xxfi_eoh - End of header
	xxfi_eoh description
	xxfi_eoh parameters

	xxfi_body - body block
	xxfi_eom - End of message
	xxfi_abort - Message aborted
	xxfi_close - Connection cleanup

	Chapter 12. Policy API (PAPI)
	API outline for retrieving data from Policy Agent
	Compiling and linking PAPI applications
	Running PAPI applications
	PAPI return codes
	PAPI client library services
	PAPI: Connecting and retrieving data
	papi_connect - Connect to Policy Agent
	papi_connect description
	papi_connect parameters
	papi_connect result
	papi_connect example

	papi_debug - Set debug capability
	papi_debug description
	papi_debug parameters
	papi_debug result

	papi_disconnect - Disconnect from the Policy Agent
	papi_disconnect description
	papi_disconnect parameters
	papi_disconnect result
	papi_disconnect example

	papi_free_perf_data - Free retrieved QoS performance data
	papi_free_perf_data description
	papi_free_perf_data parameters
	papi_free_perf_data result
	papi_free_perf_data example

	papi_get_perf_data - Retrieve QoS performance data
	papi_get_perf_data description
	papi_get_perf_data parameters
	papi_get_perf_data result
	papi_get_perf_data example

	PAPI helper functions
	papi_get_action_perf_by_id - Obtain performance information on the action specified by the action ID
	papi_get_action_perf_by_id description
	papi_get_action_perf_by_id parameters
	papi_get_action_perf_by_id result

	papi_get_action_perf_info - Obtain performance information on a particular action
	papi_get_action_perf_info description
	papi_get_action_perf_info parameters
	papi_get_action_perf_info result

	papi_get_actions_count - Obtain number of actions in the policy performance data
	papi_get_actions_count description
	papi_get_actions_count parameters
	papi_get_actions_count result

	papi_get_policy_instance - Obtain policy instance number for policies in the policy performance data
	papi_get_policy_instance description
	papi_get_policy_instance parameters
	papi_get_policy_instance result

	papi_get_rule_perf_by_id - Obtain performance information on the rule specified by the rule ID
	papi_get_rule_perf_by_id description
	papi_get_rule_perf_by_id parameters
	papi_get_rule_perf_by_id result

	papi_get_rule_perf_info - Obtain performance information on a particular rule
	papi_get_rule_perf_info description
	papi_get_rule_perf_info parameters
	papi_get_rule_perf_info result

	papi_get_rules_count - Obtain number of rules in the policy performance data
	papi_get_rules_count description
	papi_get_rules_count parameters
	papi_get_rules_count result

	papi_strerror - Return string describing PAPI return code value
	papi_strerror description
	papi_strerror parameters
	papi_strerror result

	Chapter 13. FTP Client Application Programming Interface (API)
	FTP client API compatibility considerations
	FTP client API guidelines and requirements
	Java call formats
	COBOL, C, REXX, assembler, and PL/I call formats
	Converting parameter descriptions
	z/OS FTP client behavior when invoked from the FTP client API
	FTP Client Application Interface (FCAI) control block
	FTP Client Application Interface (FCAI) stem variables
	Predefined REXX variables

	Sending requests to the FTP client API
	INIT
	Example of the INIT call instruction
	Parameter values that are set by the application
	Parameter values that are returned to the application
	Application tasks for the INIT request

	SCMD
	Example of the SCMD call instruction
	Parameter values that are set by the application
	Parameter values that are returned to the application
	Application tasks for the SCMD request

	POLL
	Example of the POLL call instruction
	Parameter values that are set by the application
	Parameter values that are returned to the application
	Application tasks for the POLL request

	GETL
	Example of the GETL call instruction
	Parameter values that are set by the application
	Parameter values that are returned to the application
	Application tasks for the GETL request
	Using the FIND and COPY operations

	TERM
	Example of the TERM call instruction
	Parameter values that are set by the application
	Parameter values that are returned to the application
	Application tasks for the TERM request

	FTP client API for C functions
	FAPI_INIT
	FAPI_INIT example:

	FAPI_SCMD
	FAPI_SCMD example:

	FAPI_POLL
	FAPI_POLL example:

	FAPI_GETL_COPY
	FAPI_GETL_COPY example:

	FAPI_GETL_FIND
	FAPI_GETL_FIND example:

	FAPI_TERM
	FAPI_TERM example:

	FTP client API for REXX function
	Handling of SIGCHLD signals
	FTP client API for REXX trace
	Specifying the FTP client API for REXX trace output location

	FTP client API requests
	CREATE request
	INIT request
	SCMD request
	POLL request
	GETL_FIND request
	GETL_COPY request
	SET_TRACE request
	SET_REQUEST_TIMER request
	GET_FCAI_MAP request
	TERM request

	FTP client API for REXX trace return codes

	Output register information for the FTP client API
	FTP client API: Other output that is returned to the application
	Prompts from the client
	Prompts not used by the FTP client API
	Prompts returned in FCAI-Status
	FTP client API command prompt

	FTP client API messages and replies
	Interpreting results from an interface request
	FCAI request completion values
	Considerations when evaluating request completion values

	Programming notes for the FTP client API
	FCAI_Status_TraceFailed and FCAI_TraceStatus: Reporting failures in the interface trace function
	FCAI_IE_LengthInvalid: Improper lengths passed to the interface
	FCAI_ReqTimer: Controlling requests that retrieve results from the created z/OS FTP client process
	FCAI_PollWait: Specifying a wait time before POLL
	FCAI_IE_InternalErr: Unanticipated exceptional conditions in the interface
	Exceptional conditions in the z/OS FTP client

	Using the FTP client API trace
	FTP client API sample programs

	Chapter 14. Network management interfaces
	Local IPSec NMI
	Local IPSec NMI: Configuring the interface
	Local IPSec NMI: Connecting to the server
	IPSec NMI request/response format
	IPSec NMI request and response data structures
	IPSec NMI request and response message format

	IPSec NMI request messages
	IPSec NMI monitoring request format
	IPSec NMI control request formats
	NMsec_ACTIVATE_IPTUNMANUAL
	NMsec_ACTIVATE_IPTUNDYN
	NMsec_DEACTIVATE_IPTUNMANUAL
	NMsec_DEACTIVATE_IPTUNDYN
	NMsec_DEACTIVATE_IKETUN
	NMsec_REFRESH_IPTUNDYN
	NMsec_REFRESH_IKETUN
	NMsec_LOAD_POLICY

	IPSec NMI response messages
	NMsec_GET_STACKINFO
	NMsec_GET_SUMMARY
	NMsec_GET_IPFLTCURR, NMsec_GET_IPFLTDEFAULT, and NMsec_GET_IPFLTPOLICY
	NMsec_GET_PORTTRAN
	NMsec_GET_IPTUNMANUAL
	NMsec_GET_IPTUNDYNSTACK
	NMsec_GET_IPTUNDYNIKE
	NMsec_GET_IKETUN
	NMsec_GET_IKETUNCASCADE
	NMsec_GET_IPINTERFACES
	NMsec_GET_IKENSINFO
	NMsec_LOAD_POLICY
	NMsec_ACTIVATE_IPTUNMANUAL, NMsec_ACTIVATE_IPTUNDYN, NMsec_DEACTIVATE_IPTUNMANUAL, NMsec_DEACTIVATE_IPTUNDYN, NMsec_DEACTIVAT

	IPSec NMI initialization and termination messages
	IPSec NMI return and reason codes

	Network security services (NSS) network management NMI
	Network security services NMI: Configuring the interface
	Network security services NMI: Connecting to the server
	Network security services NMI request and response format
	Network security services NMI request messages
	Network security services NMI response messages
	NMsec_GET_CLIENTINFO

	Network security services NMI initialization and termination messages
	Network security services NMI return and reason codes

	Real-time application-controlled TCP/IP trace NMI (EZBRCIFR)
	Real-time control NMI: Overview
	Real-time control NMI: Configuration and enablement
	TCP/IP stack configuration
	SAF resource names for NMI resources

	Real-time control NMI: Invoking the requests
	Requirements
	EZBRCIFR invocation format
	EZBRCIFR parameters
	Common EZBRCIFR return and reason codes

	Real-time control NMI: Requests
	Common request requirements
	RCCOpen - Open a trace instance
	RCCSetFilters - Set trace filters and options
	RCCStart - Start trace collection
	RCCGetRecords - Get the real-time trace records
	RCCStop - Stop trace collection
	RCCClose - Close a trace instance

	Real-time TCP/IP network monitoring NMI
	Steps for using the real-time NMI
	Connecting to the AF_UNIX stream socket
	Obtaining the real-time data

	Real-time NMI: Configuration and enablement
	Authorizing the applications

	Real-time NMI: Connecting to the server
	Real-time NMI: Interacting with the servers
	Real-time NMI: Common record header
	Real-time NMI: Requests sent by the client to the server
	Real-time NMI: Records sent by the server to the client
	Records sent by the server to the client: Initialization record
	Records sent by the server to the client: Termination record
	Records sent by the server to the client: Token record

	Real-time NMI: Copying the real-time data
	EZBTMIC1 or EZBTMIC4: Copy real-time data for assembler applications
	TMI_CopyBuffer: Copy real-time data for C/C++ applications

	Real-time NMI: Processing the output records
	Format of common portion of output records
	Format of service-specific portion of output records

	Real-time SMF NMI: FTP SMF type 119 subtypes 100-104 record formats
	Real-time SMF NMI: FTP server transfer initialization record (subtype 100)
	Real-time SMF NMI: FTP client transfer initialization record (subtype 101)
	Real-time SMF NMI: FTP client login failure record (subtype 102)
	Real-time SMF NMI: FTP client session record (subtype 103)
	Real-time SMF NMI: FTP server session record (subtype 104)

	Resolver NMI (EZBREIFR)
	Resolver NMI: Overview
	Resolver NMI: Configuration and enablement
	Resolver NMI: Using the EZBREIFR requests
	EZBREIFR requirements
	EZBREIFR format
	EZBREIFR parameters

	Resolver NMI: Request and response formats
	Resolver NMI: Requests
	Resolver NMI: Responses

	Resolver NMI: Request and response data structures
	Resolver NMI: Examples

	SMF records
	SMF type 109 records
	SMF type 118 records
	SMF type 119 records

	SNA network monitoring NMI
	SNA network monitoring NMI configuration
	SNA network monitoring NMI: Enabling and disabling the interface
	SNA network monitoring NMI: Communicating with the server
	SNA network monitoring NMI request/response format
	SNA network monitoring NMI request format
	SNA network monitoring NMI response format
	SNA network monitoring NMI request and response data structures and records

	NMI request errors

	TCP/IP callable NMI (EZBNMIFR)
	EZBNMIFR overview
	EZBNMIFR: Poll-type requests
	EZBNMIFR: Action-type requests

	EZBNMIFR: Configuration and enablement
	Using the EZBNMIFR requests
	EZBNMIFR requirements
	EZBNMIFR format
	EZBNMIFR parameters

	TCP/IP NMI request format
	Format and details for poll-type requests
	Filter request section
	Filter example
	Format and details for action-type requests

	TCP/IP NMI response format
	TCP/IP NMI request and response data structures
	TCP/IP NMI examples

	Trace record formatting NMI (EZBCTAPI)
	EZBCTAPI NMI: Configuration and enablement
	EZBCTAPI NMI: Invoking the interface
	EZBCTAPI NMI requirements
	EZBCTAPI NMI format
	EZBCTAPI NMI parameters
	EZBCTAPI NMI input register information
	EZBCTAPI NMI output register information
	EZBCTAPI NMI ABEND codes
	EZBCTAPI NMI return and reason codes
	EZBCTAPI NMI: Programming considerations
	EZBCTAPI NMI Performance implications
	EZBCTAPI NMI Example of using the EZBCTAPI NMI

	EZBCTAPI NMI: Passing options to the trace formatter

	Common real-time trace record attributes
	Network management diagnosis
	File storage locations

	Chapter 15. Application Transparent Transport Layer Security (AT-TLS)
	CICS transaction considerations
	Using the SIOCTTLSCTL ioctl
	Starting AT-TLS on a connection
	Stopping AT-TLS on a connection
	Requesting AT-TLS queries and additional functions
	Steps for implementing an aware server application
	Steps for implementing a controlling server application

	Coding the SIOCTTLSCTL ioctl
	SIOCTTLSCTL (X'C038D90B')
	Using the TTLSHeader control block

	SIOCTTLSCTL ioctl return values
	SIOCTTLSCTL ioctl coding examples
	SIOCTTLSCTL ioctl assembler example
	SIOCTTLSCTL ioctl PL/I example
	SIOCTTLSCTL ioctl COBOL example
	SIOCTTLSCTL ioctl C example

	Chapter 16. Trusted TCP connections
	Sysplex-specific connection routing information
	Steps for retrieving connection routing information

	Partner security credentials
	Steps for retrieving partner security credentials

	Programming requirements for the SO_CLUSTERCONNTYPE socket option
	Programming requirements for the SIOCGPARTNERINFO and SIOCSPARTNERINFO ioctl calls
	Coding the SO_CLUSTERCONNTYPE socket option
	Coding the SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls
	SIOCSPARTNERINFO (X'8004F613')
	Input to SIOCSPARTNERINFO
	Output from SIOCSPARTNERINFO
	SIOCSPARTNERINFO return values

	SIOCGPARTNERINFO (X'C000F612')
	Input to SIOCGPARTNERINFO
	Output from SIOCGPARTNERINFO
	Using the partner information control block
	SIOCGPARTNERINFO return values

	Coding examples – SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls
	Assembler example – SIOCGPARTNERINFO ioctl call
	PL/I example – SIOCGPARTNERINFO ioctl call
	COBOL example – SIOCGPARTNERINFO ioctl call
	C example – SIOCSPARTNERINFO and SIOCGPARTNERINFO ioctl calls

	Chapter 17. Interfacing with the Digital Certificate Access Server (DCAS)
	Understanding how clients interface to DCAS
	Interfacing with the DCAS: Defining the format for request and response specifications
	Configuring the DCAS server to work with your solution

	Chapter 18. Miscellaneous programming interfaces
	SIOCSAPPLDATA IOCTL
	SIOCSAPPLDATA input
	SIOCSAPPLDATA output
	SIOCSAPPLDATA C language example

	SIOCSMOCTL IOCTL
	SIOCSMOCTL input
	SIOCSMOCTL output
	Steps for creating an ancillary socket
	Applications in a common INET environment

	TCP_KeepAlive socket option

	Appendix A. Well-known port assignments
	Well-known UDP port assignments

	Appendix B. Programming interfaces for providing classification data to be used in differentiated services policies
	Passing application classification data on SENDMSG
	Additional SENDMSG considerations

	Appendix C. Type 109 SMF records
	Appendix D. Type 118 SMF records
	Standard subtype record numbers
	TN3270E Telnet server SMF record layout
	FTP server Type 118 SMF record layout
	SMF record layout for API calls
	SMF record layout for FTP client calls
	SMF record layout for Telnet client calls
	SMF record layout for TCPIPSTATISTICS

	Appendix E. Type 119 SMF records
	Mapping SMF records
	Assembler applications
	C/C++ applications

	Processing SMF records for IP security
	Common Type 119 SMF record format
	SMF 119 record subtypes
	Standard data format concepts
	Common TCP/IP identification section
	TCP connection initiation record (subtype 1)
	TCP connection termination record (subtype 2)
	FTP client transfer completion record (subtype 3)
	TCP/IP profile event record (subtype 4)
	Relationship to GetProfile Callable NMI
	Continuing the SMF record
	Two-phase SMF record creation for VIPADYNAMIC/ENDVIPADYNAMIC profile statement information
	Cancelled configuration information
	Data format concepts
	TCP/IP profile record self-defining section
	TCP/IP profile record TCP/IP stack identification section
	TCP/IP profile record profile information common section
	The NMTP_PICODepStmts and NMTP_PICODepChanged fields

	TCP/IP profile record profile information data set name section
	TCP/IP profile record autolog procedure section
	TCP/IP profile record IPv4 configuration section
	TCP/IP profile record IPv6 configuration section
	TCP/IP profile record TCP configuration section
	TCP/IP profile record UDP configuration section
	TCP/IP profile record Global configuration section
	TCP/IP profile record Port section
	TCP/IP profile record interface section
	TCP/IP profile record IPv6 address section
	TCP/IP profile record Routing section
	TCP/IP profile record source IP section
	TCP/IP profile record management section
	TCP/IP profile record IPSec common section
	TCP/IP profile record IPSec rule section
	TCP/IP profile record network access section
	TCP/IP profile record dynamic VIPA (DVIPA) address section
	TCP/IP profile record dynamic VIPA (DVIPA) routing section
	TCP/IP profile record distributed dynamic VIPA (DVIPA) section
	TCP/IP profile record policy table for IPv6 default address selection section

	TCP/IP statistics record (subtype 5)
	Interface statistics record (subtype 6)
	Server port statistics record (subtype 7)
	TCP/IP stack start/stop record (subtype 8)
	UDP socket close record (subtype 10)
	TN3270E Telnet server SNA session initiation record (subtype 20)
	TN3270E Telnet server SNA session termination record (subtype 21)
	TSO Telnet client connection initiation record (subtype 22)
	TSO Telnet client connection termination record (subtype 23)
	TN3270E Telnet server profile event record (subtype 24)
	Relationship to GetTnProfile Callable NMI
	Continuing the SMF record
	Data format concepts
	TN3270E Telnet server profile record self-defining section
	TN3270E Telnet server profile record TCP/IP stack identification section
	TN3270E Telnet server profile record profile information common section
	TN320E Telnet server profile record profile information data set name section
	TN3270E Telnet server profile record TelnetGlobals section
	TN3270E Telnet server profile record TelnetParms section
	TN3270E Telnet server profile record LU section
	TN3270E Telnet server profile record LU Group section
	TN3270E Telnet server profile record SLU Group section
	TN3270E Telnet server profile record APPL group section
	TN3270E Telnet server profile record Printer section
	TN3270E Telnet server profile record PrintGroup section
	TN3270 Telnet server profile record SPRTGROUP section
	TN3270 Telnet server profile record ParmsGroup section
	TN3270E Telnet server profile record MonitorGroup section
	TN3270E Telnet server profile record Client Identifier structure
	TN3270E Telnet server profile record LinkGroup section
	TN3270E Telnet server profile record IpGroup section
	TN3270E Telnet server profile record UserGroup section
	TN3270E Telnet server profile record DestIPGroup section
	TN3270E Telnet server profile record HnGroup section
	TN3270E Telnet server profile record AllowAppl/RestrictAppl section
	TN3270E Telnet server profile record DefaultAppl section
	TN3270E Telnet server profile record PrtDefaultAppl section
	TN3270E Telnet server profile record LineModeAppl section
	TN3270E Telnet server profile record MapAppl section
	TN3270E Telnet server profile record USSTCP section
	TN3270E Telnet server profile record INTERPTCP section
	TN3270E Telnet server profile record ParmsMap section
	TN3270E Telnet server profile record LUMap section
	TN3270E Telnet server profile record PrtMap section
	TN3270E Telnet server profile record MonitorMap section

	DVIPA status change record (subtype 32)
	DVIPA removed record (subtype 33)
	DVIPA target added record (subtype 34)
	DVIPA target removed record (subtype 35)
	DVIPA target server started record (subtype 36)
	DVIPA target server ended record (subtype 37)
	SMC-R link group statistics record (subtype 41)
	SMC-R link state start record (subtype 42)
	SMC-R link state end record (subtype 43)
	RDMA network interface card (RNIC) interface statistics record (subtype 44)
	CSSMTP configuration record (CONFIG subtype 48)
	CSSMTP connection record (CONNECT subtype 49)
	CSSMTP mail record (MAIL subtype 50)
	CSSMTP spool file record (SPOOL subtype 51)
	CSSMTP statistical record (STATS subtype 52)
	FTP server transfer completion record (subtype 70)
	FTP daemon configuration record (subtype 71)
	FTP server logon failure record (subtype 72)
	IPSec IKE tunnel activation and refresh record (subtype 73)
	IPSec IKE tunnel deactivation and expire record (subtype 74)
	IPSec dynamic tunnel activation and refresh record (subtype 75)
	IPSec dynamic tunnel deactivation record (subtype 76)
	IPSec dynamic tunnel added record (subtype 77)
	IPSec dynamic tunnel removed record (subtype 78)
	IPSec manual tunnel activation record (subtype 79)
	IPSec manual tunnel deactivation record (subtype 80)

	Appendix F. EZAENF80 Parameter list for ENF event code 80 listen exits
	Appendix G. Application data
	Identifying application data
	CICS socket interface and listener application data
	z/OS IP FTP client application data
	FTP client application data format for the control connection
	FTP client application data format for the data connection
	FTP daemon application data format
	FTP server application data format for the control connection
	FTP server application data format for the data connection
	Application data format for IP CICS sockets
	Application data format for CSSMTP
	TN3270E Telnet server application data
	Application data format for Telnet

	Appendix H. X Window System interface V11R4 and Motif version 1.1
	Software requirements for X Window System interface V11R4 and Motif version 1.1
	How the X Window System interface works in the MVS environment
	X Window System interface in the MVS environment: Identifying the target display
	X Window System interface in the MVS environment: Application resource file
	X Window System interface in the MVS environment: Creating an application
	X Window System header files
	X Window System and Xt Intrinsics header files
	Athena widget set header files
	Motif header files

	X Window System interface in the MVS environment: Compiling and linking
	X Window System interface in the MVS environment: Nonreentrant modules
	X Window System interface in the MVS environment: Reentrant modules

	Using sample X Window System programs
	X Window System Interface V11r4: Environment variables
	Standard X client applications
	Building X client modules

	X Window System routines
	X Window System routines: Opening and closing a display
	X Window System routines: Creating and destroying windows
	X Window System routines: Manipulating windows
	X Window System routines: Changing window attributes
	X Window System routines: Obtaining window information
	X Window System routines: Obtaining properties and atoms
	X Window System routines: Manipulating window properties
	X Window System routines: Setting window selections
	X Window System routines: Manipulating colormaps
	X Window System routines: Manipulating color cells
	X Window System routines: Creating and freeing pixmaps
	X Window System routines: Manipulating graphics contexts
	X Window System routines: Clearing and copying areas
	X Window System routines: Drawing lines
	X Window System routines: Filling areas
	X Window System routines: Loading and freeing fonts
	X Window System routines: Querying character string sizes
	X Window System routines: Drawing text
	X Window System routines: Transferring images
	X Window System routines: Manipulating cursors
	X Window System routines: Handling window manager functions
	X Window System routines: Manipulating keyboard settings
	X Window System routines: Controlling the screen saver
	X Window System routines: Manipulating hosts and access control
	X Window System routines: Handling events
	X Window System routines: Enabling and disabling synchronization
	X Window System routines: Using default error handling
	X Window System routines: Communicating with window managers
	X Window System routines: Manipulating keyboard event functions
	X Window System routines: Manipulating regions
	X Window System routines: Using cut and paste buffers
	X Window System routines: Querying visual types
	X Window System routines: Manipulating images
	X Window System routines: Manipulating bit maps
	X Window System routines: Using the resource manager
	X Window System routines: Manipulating display functions

	X Window System routines: Extension routines
	X Window System routines: MIT extensions to X
	X Window System routines: Associate table functions
	X Window System routines: Miscellaneous utility routines
	X Window System routines: X authorization routines
	X Window System toolkit
	Xt Intrinsics routines

	X Window System toolkit: Application resources
	X Window System routines: Athena widget support
	X Window System routines: Motif-based widget support
	X Window System routines: z/OS UNIX System Services support
	X Window System routines: What is provided with z/OS UNIX System Services
	X Window System routines: z/OS UNIX System Services software requirements
	X Window System routines: z/OS UNIX System Services application resource file
	Identifying the target display in z/OS UNIX System Services
	Compiling and linking with z/OS UNIX System Services
	Compiling and linking with z/OS UNIX System Services using c89
	Standard X client applications for z/OS UNIX System Services
	Application resources for z/OS UNIX System Services

	Appendix I. Syslog daemon name/token pair and ECSA storage mapping
	Appendix J. Related protocol specifications
	Appendix K. Accessibility
	Notices
	Programming interface information
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Communicating your comments to IBM

